首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hyporheic zone of stream ecosystems is a critical habitat for microbial communities. However, the factors influencing hyporheic bacterial communities along spatial and seasonal gradients remain poorly understood. We sought to characterize patterns in bacterial community composition among the sediments of a small stream in southern Ontario, Canada. We used sampling cores to collect monthly hyporheic water and sediment microbial communities in 2006 and 2007. We described bacterial communities terminal-restriction fragment length polymorphism (TRFLP) and tested for spatial and seasonal relationships with physicochemical parameters using multivariate statistics. Overall, the hyporheic zone appears to be a DOC, oxygen, and nitrogen sink. Microbial communities were distinct from those at the streambed surface and from soil collected in the adjacent watershed. In the sediments, microbial communities were distinct between the fall, spring, and summer seasons, and bacterial communities were more diverse at streambed surface and near-surface sites compared with deeper sites. Moreover, bacterial communities were similar between consecutive fall seasons despite shifting throughout the year, suggesting recurring community assemblages associated with season and location in the hyporheic zone. Using canonical correspondence analysis, seasonal patterns in microbial community composition and environmental parameters were correlated in the following way: temperature was related to summer communities; DOC (likely from biofilm and allochthonous inputs) influenced most fall communities; and nitrogen associated strongly with winter and spring communities. Our results also suggest that labile DOC entering the hyporheic zone occurred in concert with shifts in the bacterial community. Generally, seasonal patterns in hyporheic physicochemistry and microbial biodiversity remain largely unexplored. Therefore, we highlight the importance of seasonal and spatial resolution when assessing surface- and groundwater interactions in stream ecosystems.  相似文献   

2.
Currently defined ecotypes in marine cyanobacteria Prochlorococcus and Synechococcus likely contain subpopulations that themselves are ecologically distinct. We developed and applied high-throughput sequencing for the 16S-23S rRNA internally transcribed spacer (ITS) to examine ecotype and fine-scale genotypic community dynamics for monthly surface water samples spanning 5 years at the San Pedro Ocean Time-series site. Ecotype-level structure displayed regular seasonal patterns including succession, consistent with strong forcing by seasonally varying abiotic parameters (e.g. temperature, nutrients, light). We identified tens to thousands of amplicon sequence variants (ASVs) within ecotypes, many of which exhibited distinct patterns over time, suggesting ecologically distinct populations within ecotypes. Community structure within some ecotypes exhibited regular, seasonal patterns, but not for others, indicating other more irregular processes such as phage interactions are important. Network analysis including T4-like phage genotypic data revealed distinct viral variants correlated with different groups of cyanobacterial ASVs including time-lagged predator–prey relationships. Variation partitioning analysis indicated that phage community structure more strongly explains cyanobacterial community structure at the ASV level than the abiotic environmental factors. These results support a hierarchical model whereby abiotic environmental factors more strongly shape niche partitioning at the broader ecotype level while phage interactions are more important in shaping community structure of fine-scale variants within ecotypes.  相似文献   

3.
To quantify the major environmental drivers of stream bacterial population dynamics, we modelled temporal differences in stream bacterial communities to quantify community shifts, including those relating to cyclical seasonal variation and more sporadic bloom events. We applied Illumina MiSeq 16S rRNA bacterial gene sequencing of 892 stream biofilm samples, collected monthly for 36-months from six streams. The streams were located a maximum of 118 km apart and drained three different catchment types (forest, urban and rural land uses). We identified repeatable seasonal patterns among bacterial taxa, allowing their separation into three ecological groupings, those following linear, bloom/trough and repeated, seasonal trends. Various physicochemical parameters (light, water and air temperature, pH, dissolved oxygen, nutrients) were linked to temporal community changes. Our models indicate that bloom events and seasonal episodes modify biofilm bacterial populations, suggesting that distinct microbial taxa thrive during these events including non-cyanobacterial community members. These models could aid in determining how temporal environmental changes affect community assembly and guide the selection of appropriate statistical models to capture future community responses to environmental change.  相似文献   

4.
The effects of environmental conditions on cholinesterase activity and kinetic parameters of substrate hydrolysis in the hemolymph of the mussel Crenomytilus grayanus were studied. Under seasonal upwellings, the cholinergic system efficiency is provided for by a wide range of efficient concentrations of the substrate, i.e., under such conditions the mussels at the molecular level have a quantitative adaptation strategy of the enzyme. In mussels from the stationary upwelling zone (at a steady low temperature of water) for efficiency of the cholinergic system, the quantitative strategy of enzyme adaptation is realized. In mussels from a highly contaminated site, irreversible damages to the cholinergic process were observed. The affinity of the substrate to the enzyme is highly informative and an appropriate biomarker for the load level and the adaptation capacity of the organism. The affinity of the substrate to the enzyme is recommended as a new biomarker.  相似文献   

