首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predation is a critical ecological process that directly and indirectly mediates population stabilities, as well as ecosystem structure and function. The strength of interactions between predators and prey may be mediated by multiple density dependences concerning numbers of predators and prey. In temporary wetland ecosystems in particular, fluctuating water volumes may alter predation rates through differing search space and prey encounter rates. Using a functional response approach, we examined the influence of predator and prey densities on interaction strengths of the temporary pond specialist copepod Lovenula raynerae preying on cladoceran prey, Daphnia pulex, under contrasting water volumes. Further, using a population dynamic modeling approach, we quantified multiple predator effects across differences in prey density and water volume. Predators exhibited type II functional responses under both water volumes, with significant antagonistic multiple predator effects (i.e., antagonisms) exhibited overall. The strengths of antagonistic interactions were, however, enhanced under reduced water volumes and at intermediate prey densities. These findings indicate important biotic and abiotic contexts that mediate predator–prey dynamics, whereby multiple predator effects are contingent on both prey density and search area characteristics. In particular, reduced search areas (i.e., water volumes) under intermediate prey densities could enhance antagonisms by heightening predator–predator interference effects.  相似文献   

2.
1. The strengths of trophic interactions within ecosystems can be mediated by complex mechanisms that require elucidation if researchers are to understand and predict population- and community-level stabilities. Where multiple prey types co-occur, prey switching (i.e. frequency-dependent predation) by predators may facilitate low-density prey refuge effects which promote coexistence. On the other hand, lack of switching and strong preferences by predators can strongly suppress prey populations, which is especially important considering vector species such as mosquitoes. 2. The present study quantifies prey switching and preference patterns of the temporary pond specialist copepod Lovenula raynerae towards larvae of the medically important Culex pipiens mosquito complex in the presence of different proportions of alternative Daphnia pulex prey. Further, it examines whether prey switching and preferences are contingent on the sex of the predator. 3. Lovenula raynerae exhibited a lack of prey switching and strong preference for larval mosquito prey overall, irrespective of predator sex. Also, when larval mosquitoes were available in higher proportions over daphniids, the strength of this positive selectivity increased. There was very little low-density refuge for mosquitoes where they were rare. 4. Lack of prey switching and strong preferences towards mosquitoes by predatory paradiaptomid copepods may enhance population-level regulation of disease vector mosquitoes that exploit temporary pond-style habitats. Accordingly, the conservation and promotion of these predators might enable better management of medically important species across landscapes.  相似文献   

3.
Predation is thought to play a selective role in the emergence of behavioural traits in prey. Differences in behaviour between prey demographics may, therefore, be driven by predation with select components of the population being less vulnerable to predators. While under controlled conditions prey demography has been shown to have consequences for predation success, investigations linking these implications to natural prey population demographics are scarce. Here we assess predator–prey dynamics between notonectid predators (backswimmers) and Lovenula raynerae (Copepoda), key faunal groups in temperate ephemeral pond ecosystems. Using a combination of field and experimental approaches we test for the development and mechanism of predation‐induced sex‐skewed ratios. A natural population of L. raynerae was tracked over time in relation to their predator (notonectid) and prey (Cladocera) numbers. In the laboratory, L. raynerae sex ratios were also assessed over time but in the absence of predation pressure. Predation success and prey performance experiments evaluating differences between L. raynerae male, female, gravid female and copulating pairs exposed to notonectid predation were then examined. Under natural conditions, a female dominated copepod population developed over time and was correlated to predation pressure, while under predator‐free conditions non sex‐skewed prey population demographics persisted. Predator–prey laboratory trials showed no difference in vulnerability and escape performance for male, female and gravid female copepods, but pairs in copula were significantly more vulnerable to predation. This vulnerability was not shared by both sexes, with only female copepods ultimately escaping from successful predation on a mating pair. These results suggest that contact periods during copula may contribute to the development of sex‐skewed copepod ratios over time in ecosystems dominated by hexapod predators. This is discussed within the context of vertebrate and invertebrate predation and how these dissimilar types of predation are likely to have acted as selective pressures for copepod mating systems.  相似文献   

