首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Succinate-ubiquinone oxidoreductase (SQR) from Escherichia coli is expressed maximally during aerobic growth, when it catalyzes the oxidation of succinate to fumarate in the tricarboxylic acid cycle and reduces ubiquinone in the membrane. The enzyme is similar in structure and function to fumarate reductase (menaquinol-fumarate oxidoreductase [QFR]), which participates in anaerobic respiration by E. coli. Fumarate reductase, which is proficient in succinate oxidation, is able to functionally replace SQR in aerobic respiration when conditions are used to allow the expression of the frdABCD operon aerobically. SQR has not previously been shown to be capable of supporting anaerobic growth of E. coli because expression of the enzyme complex is largely repressed by anaerobic conditions. In order to obtain expression of SQR anaerobically, plasmids which utilize the PFRD promoter of the frdABCD operon fused to the sdhCDAB genes to drive expression were constructed. It was found that, under anaerobic growth conditions where fumarate is utilized as the terminal electron acceptor, SQR would function to support anaerobic growth of E. coli. The levels of amplification of SQR and QFR were similar under anaerobic growth conditions. The catalytic properties of SQR isolated from anaerobically grown cells were measured and found to be identical to those of enzyme produced aerobically. The anaerobic expression of SQR gave a greater yield of enzyme complex than was found in the membrane from aerobically grown cells under the conditions tested. In addition, it was found that anaerobic expression of SQR could saturate the capacity of the membrane for incorporation of enzyme complex. As has been seen with the amplified QFR complex, E. coli accommodates the excess SQR produced by increasing the amount of membrane. The excess membrane was found in tubular structures that could be seen in thin-section electron micrographs.  相似文献   

2.
Diazoxide, a mitochondrial ATP-sensitive potassium (mitoKATP) channel opener, protects the heart from ischemia–reperfusion injury. Diazoxide also inhibits mitochondrial complex II-dependent respiration in addition to its preconditioning effect. However, there are no prior studies of the role of diazoxide on post-ischemic myocardial oxygenation. In the current study, we determined the effect of diazoxide on the suppression of post-ischemic myocardial tissue hyperoxygenation in vivo, superoxide (O2 ??) generation in isolated mitochondria, and impairment of the interaction between complex II and complex III in purified mitochondrial proteins. It was observed that diazoxide totally suppressed the post-ischemic myocardial hyperoxygenation. With succinate but not glutamate/malate as the substrate, diazoxide significantly increased ubisemiquinone-dependent O2 ?? generation, which was not blocked by 5-HD and glibenclamide. Using a model system, the super complex of succinate-cytochrome c reductase (SCR) hosting complex II and complex III, we also observed that diazoxide impaired complex II and its interaction with complex III with no effect on complex III. UV–visible spectral analysis revealed that diazoxide decreased succinate-mediated ferricytochrome b reduction in SCR. In conclusion, our results demonstrated that diazoxide suppressed the in vivo post-ischemic myocardial hyperoxygenation through opening the mitoKATP channel and ubisemiquinone-dependent O2 ?? generation via inhibiting mitochondrial complex II-dependent respiration.  相似文献   

3.
4.
We previously showed that adult Paragonimus westermani, the causative agent of paragonimiasis and whose habitat is the host lung, possesses both aerobic and anaerobic respiratory chains, i.e., cyanide-sensitive succinate oxidase and NADH-fumarate reductase systems, in isolated mitochondria (Takamiya et al., 1994). This finding raises the intriguing question as to whether adult Paragonimus worms possess two different populations of mitochondria, one having an aerobic succinate oxidase system and the other an anaerobic fumarate reductase system, or whether the worms possess a single population of mitochondria possessing both respiratory chains (i.e., mixed-functional mitochondria). Staining of trematode tissues for cytochrome c oxidase activity showed three types of mitochondrial populations: small, strongly stained mitochondria with many cristae, localised in the tegument and tegumental cells; and two larger parenchymal cell mitochondria, one with developed cristae and the other with few cristae. The tegumental and parenchymal mitochondria could be separated by isopycnic density-gradient centrifugation and showed different morphological characteristics and respiratory activities, with low-density tegumental mitochondria having cytochrome c oxidase activity and high-density parenchymal mitochondria having fumarate reductase activity. These results indicate that Paragonimus worms possess three different populations of mitochondria, which are distributed throughout trematode tissues and function facultatively, rather than having mixed-functional mitochondria.  相似文献   