5.
Abstract

The Changjiang estuary and its adjacent East China Sea (ECS) have been considered as one of the most dynamic areas significantly contributing to elemental exchanges globally. The purpose of this study was to understand the alteration of microbial consortia at the interface of riverine and coastal environments in relation to environmental variations as well as their roles in biogeochemical cycling at this dynamic region. We sampled surface sediment samples at 4 stations from the estuary to coastal regions of the ECS. Along with collections of physicochemical parameters, we sequenced bacterial 16S rRNA genes of clones from each sample. Results showed a distinct transition of bacterial community from typical freshwater sediment phyla (e.g., Betaproteobacteria and Firmicutes) to those commonly inhabited in saline environments (e.g., Deltaproteobacteria and Gammaproteobacteria). The bacterial group at the transition zone characterized by high accumulation of organic matters and intense mixing of riverine and coastal waters was most diverse. Bacterial community structures at two ECS stations showed a similar pattern but contained different dominant taxa, shifting from Deltaproteobacteria-affiliated sulfate-reducing bacteria at the station closer to the shore to Gammaproteobacteria-affiliated nitrate-reducing bacteria further offshore. It suggested that the sedimentary bacterial community structure was related to salinity, sediment type, and substrate availability and composition.  相似文献   

6.
The phyllosphere contains a diverse bacterial community that can be intimately associated with the host plant; however, few studies have examined how the phyllosphere community changes over time. We sampled replicate leaves from a single magnolia (Magnolia grandiflora) tree in the winter of three consecutive years (2007?C2009) as well as during four seasons of 1?year (2008) and used molecular techniques to examine seasonal and year-to-year variation in bacterial community structure. Multivariate analysis of denaturing gradient gel electrophoresis profiles of 16S rRNA gene fragments revealed minimal leaf to leaf variation and much greater temporal changes, with the summer (August 2008) leaf community being most distinct from the other seasons. This was confirmed by sequencing and analysis of 16S rRNA gene clone libraries generated for each sample date. All phyllosphere communities were dominated by Alphaproteobacteria, with a reduction in the representation of certain Beijerinckiaceae during the summer and a concurrent increase in the Methylobacteriaceae being the most significant seasonal change. Other important components of the magnolia phyllosphere included members of the Bacteroidetes, Acidobacteria, and Actinobacteria, with the latter two lineages also showing differences in their representation in samples collected at different times. While the leaf-associated bacterial community sampled at the same time of year in three separate years showed some similarities, generally these communities were distinct, suggesting that while there are seasonal patterns, these may not be predictable from year to year. These results suggest that seasonal differences do occur in phyllosphere communities and that broad-leafed evergreen trees such as M. grandiflora may present interesting systems to study these changes in the context of changing environmental conditions.  相似文献   

7.
8.
9.
Nitrogen and phosphorus additions from anthropogenic sources can alter the nutrient pool of aquatic systems, both through increased nutrient concentrations and changes in stoichiometry. Because bacteria are important in nutrient cycling and aquatic food webs, information about how nutrients affect bacterial communities enhances our understanding of how changes in nutrient concentrations and stoichiometry potentially affect aquatic ecosystems as a whole. In this study, bacterial communities were examined in biofilms from cobbles collected across seasons at three sites along the Mahoning River (Ohio) with differing levels of inorganic nutrient inputs. Members of the alpha-, beta-, and gamma-proteobacteria, the Cytophaga–Flavobacteria cluster, and the Domain Bacteria were enumerated using fluorescent in situ hybridization. Detrended canonical correspondence analysis (DCCA) revealed that stoichiometric ratios, especially the dissolved inorganic nitrogen (DIN):soluble reactive phosphorus (SRP) molar ratio (NO2/NO3 + NH4:soluble reactive phosphorus), were correlated with abundance of the various bacterial taxa. However, the patterns were complicated by correlations with single nutrient concentrations and seasonal changes in temperature. Seasonal cycles appeared to play an important role in structuring the community, as there were distinct winter communities and temperature was negatively correlated with abundance of both alpha-proteobacteria and Cytophaga–Flavobacteria. However, nutrients and stoichiometry also appeared to affect the community. Numbers of cells hybridizing the Domain Bacteria probe were correlated with the DOC:DIN ratio, the beta-proteobacteria had a negative correlation with soluble reactive phosphorus concentrations and a positive correlation with the DIN:SRP ratio, and the Cytophaga–Flavobacteria had a significant negative partial correlation with the DIN:SRP ratio. Abundances of the alpha- or gamma-proteobacteria were not directly correlated to nutrient concentrations or stoichiometry. It appears that nutrient stoichiometry may be an important factor structuring bacterial communities; however, it is one of many factors, such as temperature, that are interlinked and must be considered together when studying environmental bacteria.  相似文献   