4.
The combined effects of multiple predators often cannot be predicted from their independent effects. Emergent multiple predator effects (MPEs) include risk enhancement, where combined predators kill more prey than predicted by their individual effects, and risk reduction, where fewer prey are killed than predicted. Current methods for detecting MPEs are biased because they assume linear functional responses and/or no prey depletion. As a result, past studies overestimated the occurrence of risk enhancement for additive designs, and tended to overestimate the occurrence of risk reduction for substitutive designs. Characterising the predators' functional responses and accounting for prey depletion reduces biases in detection, estimation, interpretation and generalisation of the emergent effects of predator diversity on prey survival. These findings have implications beyond MPE's and should be considered in all studies aimed at understanding how multiple factors combine when demographic rates are density dependent.  相似文献   

5.
1. Interactions between multiple predators can modify prey risk and profoundly alter ecological community dynamics. Further, ontogenic prey size changes are known to mediate prey risk through refuge effects. Understandings of these biotic factors is important for robust quantifications of natural enemy effects on target species, yet their combined influence lacks investigation. 2. Functional responses were used to quantify the predatory impacts of Notonecta glauca (water boatman; Ng) and Gammarus pulex (river shrimp; Gp) towards four different larval instars of Culex pipiens in container-style habitats. Using conspecific pairs of predators, multiple predator effects (MPEs) of both predator species were examined across larval prey sizes, and prey preference tests were applied to examine prey selectivity across predator–prey body size ratios. 3. Both predators were able to feed on C. pipiens across their larval ontogeny; however, Ng consumed significantly more larvae than Gp. Functional responses of Ng were typically Type IIs, whereas Gp trended towards sigmoidal Type IIIs. Predation by pairs of Ng and Gp showed independent MPEs towards first-, third-, and fourth-instar stages (except predation by Gp at higher densities of fourth-instar) stages, whereas, for second-instar stages, Ng showed synergistic MPEs and Gp showed antagonistic MPEs. Both predators preferred late instar mosquitoes (Ng: fourth instar; Gp: third instar). These preferences reflected predator:prey weight–length ratios, showing that relative sizes of predators and prey are important factors in prey selectivity. 4. The results obtained in the present study demonstrate that MPEs, combined with intraspecific prey preferences, may modulate trophic interactions within ecosystems. Therefore, such effects should be increasingly considered to further the understanding of agent efficacies.  相似文献   

6.
7.
8.
Griffen BD 《Oecologia》2006,148(4):702-709
When foraging together, multiple predator species that share a single prey often cause prey mortality that cannot be predicted based on knowledge of predation by each species separately. Modeling and managing the effects of multiple predator species depend on accurately assessing these combined effects. Two methods are currently used to experimentally examine combined predation by multiple predator species: the additive and substitutive experimental designs. I simultaneously employed both experimental designs to examine predation by two crab species on shared mussel prey. I show that the two methods yield results that disagree both quantitatively and qualitatively, leading to very different conclusions about the way that predator species combine to affect prey mortality. This discrepancy occurred because the two methods examine complimentary, but not interchangeable questions. I advocate using an experimental design that incorporates both additive and substitutive designs to achieve a more complete understanding of the combined effects of multiple predator species.  相似文献   

9.
Abstract.  1. Interactions among predators may influence the total efficiency of a predator complex. The effect of intra- and interspecific interactions of the generalist predators Orthotylus marginalis (Heteroptera: Miridae) and Anthocoris nemorum (Heteroptera: Anthocoridae) was investigated in a laboratory experiment. Outcomes of the interactions were determined by comparing predation rates on eggs and larvae of the blue willow beetle Phratora vulgatissima of single individuals with those of two individuals of the same or different species.
2. A non-additive, antagonistic effect on predation rates due to intraspecific interactions was found between individuals of A. nemorum . No such effect was found in O. marginalis . These results are as expected as a consequence of differences in behaviour of the two predator species: A. nemorum is a much more active and mobile predator than O. marginalis .
3. Contrary to expectation, interspecific interactions between A. nemorum and O. marginalis did not affect the total predation rate.
4. An observation from the field corroborated the results obtained in the laboratory study; there was no negative relationship between the densities of the two predator species, indicating that the two species do not interact negatively in the field at their natural densities.
5. It is concluded that the additive effect of multiple predator species is of potential value in biological control.  相似文献   