5.
The clinical management of anaplastic thyroid carcinoma and follicular thyroid carcinoma is challenging and requires an alternative therapeutic strategy. Although atovaquone is an FDA-approved anti-malarial drug, studies has recently demonstrated its anti-cancer activities. In line with these efforts, our study shows that atovaquone is an attractive candidate for thyroid cancer treatment. We show that atovaquone significantly inhibits growth, migration and survival in a concentration-dependent manner in 8505C and FTC113 cells. Mechanistically, atovaquone inhibits mitochondrial complex III activity, leading to mitochondrial respiration inhibition and reduction of ATP production in thyroid cancer cells. The inhibitory effects of atovaquone is reversed in mitochondrial respiration-deficient 8505C ρ0 cells, confirming mitochondrial respiration as the mechanism of atovaquone’s action in thyroid cancer. In addition, atovaquone suppresses phosphorylation of STAT3 in thyroid cancer wildype but not ρ0 cells, demonstrating that STAT3 phosphorylation inhibition by atovaquone is a consequence of mitochondrial respiration inhibition. Notably, we further demonstrate that atovaquone significantly augments doxorubicin’s inhibitory effects via suppressing mitochondrial respiration and STAT3. Our findings suggest that atovaquone can be repurposed for thyroid cancer treatment. Our work also highlights that targeting mitochondrial respiration may represent potential therapeutic strategy in thyroid cancer.  相似文献   

6.
7.
8.
Recent research on respiratory chain of the parasitic helminth, Ascaris suum has shown that the mitochondrial NADH-fumarate reductase system (fumarate respiration), which is composed of complex I (NADH-rhodoquinone reductase), rhodoquinone and complex II (rhodoquinol-fumarate reductase) plays an important role in the anaerobic energy metabolism of adult parasites inhabiting hosts. The enzymes in these parasite-specific pathways are potential target for chemotherapy. We isolated a novel compound, nafuredin, from Aspergillus niger, which inhibits NADH-fumarate reductase in helminth mitochondria at nM order. It competes for the quinone-binding site in complex I and shows high selective toxicity to the helminth enzyme. Moreover, nafuredin exerts anthelmintic activity against Haemonchus contortus in in vivo trials with sheep indicating that mitochondrial complex I is a promising target for chemotherapy. In addition to complex I, complex II is a good target because its catalytic direction is reverse of succinate-ubiquionone reductase in the host complex II. Furthermore, we found atpenin and flutolanil strongly and specifically inhibit mitochondrial complex II. Interestingly, fumarate respiration was found not only in the parasites but also in some types of human cancer cells. Analysis of the mitochondria from the cancer cells identified an anthelminthic as a specific inhibitor of the fumarate respiration. Role of isoforms of human complex II in the hypoxic condition of cancer cells and fetal tissues is a challenge. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010.  相似文献   

9.
Chang-An Yu  Linda Yu 《BBA》1980,591(2):409-420
An improved method was developed to sequentially fractionate succinate-cytochrome c reductase into three reconstitutive active enzyme systems with good yield: pure succinate dehydrogenase, ubiquinone-binding protein fraction and a highly purified ubiquinol-cytochrome c reductase (cytochrome b-c1 III complex).An extensively dialyzed succinate-cytochrome c reductase was first separated into a succinate dehydrogenase fraction and the cytochrome b-c1 complex by alkali treatment. The resulting succinate dehydrogenase fraction was further purified to homogeneity by the treatment of butanol, calcium phosphate gel adsorption and ammonium sulfate fractionation under anaerobic condition in the presence of succinate and dithiothreitol. The cytochrome b-c1 complex was separated into cytochrome b-c1 III complex and ubiquinone-binding protein fractions by careful ammonium acetate fractionation in the presence of deoxycholate.The purified succinate dehydrogenase contained only two polypeptides with molecular weights of 70 000 and 27 000 as revealed by the sodium dodecyl sulfate polyacrylamide gel electrophoretic pattern. The enzyme has the reconstitutive activity and a low Km ferricyanide reductase activity of 85 μmol succinate oxidized per min per mg protein at 38°C.Chemical composition analysis of cytochrome b-c1 III complex showed that the preparation was completely free of contamination of succinate dehydrogenase and ubiquinone-binding protein and was 30% more pure than the available preparation.When these three components were mixed in a proper ratio, a thenoyl-trifluoroacetone- and antimycin A-sensitive succinate-cytochrome c reductase was reconstituted.  相似文献   