10.
The kinetic behavior of a system of multiple enzyme in solution has been studied in a variable volume batch reactor at pH 5, controlled dissolved oxygen concentration, and T = 30°C. The enzymes used were glucoamylase (R. delemar), glucose oxidase (A. niger), and gluconolactonase (A. niger), all of which are important commercial biocatalysts, and a disaccharide was employed as the starting substrate. This study includes the basic kinetic properties of individual enzymes and interactions between components of the reaction mixture. Classical Michaelis–Menten single substrate or two substrate kinetic with parameters based on initial rate data predict correctly the batch time course of the sequential reaction network.  相似文献   

11.
Bacterial Community Succession in Natural River Biofilm Assemblages   总被引:1,自引:0,他引:1  
Temporal bacterial community changes in river biofilms were studied using 16S rRNA gene-based polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) followed by sequence analysis. Naturally occurring biofilms were sampled in 2001 during an undisturbed 7-month low-water period in the River Garonne (SW France). During the sampling period epilithic biomass exhibited a particular pattern: two 3-month periods of accumulation that resulted in two peaks in summer and fall, each at about 25 g ash-free dry mass per square meter. Bacterial community DGGE profiles differed between the summer and fall biomass peaks and shared only 30% common operational taxonomic units (OTUs), suggesting the influence of seasonal factors on these communities. During the second biomass accrual phase, bacterial richness and the appearance of new OTUs fitted a conceptual model of bacterial biofilm succession. During succession, five OTUs (corresponding to Dechloromonas sp., Nitrospira sp., and three different Spirosoma spp.) exhibited particular patterns and were present only during clearly defined successional stages, suggesting differences in life-history strategies for epilithic bacteria. Co-inertia analysis of DGGE banding patterns and physical–chemical data showed a significant relationship between community structure and environmental conditions suggesting that bacterial communities were mainly influenced by seasonal changes (temperature, light) and hydrodynamic stability. Within the periods of stability, analysis of environmental variables and community patterns showed the dominant influence of time and maturation on bacterial community structure. Thus, succession in these naturally occurring epilithic biofilm assemblages appears to occur through a combination of allogenic (seasonal) and autogenic changes.  相似文献   

12.
Bacteria display dynamic abundance fluctuations over time in marine environments, where they play key biogeochemical roles. Here, we characterized the seasonal dynamics of marine bacteria in a coastal oligotrophic time series station, tested how similar the temporal niche of closely related taxa is, and what are the environmental parameters modulating their seasonal abundance patterns. We further explored how conserved the niche is at higher taxonomic levels. The community presented recurrent patterns of seasonality for 297 out of 6825 amplicon sequence variants (ASVs), which constituted almost half of the total relative abundance (47%). For certain genera, niche similarity decreased as nucleotide divergence in the 16S rRNA gene increased, a pattern compatible with the selection of similar taxa through environmental filtering. Additionally, we observed evidence of seasonal differentiation within various genera as seen by the distinct seasonal patterns of closely related taxa. At broader taxonomic levels, coherent seasonal trends did not exist at the class level, while the order and family ranks depended on the patterns that existed at the genus level. This study identifies the coexistence of closely related taxa for some bacterial groups and seasonal differentiation for others in a coastal marine environment subjected to a strong seasonality.Subject terms: Microbial ecology, Microbial ecology  相似文献   

13.
We developed a kinetic model that describes a heterogeneous reaction system for the production of D-p-hydroxyphenylglycine from D,L-p-hydroxyphenyl-hydantoin using D-hydantoinase of Bacillus stearothermophilus SD1 and N-carbamoylase of Agrobacterium tumefaciens NRRL B11291. As a biocatalyst, whole cells with separately or co-expressed enzymes were used. The reaction system involves dissolution of substrate particles, enzymatic conversion, racemization of the L-form substrate, and transfer of the dissolved substrate, intermediate, and product through the cell membrane. Because the two enzymes have different pH optimum, kinetic parameters were evaluated at different pH for the reaction systems. The model was simulated using the kinetic parameters and compared with experimental data, and it was found that the kinetic model well describes the behavior of the reaction systems using whole cells with separately and co-expressed enzymes. Factors affecting the kinetics of the reaction systems were analyzed on the basis of the kinetic model. In the reaction system with separately expressed enzymes, racemization rate and transport of the reaction intermediate (N-carbamoyl-D-p-hydroxyphenylglycine) were revealed to be the limiting factors at neutral pH, resulting in accumulation of intermediate in the reaction medium. At alkaline condition, on the other hand, inhibition of N-carbamoylase by ammonia was severe, and thereby the reaction rate significantly reduced. In the co-expressed enzyme system, accumulation of intermediate was negligible in the reaction medium, and the improved performance was observed compared to that with separately expressed enzymes. The present model might be applied for the optimization and development of the reaction system using two sequential enzymes.  相似文献   