10.
  1. Predator–prey models are often used to represent consumptive interactions between species but, typically, are derived using simple experimental systems with little plasticity in prey or predator behaviours. However, many prey and predators exhibit a broad suite of behaviours. Here, we experimentally tested the effect of density-dependent prey and predator behaviours on per capita relative mortality rates using Florida bass (Micropterus floridanus) consuming juvenile Bluegill (Lepomis macrochirus).
  2. Experimental ponds were stocked with a factorial design of low, medium, and high prey and predator densities. Prey mortality, prey–predator behaviours, and predator stomach contents were recorded over or after 7 days. We assumed the mortality dynamics followed foraging arena theory. This pathologically flexible predator–prey model separates prey into invulnerable and vulnerable pools where predators can consume prey in the latter. As this approach can represent classic Lotka–Volterra and ratio-dependent dynamics, we fit a foraging arena predator–prey model to the number of surviving prey.
  3. We found that prey exhibited density-dependent prey behaviours, hiding at low densities, shoaling at medium densities, and using a provided refuge at high densities. Predators exhibited ratio-dependent behaviours, using an ambush foraging mode when one predator was present, hiding in the shadows at low prey–high predator densities, and shoaling at medium and high prey–high predator densities. The foraging arena model predicted the mortality rates well until the high prey–high predator treatment where group vigilance prey behaviours occurred and predators probably interfered with one another resulting in the model predicting higher mortality than observed.
  4. This is concerning given the ubiquity of predator–prey models in ecology and natural resource management. Furthermore, as Allee effects engender instability in population regulation, it could lead to inaccurate predictions of conservation status, population rebuilding or harvest rates.
  相似文献   

11.
1. Multiple predator interactions may profoundly alter ecological community dynamics and can complicate predictions of simpler pairwise predator–prey interaction strengths. In particular, multiple predator effects may lessen or enhance prey risk, with implications for community-level stability. Such emergent effects may modulate natural enemy efficacy towards target organisms. 2. In the present study, a functional response approach was used to quantify emergent multiple predator effects among natural enemies towards the disease vector mosquito complex, Culex pipiens. Conspecific multiple predator–predator interactions of the cyclopoid copepod Macrocyclops albidus (intermediate predator) were quantified by comparing multiple predator consumption simulations, based on individual consumption rates, with multiple predator consumption rates that were experimentally observed. Further, the study examined the influence of the presence of a predator at a higher trophic level, Chaoborus flavicans, on copepod group predation. 3. Both predators displayed type II functional responses, with C. flavicans consuming significantly more prey than M. albidus individually. Overall consumption levels of mosquitoes increased with greater predator density and richness. Antagonistic or synergistic emergent multiple predator effects between conspecifics of M. albidus were not detected, and the higher-level predator did not reduce effects of the intermediate predator. Accordingly, evidence for additive multiple predator interactions was found. 4. The lack of predator–predator interference between cyclopoid copepods and larval chaoborid midges provides strong support for their combined application in mosquito biocontrol. It is proposed that there should be increased examination of multiple predator effects in assessments of natural enemy efficacies to better understand overall predatory effects within communities and utilities in vector control.  相似文献   

12.
Intraguild (IG) predator density can alter its effects on intraguild prey populations through several mechanisms, including density-dependent processes that affect IG predator traits such as size or growth that enhance or limit its predatory abilities. We examined whether intraspecific density-dependence altered IG predator traits, as well as the subsequent interspecific effects among its intraguild prey within a larval salamander guild. Four densities of ringed salamanders (Ambystoma annulatum), the IG predator, were combined with the presence/absence of spotted salamanders (A. maculatum), the IG prey, within experimental mesocosms. We modeled the effects of A. annulatum density on both conspecific and heterospecific responses that would be indicative of density-dependent competition and predation, respectively. We also modeled the reciprocal interspecific effects of A. maculatum on A. annulatum. We found that increasing intraspecific density negatively affected morphological traits but not survival of A. annulatum. No interspecific effects of A. maculatum on A. annulatum were observed. Alternatively, traits of A. maculatum showed nonlinear relationships with increasing A. annulatum density. Thinning effects of A. annulatum on A. maculatum were observed, as survival was positively and size negatively related for A. maculatum with IG predator density. The temporal overlap of the IG predator and prey also increased nonlinearly with IG predator density, intensifying the potential encounter rate of the two species. Overall, this study shows that density-dependent processes in IG predators can significantly affect traits of both themselves, as well as IG prey, which could ultimately change whether competition or predation occurs between the two groups.  相似文献   

