首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Very-long-chain polyunsaturated fatty acids (VLCPUFAs) have demonstrated health benefits. Currently, the main sources for these fatty acids are oils from fish and microbes. However, shrinking fish populations and the high cost of microbial oil extraction are making the economic sustainability of these sources questionable. Metabolic engineering of oilseed crops could provide a novel and sustainable source of VLCPUFAs. Recently, genes encoding desaturases and elongases from microbes have been identified and successfully expressed in oilseed plants. However, the levels of VLCPUFAs produced in transgenic plants expressing these genes are still much lower than those found in native microbes. This review assesses the recent progress and future perspectives in the metabolic engineering of PUFAs in plants.  相似文献   

2.
HCV infection can lead to chronic infectious hepatitis disease with serious sequelae. Interferon-alpha, or its PEGylated form, plus ribavirin is the only treatment option to combat HCV. Alternative and more effective therapy is needed due to the severe side effects and unsatisfactory curing rate of the current therapy. In this study, we found that several polyunsaturated fatty acids (PUFAs) including arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) are able to exert anti-HCV activities using an HCV subgenomic RNA replicon system. The EC(50) (50% effective concentration to inhibit HCV replication) of AA was 4microM that falls in the range of physiologically relevant concentration. At 100microM, alpha-linolenic acid, gamma-linolenic, and linoleic acid only reduced HCV RNA levels slightly and saturated fatty acids including oleic acid, myristic acid, palmitic acid, and steric acid had no inhibitory activities toward HCV replication. When AA was combined with IFN-alpha, strong synergistic anti-HCV effect was observed as revealed by an isobologram analysis. It will be important to determine whether PUFAs can provide synergistic antiviral effects when given as food supplements during IFN-based anti-HCV therapy. Further elucidation of the exact anti-HCV mechanism caused by AA, DHA, and EPA may lead to the development of agents with potent activity against HCV or related viruses.  相似文献   

3.
4.
The biochemistry of piezophilic bacteria is unique in that piezophiles produce polyunsaturated fatty acids (PUFAs). A pertinent question is if piezophilic bacteria synthesize PUFA de novo, through dietary uptake, or both. This study was undertaken to examine the biosynthesis and cellular uptake of PUFAs by piezophilic bacteria. A moderately piezophilic (Shewanella violacea DSS12) and two hyperpiezophilic bacteria (S. benthica DB21MT-2 and Moritella yayanosii DB21MT-5) were grown under 50 MPa (megapascal) and 100 MPa, respectively, in media containing marine broth 2216 supplemented with arachidonic acid (AA, sodium salt) and/or antibiotic cerulenin. There was active uptake and cellular incorporation of AA in the hyperpiezophilic bacteria DB21MT-2 (14.7% of total fatty acids) and DB21MT-5 (1.4%), but no uptake was observed in DSS12. When cells were treated with cerulenin, all three strains incorporated AA into cell membranes (13–19%). The biosynthesis of monounsaturated fatty acids was significantly inhibited (10–37%) by the addition of cerulenin, whereas the concentrations of PUFAs increased by 2–4 times. These results suggest that piezophilic bacteria biosynthesize and/or incorporate dietary polyunsaturated fatty acids that are important for their growth and piezoadaptation. The significance of these findings is also discussed in the context of phenotypic classification of piezophiles.  相似文献   

5.
A one-pot environmentally friendly transamidation of ω-3 fatty acid ethyl esters to amides and mono- or diacylglycerols was investigated via the use of a polymer-supported lipase. The method was used to synthesize a library of fatty acid monoglyceryl esters and amides. These new derivatives were found to have potent growth inhibition effects against A549 lung cancer cells.  相似文献   

6.
There is accumulating evidence of reductions in red blood cell membrane essential fatty acids in patients with schizophrenia. The mechanisms that may underlie these reductions have yet to be determined. It is possible that the observed membrane fatty acid deficits are associated with the development of schizophrenia. Alternatively, the membrane fatty acid deficits may be due to environmental factors, such as smoking and variations in diet, which may not be associated specifically with the pathophysiology of schizophrenia. Patients with schizophrenia smoke cigarettes at very high rates. Cigarette smoke contains many pro-oxidants that contribute directly to oxidative stress. Polyunsaturated fatty acids (PUFAs) are very susceptible to oxidative effects of free radicals. Thus, smoke-induced oxidative stress could plausibly account for reductions in membrane fatty acid in schizophrenia. Recent studies provide conflicting evidence for smoking effects on membrane fatty acid deficits. Likewise, the effects of diet on membrane PUFAs in schizophrenia are not entirely clear. Essential PUFAs need to be consumed in diet. Thus, differences in membrane PUFAs observed between patients and control subjects may be due to dietary variation. Few studies that have examined dietary effects differ in their interpretation of the effects of diet on membrane PUFAs. Thus, the jury is still out whether smoking or dietary effects are the primary causes of membrane PUFA deficits in patients with schizophrenia. Future studies will need to systematically examine the potential effects of smoking and diet, as well as other environmental factors such exercise, to definitively establish whether or not PUFA abnormalities are inherent to schizophrenia.  相似文献   