10.
Using N2 cavitation, we established a protocol to prepare the active mitochondria from Plasmodium falciparum showing a higher succinate dehydrogenase activity than previously reported and a dihydroorotate-dependent respiration. The fact that fumarate partially inhibited the dihydroorotate dependent respiration suggests that complex II (succinate–ubiquinone reductase/quinol–fumarate reductase) in the erythrocytic stage cells of P. falciparum functions as a quinol–fumarate reductase.  相似文献   

11.
Respiratory reduction of nitrate and nitrite is encoded in Thermus thermophilus by the respective transferable gene clusters. Nitrate is reduced by a heterotetrameric nitrate reductase (Nar) encoded along transporters and regulatory signal transduction systems within the nitrate respiration conjugative element (NCE). The nitrite respiration cluster (nic) encodes homologues of nitrite reductase (Nir) and nitric oxide reductase (Nor). The expression and role of the nirSJM genes in nitrite respiration were analyzed. The three genes are expressed from two promoters, one (nirSp) producing a tricistronic mRNA under aerobic and anaerobic conditions and the other (nirJp) producing a bicistronic mRNA only under conditions of anoxia plus a nitrogen oxide. As for its nitrite reductase homologues, NirS is expressed in the periplasm, has a covalently bound heme c, and conserves the heme d1 binding pocket. NirJ is a cytoplasmic protein likely required for heme d1 synthesis and NirS maturation. NirM is a soluble periplasmic homologue of cytochrome c552. Mutants defective in nirS show normal anaerobic growth with nitrite and nitrate, supporting the existence of an alternative Nir in the cells. Gene knockout analysis of different candidate genes did not allow us to identify this alternative Nir protein but revealed the requirement for Nar in NirS-dependent and NirS-independent nitrite reduction. As the likely role for Nar in the process is in electron transport through its additional cytochrome c periplasmic subunit (NarC), we concluded all the Nir activity takes place in the periplasm by parallel pathways.  相似文献   

12.
13.
14.
This work was focused on distinguishing the contribution of mitochondrial redox complexesto the production of reactive oxygen species (ROS) during cellular respiration. We were ableto accurately measure, for the first time, the basal production of ROS under uncoupled conditionsby using a very sensitive method, based on the fluorescent probe dichlorodihydrofluoresceindiacetate. The method also enabled the detection of the ROS generated by the oxidation ofthe endogenous substrates in the mitochondrial preparations and could be applied to bothmitochondria and live cells. Contrary to the commonly accepted view that complex III(ubiquinol:cytochrome c reductase) is the major contributor to mitochondrial ROS production, wefound that complex I (NADH-ubiquinone reductase) and complex II (succinate-ubiquinonereductase) are the predominant generators of ROS during prolonged respiration under uncoupledconditions. Complex II, in particular, appears to contribute to the basal production of ROSin cells.  相似文献   

15.
  • 1.1. The role of the fumarate:NADH oxidoreduction in the anaerobic glycolysis of the sea mussel is examined and discussed.
  • 2.2. Fumarate reductase activity is present in submitochondrial particles especially from adductor muscle, digestive gland and mantle.
  • 3.3. The pH optimum of the enzyme complex is 7.9; the approx Km's for NADH and fumarate are 4.0 × 10−5 M and 6.3 × 10−5 M, respectively.
  • 4.4. The enzyme complex is inhibitied by amytal, antimycin, ethanol, malonate, phosphate, rotenone, and succinate, and stimulated by Mg2+.
  • 5.5. It is concluded that part of the mitochondrial respiratory chain is involved in the reduction of fumarate by NADH, comprising site 1 of the oxidative phosphorylation.
  相似文献   

16.
The integral membrane protein complex quinol-fumarate reductase catalyzes the terminal step of a major anaerobic respiratory pathway. The homologous enzyme succinate-quinone oxidoreductase participates in aerobic respiration both as complex II and as a member of the Krebs cycle. Last year, two structures of quinol-fumarate reductases were reported. These structures revealed the cofactor organization linking the fumarate and quinol sites, and showed a cofactor arrangement across the membrane that is suggestive of a possible energy coupling function.  相似文献   