13.
Predation is a key process driving coral reef fish population dynamics, with higher per capita prey mortality rates on reefs with more predators. Reef predators often forage together, and at high densities, they may either cooperate or antagonize one another, thereby causing prey mortality rates to be substantially higher or lower than one would expect if predators did not interact. However, we have a limited mechanistic understanding of how prey mortality rates change with predator densities. We re-analyzed a previously published observational dataset to investigate how the foraging response of the coney grouper (Cephalopholis fulva) feeding on the bluehead wrasse (Thalassoma bifasciatum) changed with shifts in predator and prey densities. Using a model-selection approach, we found that per-predator feeding rates were most consistent with a functional response that declines as predator density increases, suggesting either antagonistic interactions among predators or a shared antipredator behavioral response by the prey. Our findings suggest that variation in predator density (natural or anthropogenic) may have substantial consequences for coral reef fish population dynamics.  相似文献   

14.
1.?Model analyses show that the stability of population dynamics and food web persistence increase with the strength of interference competition. Despite this critical importance for community stability, little is known about how external factors such as the environmental temperature affect intraspecific interference competition. 2.?We aimed to fill this void by studying the functional responses of two ground beetle species of different body size, Pterostichus melanarius and Poecilus versicolor. These functional response experiments were replicated across four predator densities and two temperatures to address the impact of temperature on intraspecific interference competition. 3.?We generally expected that warming should increase the speed of movement, encounter rates and in consequence interference among predator individuals. In our experiment, this expectation was supported by the results obtained for the larger predator, P.?melanarius, whereas the opposite pattern characterized the interference behaviour of the smaller predator P.?versicolor. 4.?These results suggest potentially nontrivial implications for the effects of environmental temperature on intraspecific interference competition, for which we propose an explanation based on the different sensitivity to warming of metabolic rates of both species. As expected, increasing temperature led to stronger interference competition of the larger species, P.?melanarius, which exhibited a weaker increase in metabolic rate with increasing temperature. The stronger increase in the metabolic rate of the smaller predator, P.?versicolor, had to be compensated by increasing searching activity for prey, which did not leave time for increasing interference. 5.?Together, these results suggest that any generalization how interference competition responds to warming should also take the species' metabolic response to temperature increases into account.  相似文献   

15.
Lucy Genua  Denon Start  Benjamin Gilbert 《Oikos》2017,126(9):1357-1365
Fragmentation and resultant changes in patch size are predicted to alter species diversity and community composition, yet the consequences of these differences for species interactions are poorly understood. Theory predicts that predators are more sensitive to fragmentation than their prey, resulting in greater predator loss in small patches. Predator loss, in turn, is predicted to 1) increase herbivory rates overall, and 2) cause herbivores to shift feeding from plants that act as refugia to those that are preferred forage. We tested these predictions in an old‐field community using two experiments. The first was a large‐scale experiment that included hundreds of arthropod species in fragments of various sizes, and used goldenrod and switchgrass to assess herbivory. Our second experiment manipulated densities of a focal predator species and a focal prey species to determine if changes in densities, rather than other characteristics of fragments, were sufficient to cause the trends observed in the first experiment. We found that predator densities declined in small fragments whereas herbivore densities showed the opposite trend. Total herbivory mirrored herbivore densities by increasing in small patches, and this mean increase was driven by large increases in goldenrod herbivory but declines in switchgrass herbivory. Experimental manipulation of densities confirmed that herbivores preferentially feed on goldenrod, and that predators depress herbivory on goldenrod but have a negligible effect on switchgrass. Our results suggest that fragmentation alters trophic interactions by causing declines in predator densities and increases in herbivore densities, but that feeding preferences of herbivores may generate unequal impacts among plant species.  相似文献   

16.
1. Studies of the impact of predator diversity on biological pest control have shown idiosyncratic results. This is often assumed to be as a result of differences among systems in the importance of predator–predator interactions such as facilitation and intraguild predation. The frequency of such interactions may be altered by prey availability and structural complexity. A direct assessment of interactions among predators is needed for a better understanding of the mechanisms affecting prey abundance by complex predator communities. 2. In a field cage experiment, the effect of increased predator diversity (single species vs. three‐species assemblage) and the presence of weeds (providing structural complexity) on the biological control of cereal aphids were tested and the mechanisms involved were investigated using molecular gut content analysis. 3. The impact of the three‐predator species assemblages of aphid populations was found to be similar to those of the single‐predator species treatments, and the presence or absence of weeds did not alter the patterns observed. This suggests that both predator facilitation and intraguild predation were absent or weak in this system, or that these interactions had counteracting effects on prey suppression. Molecular gut content analysis of predators provided little evidence for the latter hypothesis: predator facilitation was not detected and intraguild predation occurred at a low frequency. 4. The present study suggests additive effects of predators and, therefore, that predator diversity per se neither strengthens nor weakens the biological control of aphids in this system.  相似文献   