7.
Brain cells are especially rich in polyunsaturated fatty acids (PUFA), mainly the n-3 PUFA docosahexaenoic acid (DHA) and the n-6 PUFA arachidonic acid (AA). They are released from membranes by PLA2 during neurotransmission, and may regulate glutamate uptake by astroglia, involved in controlling glutamatergic transmission. AA has been shown to inhibit glutamate transport in several model systems, but the contribution of DHA is less clear and has not been evaluated in astrocytes. Because the high DHA content of brain membranes is essential for brain function, we investigated the role of DHA in the regulation of astroglial glutamate transport.We evaluated the actions of DHA and AA using cultured rat astrocytes and suspensions of rat brain membranes (P1 fractions). DHA reduced d-[3H]aspartate uptake by cultured astrocytes and cortical membrane suspensions, while AA did not. This also occurred in astrocytes enriched with α-tocopherol, indicating that it was not due to peroxidation products. The reduction of d-[3H]aspartate uptake by DHA did not involve any change in the concentrations of membrane-associated astroglial glutamate transporters (GLAST and GLT-1), suggesting that DHA reduced the activity of the transporters. In contrast with the inhibition induced by free-DHA, we found no effect of membrane-bound DHA on d-[3H]aspartate uptake. Indeed, the uptake was similar in astrocytes with varying amount of DHA in their membrane (induced by long-term supplementation with DHA or AA). Therefore, DHA reduces glutamate uptake through a signal-like effect but not through changes in the PUFA composition of the astrocyte membranes. Also, reactive astrocytes, induced by a medium supplement (G5), were insensitive to DHA. This suggests that DHA regulates synaptic glutamate under basal condition but does not impair glutamate scavenging under reactive conditions.These results indicate that DHA slows astroglial glutamate transport via a specific signal-like effect, and may thus be a physiological synaptic regulator.  相似文献   

8.
Abstract The fatty acid composition of cultures of Shewanella putrefaciens strain ACAM 342 grown aero-bically and anaerobically at 15°C and 25°C were analysed by capillary gas chromatography. The bacterium was found to produce the polyunsaturated fatty acids (PUFA) 18:2ω3, 18:3ω3 and 20:5ω3 under aerobic and anaerobic conditions at both growth temperatures. This result suggests that the bacterium possesses both the aerobic and anaerobic pathways for unsaturated fatty acid synthesis, where an alternate terminal electron acceptor(s) is utilised in the absence of oxygen.  相似文献   

9.
10.
The longitudinal relationship between dietary n-6 to n-3 PUFAs ratio and periodontal disease in 235 Japanese subjects for whom data were available for the years 2003-2006 was investigated. PUFAs intake was assessed at baseline with a brief-type self-administered diet history questionnaire. Full-mouth periodontal status, measured as the clinical attachment level (CAL), was recorded at baseline and once a year for 3 years. The number of teeth with a change in the loss of CAL ≥3 mm at any site over a year was calculated as ‘periodontal disease events’. Poisson regression analysis was conducted, with dietary n-6 to n-3 PUFAs ratio as the main predictor, to estimate its influence on periodontal disease events.A high dietary n-6 to n-3 PUFAs ratio was significantly associated with greater number of periodontal disease events. The findings suggest the dietary n-6 to n-3 PUFAs ratio is associated with periodontal disease among older Japanese.  相似文献   

11.
Brain fatty acid (FA) metabolism deserves a close attention not only for its energetic aspects but also because FAs and their metabolites/derivatives are able to influence many neural functions, contributing to brain pathologies or representing potential targets for pharmacological and/or nutritional interventions.Glucose is the preferred energy substrate for the brain, whereas the role of FAs is more marginal. In conditions of decreased glucose supply, ketone bodies, mainly formed by FA oxidation, are the alternative main energy source. Ketogenic diets or medium-chain fatty acid supplementations were shown to produce therapeutic effects in several brain pathologies.Moreover, the positive effects exerted on brain functions by short-chain FAs and the consideration that they can be produced by intestinal flora metabolism contributed to the better understanding of the link between “gut-health” and “brain-health”.Finally, attention was paid also to the regulatory role of essential polyunsaturated FAs and their derivatives on brain homeostasis.  相似文献   