14.
This study demonstrated that the availability of oxygen influenc the kinetic parameters of sludge granules for the utilization and mass transfer of substrates. Batch experiments revealed that substrate utilization of the coupled sludge granules followed Monod’s kinetic model under hypoxic conditions and at initial substrate concentrations ranging from 1,350 to 4,456 mg/L. The corresponding kinetic coefficients of ks (maximum specific substrate glucose utilization rate), Ks (half saturation coefficient), and Y (growth yield) were 5.6 ∼ 7.8/day, 58 ∼ 64 mg/L, and 0.11 ∼ 0.17 mg of MLSS/mg of COD, respectively. Low dissolved oxygen content suppressed the activity of aerobic enzymes, which resulted in a ks value between those of aerobic granules and anaerobic granules. The maximum oxygen consumption rate (ko = 0.89/day) was relatively higher while the half-saturation constant (Ko = 1.71 mg/L) was significantly lower than those of aerobic granules. These results imply that dissolved oxygen was used more efficiently under hypoxic conditions. Thiele modulus (ϕ) and effectiveness factor (η) analysis revealed that the activity of microorganisms inside the granules was limited by the availability of oxygen. These properties differed from those found in aerobic granules, anaerobic granules, and activated sludge.  相似文献   

15.
A fundamental issue in microbial and general ecology is the question to what extent environmental conditions dictate the structure of communities and the linkages with functional properties of ecosystems (that is, ecosystem function). We approached this question by taking advantage of environmental gradients established in soil and sediments of small stream corridors in a recently created, early successional catchment. Specifically, we determined spatial and temporal patterns of bacterial community structure and their linkages with potential microbial enzyme activities along the hydrological flow paths of the catchment. Soil and sediments were sampled in a total of 15 sites on four occasions spread throughout a year. Denaturing gradient gel electrophoresis (DGGE) was used to characterize bacterial communities, and substrate analogs linked to fluorescent molecules served to track 10 different enzymes as specific measures of ecosystem function. Potential enzyme activities varied little among sites, despite contrasting environmental conditions, especially in terms of water availability. Temporal changes, in contrast, were pronounced and remarkably variable among the enzymes tested. This suggests much greater importance of temporal dynamics than spatial heterogeneity in affecting specific ecosystem functions. Most strikingly, bacterial community structure revealed neither temporal nor spatial patterns. The resulting disconnect between bacterial community structure and potential enzyme activities indicates high functional redundancy within microbial communities even in the physically and biologically simplified stream corridors of early successional landscapes.  相似文献   

16.
In lake ecosystems, changes in eukaryotic and prokaryotic microbes and the concentration and availability of dissolved organic matter (DOM) produced within or supplied to the system by allochthonous sources are components that characterize complex processes in the microbial loop. We address seasonal changes of microbial communities and DOM in the largest Croatian lake, Vrana. This shallow lake is connected to the Adriatic Sea and is impacted by agricultural activity. Microbial community and DOM structure were driven by several environmental stressors, including drought, seawater intrusion and heavy precipitation events. Bacterial composition of different lifestyles (free-living and particle-associated) differed and only a part of the particle-associated bacteria correlated with microbial eukaryotes. Oscillations of cyanobacterial relative abundance along with chlorophyll a revealed a high primary production season characterized by increased levels of autochthonous DOM that promoted bacterial processes of organic matter degradation. From our results, we infer that in coastal freshwater lakes dependent on precipitation-evaporation balance, prolonged dry season coupled with heavy irrigation impact microbial communities at different trophic levels even if salinity increases only slightly and allochthonous DOM inputs decrease. These pressures, if applied more frequently or at higher concentrations, could have the potential to overturn the trophic state of the lake.  相似文献   