17.
1.?Theory suggests that the relationship between predator diversity and prey suppression should depend on variation in predator traits such as body size, which strongly influences the type and strength of species interactions. Prey species often face a range of different sized predators, and the composition of body sizes of predators can vary between communities and within communities across seasons. 2.?Here, I test how variation in size structure of predator communities influences prey survival using seasonal changes in the size structure of a cannibalistic population as a model system. Laboratory and field experiments showed that although the per-capita consumption rates increased at higher predator-prey size ratios, mortality rates did not consistently increase with average size of cannibalistic predators. Instead, prey mortality peaked at the highest level of predator body size diversity. 3.?Furthermore, observed prey mortality was significantly higher than predictions from the null model that assumed no indirect interactions between predator size classes, indicating that different sized predators were not substitutable but had more than additive effects. Higher predator body size diversity therefore increased prey mortality, despite the increased potential for behavioural interference and predation among predators demonstrated in additional laboratory experiments. 4.?Thus, seasonal changes in the distribution of predator body sizes altered the strength of prey suppression not only through changes in mean predator size but also through changes in the size distribution of predators. In general, this indicates that variation (i.e. diversity) within a single trait, body size, can influence the strength of trophic interactions and emphasizes the importance of seasonal shifts in size structure of natural food webs for community dynamics.  相似文献   

18.
Griffen BD  Williamson T 《Oecologia》2008,155(1):151-159
Interactions between multiple predator species are frequent in natural communities and can have important implications for shared prey survival. Predator density may be an important component of these interactions between predator species, as the frequency of interactions between species is largely determined by species density. Here we experimentally examine the importance of predator density for interactions between predator species and subsequent impacts on prey. We show that aggressive interactions between the predatory shore crabs Carcinus maenas and Hemigrapsus sanguineus increased with predator density, yet did not increase as fast as negative interactions between conspecifics. At low density, interactions between conspecific and heterospecific predators had similar inhibitory impacts on predator function, whereas conspecific interference was greater than interference from heterospecifics at high predator density. Thus the impact of conspecific interference at high predator density was sufficient in itself that interactions with a second predator species had no additional impact on per capita predation. Spatial and temporal variability in predator density is a ubiquitous characteristic of natural systems that should be considered in studies of multiple predator species.  相似文献   

19.
Inducible defenses of prey and inducible offenses of predators are examples of adaptive phenotypic plasticity. Although evolutionary ecologists have paid considerable attention to the adaptive significances of these strategies, they have rarely focused on their evolutionary impacts on the interacting species. Because the functional phenotypes of predator and prey determine strength of interactions between the species, the inducible plasticity can modify selective pressure on trait distribution and, ultimately, trait evolution in the interacting species. We experimentally tested this hypothesis in a predator–prey system composed of salamander larvae (Hynobius retardatus) and frog tadpoles (Rana pirica) capable of expressing antagonistic inducible offensive or defensive traits, an enlarged gape in the salamander larvae and a bulgy body in the tadpoles, when predator–prey interactions are strong. We examined selection strength on the tadpole’s defensive trait by comparing survival rates of tadpoles with different defensive levels under predation pressure from offensive or non-offensive salamander larvae. Survival rates of more-defensive tadpoles were greater than those of less-defensive tadpoles only when the tadpoles were exposed to offensive salamander larvae; thus, the predator’s offensive phenotype could select for an amplified defensive phenotype in their prey. As the expression of inducible offenses by H. retardatus larvae depends greatly on the composition of its ecological community, the inducible defensive bulgy morph of R. pirica tadpoles might have evolved in response to the variable expression of the H. retardatus offensive larval phenotype.  相似文献   

20.
Interacting changes in predator and prey diversity likely influence ecosystem properties but have rarely been experimentally tested. We manipulated the species richness of herbivores and predators in an experimental benthic marine community and measured their effects on predator, herbivore and primary producer performance. Predator composition and richness strongly affected several community and population responses, mostly via sampling effects. However, some predators survived better in polycultures than in monocultures, suggesting complementarity due to stronger intra- than interspecific interactions. Predator effects also differed between additive and substitutive designs, emphasizing that the relationship between diversity and abundance in an assemblage can strongly influence whether and how diversity effects are realized. Changing herbivore richness and predator richness interacted to influence both total herbivore abundance and predatory crab growth, but these interactive diversity effects were weak. Overall, the presence and richness of predators dominated biotic effects on community and ecosystem properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号