12.
Dietary alterations were used to demonstrate selective handling of fatty acids during their redistributionin vivo. Differences in the mol Per cent of individual acyl chains in the non-esterified fatty acid, acyl-coenzyme A and PhosPholiPid fractions reflected a result of relative Precursor abundance combined with enzymic selectivities. Selective distributions were observed in the utilization of individual acyl chains between 16:0 and 18:0, 18:1 and 18:2, and among 20:3, 20:4 and 20:5, 22:6 by ligase(s), hydrolase(s) and acyl-transferases. The variations in the mol Per cent of linoleate Present in the acyl-coenzyme A fraction of liver relative to that in the non-esterified fatty acids suggested anin vivo regulation of the level of linoleoyl-coenzyme A that influenced the synthesis of both arachidonoyl-coenzyme A and lipids. The greater abundance of eicosaPentaenoic acid in the free fatty acid fraction relative to that in the acyl-coenzyme A fraction may increase the ability of dietary 20: 5n-3 to be an effective inhibitor of the synthesis of Prostaglandins derived from 20:4n-6.  相似文献   

13.
β-Ketoacyl-acyl carrier protein (ACP) synthase III (KASIII) catalyzes the first elongation step in straight-chain fatty acid (SCFA) biosynthesis in Escherichia coli. Overproduction of the corresponding KASIII gene, or the Brassica napus KASIII gene has previously been observed to lead to an increase in the amount of shorter-chain fatty acids produced by E. coli. In this study it is shown that overexpression of the KASIII gene, which initiates branched-chain fatty acid (BCFA) in Streptomyces glaucescens, does not lead to a change in the fatty acid profiles of E. coli. E. coli produces trace levels of BCFAs when grown in the presence of isobutyric acid, but the amounts of these are not significantly altered by expression of the S. glaucescens KASIII gene. In contrast, the amounts of BCFAs produced from isobutyryl CoA in vitro by E. coli cell-free extracts can be increased at least four-fold by the presence of the S. glaucescens KASIII. These observations suggest that in vivo production of isopalmitate by E. coli expressing the S. glaucescens KASIII is limited by availability of the appropriate BCFA biosynthetic primers. Journal of Industrial Microbiology & Biotechnology (2001) 27, 246–251. Received 10 January 2001/ Accepted in revised form 13 July 2001  相似文献   

14.
We screened the inhibitor of mouse inosine 5'-monophosphate dehydrogenase (IMPDH) type II from natural compounds, and found that a fatty acid, linoleic acid (C18:2), inhibited IMPDH activity. In the C18:2 fatty acid derivatives, all trans-configuration (i.e., linoelaidic acid), ester form, alcohol form, and addition of the hydroxyl group of linoleic acid had no effect on inhibitory activity. Therefore, both parts of a carboxylic acid and an alkyl chain containing cis-type double bonds of fatty acid might be essential for inhibition. Among the various carbon atom lengths and double bonds of fatty acids examined, the strongest inhibitor was C20:2-fatty acid, eicosadienoic acid, and 50% inhibition was observed at a concentration of 16.1 microM. Eicosadienoic acid induced the inhibition of IMPDH activity and was competitive with respect to IMP (K(i)=3.1 microM). For inhibitory effect, the C20-fatty acids ranked as follows: C20:2>C20:3>C20:1> C20:4>C20:5, and C20:0 showed no inhibition. The energy-minimized three-dimensional structures of linear-chain C20-fatty acids were calculated, and it was found that a length of 20.7-22.5A and width of 4.7-7.2A in the fatty acid molecular structure was suggested to be important for IMPDH inhibition. Docking simulation of C20-fatty acids and mouse IMPDH type II, which was homology modeled from human IMPDH type II (PDB code: 1NF7), was performed, and the fatty acid could bind to Cys331, which is a amino acid residue of the active site, competitively with IMP. Based on these results, the IMPDH-inhibitory mechanism of fatty acids is discussed.  相似文献   

15.
This study investigates the effects of monounsaturated and polyunsaturated fatty acids from different fat sources (High Oleic Canola, Canola, Canola–Flaxseed (3:1 blend), Safflower, or Soybean Oil, or a Lard-based diet) on adipose tissue function and markers of inflammation in Obese Prone rats fed high-fat (55% energy) diets for 12 weeks. Adipose tissue fatty acid composition reflected the dietary fatty acid profiles. Protein levels of fatty acid synthase, but not mRNA levels, were lower in adipose tissue of all groups compared to the Lard group. Adiponectin and fatty acid receptors GPR41 and GPR43 protein levels were also altered, but other metabolic and inflammatory mediators in adipose tissue and serum were unchanged among groups. Overall, rats fed vegetable oil- or lard-based high-fat diets appear to be largely resistant to major phenotypic changes when the dietary fat composition is altered, providing little support for the importance of specific fatty acid profiles in the context of a high-fat diet.  相似文献   