17.
Bacterial communities reside in basal ice, sediment, and meltwater in the supra-, sub-, and proglacial environments of John Evans Glacier, Nunavut, Canada. We examined whether the subglacial bacterial community shares common members with the pro- and supraglacial communities, and by inference, whether it could be derived from communities in either of these environments (e.g., by ice overriding proglacial sediments or by in-wash of surface meltwaters). Terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA genes amplified from these environments revealed that the subglacial water, basal ice, and sediment communities were distinct from those detected in supraglacial meltwater and proglacial sediments, with 60 of 142 unique terminal restriction fragments (T-RFs) detected exclusively in subglacial samples and only 8 T-RFs detected in all three environments. Supraglacial waters shared some T-RFs with subglacial water and ice, likely reflecting the seasonal flow of surface meltwater into the subglacial drainage system, whereas supraglacial and proglacial communities shared the fewest T-RFs. Thus, the subglacial community at John Evans Glacier appears to be predominantly autochthonous rather than allochthonous, and it may be adapted to subglacial conditions. Chemical analysis of water and melted ice also revealed differences between the supraglacial and proglacial environments, particularly regarding electrical conductivity and nitrate, sulfate, and dissolved organic carbon concentrations. Whereas the potential exists for common bacterial types to be broadly distributed throughout the glacial system, we have observed distinct bacterial communities in physically and chemically different glacial environments.  相似文献   

18.
Nitrogen fixation is the primary N source in the highly productive but N-limited North Inlet, SC, USA salt marsh system. The diverse assemblages of nitrogen-fixing (diazotrophic) bacteria associated with the rhizospheres of the short and tall growth forms of Spartina alterniflora were analyzed at two sites, Crab Haul Creek and Goat Island, which are in different tidal creek drainage systems in this marsh. The sites differed in proximity to the main channel for tidal intrusion and in several edaphic parameters. We hypothesized that either the differing abiotic environmental regimes of the two sites or the variation due to seasonal effects result in differences in the diazotroph assemblage. Rhizosphere samples were collected seasonally during 1999 and 2000. DNA was purified and nifH amplified for denaturing gradient gel electrophoresis (DGGE) analysis of diazotroph assemblage composition. Principal components analysis was used to analyze the binary DGGE band position data. Season strongly influenced assemblage composition and biplots were used to identify bands that significantly affected the seasonal and site-specific clustering. The types of organisms that were most responsive to seasonal or site variability were identified on the basis of DGGE band sequences. Seasonally responsive members of the anaerobic diazotrophs were detected during the winter and postsenescence conditions and may have been responsible for elevated pore water sulfide concentrations. Sequences from a diverse assemblage of Gammaproteobacteria were predominant during growth periods of S. alterniflora. Abiotic environmental parameters strongly influenced both the S. alterniflora and the diazotrophic bacterial assemblages associated with this keystone salt marsh plant species.  相似文献   

19.
We propose a new method for the fast separation and detection of β-glucosidases in environmental samples. With this approach, β-glucosidases extracted from bacteria are evidenced by substrate-incorporated capillary electrophoresis (CE zymography) and their kinetic parameters can be determined by repeated injections using different substrate concentrations. Preliminary results obtained with natural bacterial communities from the coastal North Sea suggest that the diversity of β-glucosidases in the marine environment might be much higher than previously observed.  相似文献   

20.
Bacterial communities reside in basal ice, sediment, and meltwater in the supra-, sub-, and proglacial environments of John Evans Glacier, Nunavut, Canada. We examined whether the subglacial bacterial community shares common members with the pro- and supraglacial communities, and by inference, whether it could be derived from communities in either of these environments (e.g., by ice overriding proglacial sediments or by in-wash of surface meltwaters). Terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA genes amplified from these environments revealed that the subglacial water, basal ice, and sediment communities were distinct from those detected in supraglacial meltwater and proglacial sediments, with 60 of 142 unique terminal restriction fragments (T-RFs) detected exclusively in subglacial samples and only 8 T-RFs detected in all three environments. Supraglacial waters shared some T-RFs with subglacial water and ice, likely reflecting the seasonal flow of surface meltwater into the subglacial drainage system, whereas supraglacial and proglacial communities shared the fewest T-RFs. Thus, the subglacial community at John Evans Glacier appears to be predominantly autochthonous rather than allochthonous, and it may be adapted to subglacial conditions. Chemical analysis of water and melted ice also revealed differences between the supraglacial and proglacial environments, particularly regarding electrical conductivity and nitrate, sulfate, and dissolved organic carbon concentrations. Whereas the potential exists for common bacterial types to be broadly distributed throughout the glacial system, we have observed distinct bacterial communities in physically and chemically different glacial environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号