首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase ( PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t‐butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0‐40% (w/v), extract to t‐butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0‐40% (w/v), crude extract to t‐butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26‐36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1340–1347, 2015  相似文献   

2.
α-Chymotrypsin inactivated with 8 M urea and 100 mM dithiothreitol could be completely reactivated by subjecting it to three-phase partitioning (TPP). TPP consisted of adding 30% w/v ammonium sulfate and t-butanol (volume equivalent to aqueous solution of denatured α-chymotrypsin) at 25°C. The activated α-chymotrypsin was recovered as an interfacial precipitate between the upper organic and lower aqueous phase. It was found that this could be extended to a thermally inactivated smart bioconjugate of α-chymotrypsin with Eudragit S-100 (a reversibly soluble–insoluble methmethacrylate). The thermally inactivated bioconjugate had to be further subjected to urea and dithiothreitol before refolding by three-phase partitioning. Ninety per cent of the activity of the bioconjugate could be recovered. The free enzyme and its bioconjugate which lost activity in the presence of 90% dioxane recovered 94 and 90% of their activities, respectively, by employing TPP. The refolded free enzyme and its bioconjugate were evaluated in terms of Vmax/Km and their fluorescence emission spectra.  相似文献   

3.
《Process Biochemistry》2007,42(3):491-495
The technique of three-phase partitioning (TPP) was used to purify a bifunctional amylase/protease inhibitor from ragi (Eleusine coracana). This process of purification is a potential method used for separation of proteins directly from large volumes of crude suspension. It involves the addition of a salt (ammonium sulphate) to the crude extract followed by the addition of an organic solvent (t-butanol). The addition of t-butanol, in the presence of ammonium sulphate pushes the protein out of the solution to form an interfacial precipitate layer between the lower aqueous and upper organic layers. The process was carried out in two steps. The various conditions required for attaining efficient purification of the protein fractions were optimized. It was seen that 30% ammonium sulphate saturation with 1:1 ratio of crude extract to tert-butanol gave 8.9- and 8.65-fold purification with 83% and 80% yield of amylase inhibitor and trypsin inhibitor, respectively, in step I. In TPP-step II, 60% ammonium sulphate saturation and ratio of aqueous phase to t-butanol of 1:2 gave maximum 20.1- and 16-fold purification with 39.5% and 32% yield of amylase inhibitor and trypsin inhibitor, respectively. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the inhibitor protein showed substantial purification and the molecular weight of the protein was found to be 14 kDa.  相似文献   

4.
Simple, attractive and versatile technique, three-phase partitioning (TPP) was used to purify α-galactosidase from fermented media of Aspergillus oryzae. The various conditions required for attaining efficient purification of the α-galactosidase fractions were optimized. The addition of n-butanol, t-butanol, and isopropanol in the presence of ammonium sulfate pushes the protein out of the solution to form an interfacial precipitate layer between the lower aqueous and upper organic layers. The single step of three-phase partitioning, by saturating final concentration of ammonium sulfate (60%) with 1:1 t-butanol, gave activity recovery of 92% with 12-fold purification at second phase of TPP. The final purified enzyme after TPP showed considerable purification on SDS-PAGE with a molecular weight of 64 kDa. The enzyme after TPP showed improved activity in organic solvents. Results are compared with conventional established processes for the purification of α-galactosidase produced by Aspergillus oryzae and overall the proposed TPP technique resulted in 70% reduction of purification cost compared to conventional chromatographic protocols.  相似文献   

5.
Three phase partitioning, a technique described for protein purification, has been employed for precipitation and purification of three different commercial preparations of alginates. Three phase partitioning works by the addition of t-butanol to aqueous solution of the polymer containing 20–30% ammonium sulphate (w/v). Three phases formed are: upper t-butanol layer, interfacial polymer precipitate and lower aqueous phase. In all the three cases, the process optimization was carried out by varying ammonium sulphate concentration, volume of t-butanol, alginate concentration and temperature. Fluorescence spectroscopy was used to show that repeated cycles of TPP also resulted in considerable reduction in polyphenol content of a crude alginate preparation.  相似文献   

6.
Three phase partitioning (TPP) is most renowned technique used for extraction and purification of natural products. In previous studies of TPP, t-butanol is mainly used as an organic phase. This is the first report that explores ability of dimethyl carbonate (DMC) in the field of TPP as an alternate solvent for t-butanol. In the present study TPP process with t-butanol and DMC as organic phase along with different salts was applied to waste bitter gourd powder to obtained peroxidase enzyme. DMC was found to be compatible with most of salts such as ammonium sulphate and sodium citrate and explored as more efficient solvent than t-butanol. This TPP system provides 4.84 fold purity of peroxidase enzyme at optimum source concentration of 0.15 g/mL, with a system comprising DMC as organic phase, sodium citrate (20%) as salt, agitation speed 120 rpm, pH 7, temperature 30 °C and extraction time of 3 h. Present study has aimed for extraction and separation of peroxidase from bitter gourd waste with TPP technique and ensures the scope of carbonated solvents in extraction and purification of proteins.  相似文献   

7.
Three phase partitioning (TPP), a technique used in protein purification has been evaluated, for extraction of oil from three different plant sources viz: mango kernel, soybean and rice bran. The process consists of simultaneous addition of t-butanol (1:1,v/v) and ammonium sulphate (w/v) to a crude preparation/slurry. Under optimized condition, the protein appears as an interfacial precipitate between upper t-butanol containing oil and lower aqueous phase. Pretreatment of the slurries with a commercial enzyme preparation of proteases, Protizyme, followed by three phase partitioning resulted in 98%, 86% and 79% (w/w) oil yields in case of soybean, rice bran and mango kernel, respectively. The efficiency of the present technique is comparable to solvent extraction with an added advantage of being less time consuming and using t-butanol which is a safer solvent as compared to n-hexane used in conventional oil extraction process.  相似文献   