16.
Plasma FA composition, a marker of FA status and dietary intake, is associated with health outcomes on a short- and long-term basis. Detailed investigation of the relationships between plasma FA composition and health requires the analysis of large numbers of samples, but manual sample preparation is very cumbersome and time consuming. We developed a high-throughput method for the analysis of FAs in plasma glycerophospholipids (GPs) with increased sensitivity. Sample preparation requires two simple steps: protein precipitation and subsequent base catalyzed methyl ester synthesis. Analysis of GP FAs is performed by gas chromatography. Coefficients of variation for FAs contributing more than 1% to total FAs are below 4%. Compared with the established reference method, results of the new method show good agreement and very good correlations (r > 0.9). The new method reduces the manual workload to about 10% of the reference method. Only 100 µl plasma volume is needed, which allows for the analysis of samples from infants. The method is well suitable for application in large clinical trials and epidemiological studies.  相似文献   

17.
Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as β-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser307 phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.  相似文献   

18.
Isochrysis galbana, a marine prymnesiophyte microalga, is rich in long chain polyunsaturated fatty acids such as docosahexaenoic acid (C22:6n-3, Δ4,7,10,13,16,19). We used a polymerase chain reaction-based strategy to isolate a cDNA, designated IgASE1, encoding a polyunsaturated fatty acid-elongating activity from I. galbana. The coding region of 263 amino acids predicts a protein of 30 kDa that shares only limited homology to animal and fungal proteins with elongating activity. Functional analysis of IgASE1, by expression in Saccharomyces cerevisiae, was used to determine its activity and substrate specificity. Transformed yeast cells specifically elongated the C18-Δ9 polyunsaturated fatty acids, linoleic acid (C18:2n-6, Δ9,12) and -linolenic acid (C18:3n-3, Δ9,12,15), to eicosadienoic acid (C20:2n-6, Δ11,14) and eicosatrienoic acid (C20:3n-3, Δ11,14,17), respectively. To our knowledge this is the first time such an elongating activity has been functionally characterised. The results also suggest that a major route for eicosapentaenoic acid (C20:5n-3, Δ5,8,11,14,17) and docosahexaenoic acid syntheses in I. galbana may involve a Δ8 desaturation pathway.  相似文献   

19.
The importance of polyunsaturated fatty acid (PUFA) intake in fetal life and infancy has been widely studied in relation to child cognitive and visual development, but whether early life PUFA exposure is related to cardiometabolic risk factors is unclear. The focus of this systematic review was to evaluate the effects of PUFA dietary intake and blood levels during pregnancy, lactation, or early childhood (⩽5 y) on obesity, blood pressure, blood lipids, and insulin sensitivity. We identified 4302 abstracts in the databases Embase, Medline and Cochrane Central (April 2014), of which 56 articles, reporting on 45 unique studies, met all selection criteria. Many of the included studies focused on obesity as an outcome (33 studies), whereas studies on insulin sensitivity were relatively scarce (6 studies). Overall, results for obesity, blood pressure, and blood lipids were inconsistent, with a few studies reporting effects in opposite directions and other studies that did not observe any effects of PUFAs on these outcomes. Four studies suggested beneficial effects of PUFAs on insulin sensitivity. We conclude that there is insufficient evidence to support a beneficial effect of PUFAs in fetal life or early childhood on obesity, blood pressure, or blood lipids. More research is needed to investigate the potential favorable effects of PUFAs on insulin sensitivity, and to examine the role of specific fatty acids in early life on later cardiometabolic health.  相似文献   

20.
The investigation of prokaryotes in aquatic ecology is often limited to their role in nutrient cycling and the degradation of organic matter. While this aspect of the microbial loop is undoubtedly important, further aspects of bacterial roles in marine food webs exist which have not been fully considered in light of recent research in related fields. The concept of bacteria providing essential nutrients may derive importance from two aspects of their role in the marine environment; firstly as a primary food source for omnivorous, sestonivorous and filtering benthic animals and secondly as components of the commensal microbial communities of marine animals. Many marine organisms lack the de novo ability to produce n-3 polyunsaturated fatty acids (PUFA) and hence rely on a dietary supply of PUFA. The issue of PUFA origin in the marine food web is particularly salient in light of recent research demonstrating the influence of PUFA levels on the efficiency of energy transfer between trophic levels. The assumption that microalgae provide the bulk of de novo PUFA production for all marine food webs must be actively reviewed with respect to particular microbial niches such as sea ice, marine animals and abyssal communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号