17.
18.
The clinical management of advanced hepatocellular carcinoma (HCC) is challenging due to its resistance to chemotherapy. In our work, we demonstrate that an antiparasitic drug atovaquone at clinically relevant concentrations is active against chemoresistant HCC. We show that atovaquone inhibits proliferation and induces apoptosis in not only HCC parental cells but also cells exposed to long time culture of chemotherapeutic agents. Consistently, the combination of atovaquone with cisplatin or doxorubicin achieved remarkably greater efficacy than single drug alone. Mechanistically, atovaquone overcomes HCC chemoresistance via supressing mitochondrial respiration and inducing oxidative stress. Atovaquone but not cisplatin or doxorubicin is ineffective in mitochondrial respiration-deficient ρ0, confirming mitochondria as a specific upstream target of atovaquone. Interestingly, we show that prolonged exposure of HCC cells to chemotherapeutic agents induces higher level of mitochondrial respiration, suggesting that tumors which develop chemoresistance after chemotherapy might be more dependent on mitochondrial respiration than primary tumors and explaining the sensitivity of chemoresistant HCC cells to atovaquone. We further show that atovaquone at tolerable does significantly inhibits chemoresistant HCC growth in mice throughout the duration of treatment. In line with in vitro data, we observe the increased oxidative stress in atovaquone-treated tumors. Our findings highlight the dependency of chemoresistant HCC on mitochondrial respiration and demonstrate that atovaquone is a potential drug to overcome HCC chemoresistance.  相似文献   

19.
Euglena gracilis cells grown under aerobic and anaerobic conditions were compared for their whole cell rhodoquinone and ubiquinone content and for major protein spots contained in isolated mitochondria as assayed by two-dimensional gel electrophoresis and mass spectrometry sequencing. Anaerobically grown cells had higher rhodoquinone levels than aerobically grown cells in agreement with earlier findings indicating the need for fumarate reductase activity in anaerobic wax ester fermentation in Euglena. Microsequencing revealed components of complex III and complex IV of the respiratory chain and the E1beta subunit of pyruvate dehydrogenase to be present in mitochondria of aerobically grown cells but lacking in mitochondria from anaerobically grown cells. No proteins were identified as specific to mitochondria from anaerobically grown cells. cDNAs for the E1alpha, E2, and E3 subunits of mitochondrial pyruvate dehydrogenase were cloned and shown to be differentially expressed under aerobic and anaerobic conditions. Their expression patterns differed from that of mitochondrial pyruvate:NADP(+) oxidoreductase, the N-terminal domain of which is pyruvate:ferredoxin oxidoreductase, an enzyme otherwise typical of hydrogenosomes, hydrogen-producing forms of mitochondria found among anaerobic protists. The Euglena mitochondrion is thus a long sought intermediate that unites biochemical properties of aerobic and anaerobic mitochondria and hydrogenosomes because it contains both pyruvate:ferredoxin oxidoreductase and rhodoquinone typical of hydrogenosomes and anaerobic mitochondria as well as pyruvate dehydrogenase and ubiquinone typical of aerobic mitochondria. Our data show that under aerobic conditions Euglena mitochondria are prepared for anaerobic function and furthermore suggest that the ancestor of mitochondria was a facultative anaerobe, segments of whose physiology have been preserved in the Euglena lineage.  相似文献   

20.
The mitochondrial electron transport chain (mETC) and F1Fo-ATP synthase are of central importance for energy and metabolism in eukaryotic cells. The Apicomplexa, important pathogens of humans causing diseases such as toxoplasmosis and malaria, depend on their mETC in every known stage of their complicated life cycles. Here, using a complexome profiling proteomic approach, we have characterised the Toxoplasma mETC complexes and F1Fo-ATP synthase. We identified and assigned 60 proteins to complexes II, IV and F1Fo-ATP synthase of Toxoplasma, of which 16 have not been identified previously. Notably, our complexome profile elucidates the composition of the Toxoplasma complex III, the target of clinically used drugs such as atovaquone. We identified two new homologous subunits and two new parasite-specific subunits, one of which is broadly conserved in myzozoans. We demonstrate all four proteins are essential for complex III stability and parasite growth, and show their depletion leads to decreased mitochondrial potential, supporting their assignment as complex III subunits. Our study highlights the divergent subunit composition of the apicomplexan mETC and F1Fo-ATP synthase complexes and sets the stage for future structural and drug discovery studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号