8.
Three-phase partitioning (TPP), a technique used in protein purification, was used to purify invertase from tomato (Lycopersicon esculentum). The method consists of simultaneous addition of ammonium sulfate and t-butanol to the crude enzyme extract in order to obtain the three phases. Different parameters (ammonium sulfate saturation, crude extract to t-butanol ratio and pH) essential for the extraction and purification of invertase were optimized to get highest purity fold and yield. It was seen that, 50% (w/v) ammonium sulfate saturation with 1:1 (v/v) ratio of crude extract to t-butanol at pH 4.5 gave 8.6-fold purification with 190% activity recovery of invertase in a single step. Finally, the purified enzyme was also characterized and the general biochemical properties were determined. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of enzyme showed considerable purification and its molecular weight was nearly found to be as 20 kDa. This work shows that, TPP is a simple, quick and economical technique for purification of invertases.  相似文献   

9.
Three phase partitioning for extraction of oil from soybean   总被引:4,自引:0,他引:4  
Three phase partitioning, a method generally used for protein separation, has been evaluated for extraction of oil from soybean. 82% oil was extracted within 1 h using this process which required simultaneous addition of t-butanol (1:1, v/v) and 30% ammonium sulphate to the soybean slurry.  相似文献   

10.
As a promising alternative biofuel, biobutanol can be produced through acetone/butanol/ethanol (ABE) fermentation. Currently, ABE fermentation is still a small-scale industry due to its low production and high input cost. Moreover, butanol toxicity to the Clostridium fermentation host limits the accumulation of butanol in the fermentation broth. The wild-type Clostridium acetobutylicum D64 can only produce about 13 g butanol/L and tolerates less than 2% (v/v) butanol. To improve the tolerance of C. acetobutylicum D64 for enhancing the production of butanol, nitrogen ion beam implantation was employed and finally five mutants with enhanced butanol tolerance were obtained. Among these, the most butanol tolerant mutant C. acetobutylicum NT642 can tolerate above 3% (v/v) butanol while the wide-type strain can only withstand 2% (v/v). In batch fermentation, the production of butanol and ABE yield of C. acetobutylicum NT642 was 15.4 g/L and 22.3 g/L, respectively, which were both higher than those of its parental strain and the other mutants using corn or cassava as substrate. Enhancing butanol tolerance is a great precondition for obtaining a hyper-yield producer. Nitrogen ion beam implantation could be a promising biotechnology to improve butanol tolerance and production of the host strain C. acetobutylicum.  相似文献   

11.
The use of an anaerobic digester slurry of cattle waste for the reclamation of acid mine water was examined. When the digester slurry was mixed with acid mine water, anaerobic digestion, including sulfate reduction and methanogenesis, was enhanced. In the mixture of acid mine water and the digester slurry, sulfate reduction proceeded without diminishing methanogenesis. The digester slurry and its supernatant (SDF-sup) showed a significant capacity to act as a strong alkaline reagent, and the pH of the acid mine water was markedly elevated by the addition of the digester slurry of SDF-sup even at the low ratio of 1% (v/v). Precipitation of heavy metals in the acid mine water occurred as the pH was elevated by the addition of SDF-sup. When the digester slurry was added at the ratio of 5% (v/v) to acid mine water which had been pretreated with SDF-sup, the rate of sulfate reduction increased with increasing the concentration of sulfate in the mixture up to about 1,400 mg·l−1. In acid mine water pretreated with SDF-sup and supplemented with the digester slurry at the ratio of 5% (v/v), the maximum amount of sulfate reduced within 20 d of incubation was about 1,000 mg·l−1, and the maximum rate of sulfate reduction was about 120 mg SO42−·l−1·d−1.  相似文献   

12.
Three-phase partitioning (TPP) is carried out by mixing ammonium sulfate and t-butanol to obtain organic phase, interfacial precipitate and aqueous phase. It is shown that TPP of an 8 M urea/100 mM dithiothreitol-denatured xylanase preparation resulted in simultaneous renaturation and purification. This integrated novel approach gave recovery of 93% enzyme activity with 21-fold purification. The implications of this in the context of recovering activity from inclusion bodies are discussed.  相似文献   

13.
Turmeric (Curcuma longa) is a rhizomatous plant of the ginger family Zingiberaceae that is usually dried and ground into powder for use as a seasoning. Because turmeric has become increasingly popular in the functional food market, adulteration of C. longa by other turmeric species is becoming an increasingly significant problem. In this study, loop-mediated isothermal amplification (LAMP) was developed for the detection of C. longa DNA for turmeric authentication. ITS2-26S rDNA was used for the LAMP primer designation. The results demonstrated that the specific primers exhibited high specificity, authenticated C. longa DNA within 30 min at 65 °C isothermally and had no cross-reaction with other adulterants. LAMP was sensitive to 0.1 ng of turmeric C. longa DNA, and only 0.01% of C. longa turmeric powder in the sample was required for DNA amplification. The sensitivity of LAMP was 10-fold higher than that of PCR (0.1%) from a previous report. Moreover, all the collected commercial turmeric products were positively detected by LAMP and RtF-LAMP (real-time fluorescence LAMP). The developed LAMP assay not only had higher specificity and rapidity than that of other methods but could also be applied to authenticate turmeric to prevent adulteration in food products.  相似文献   

14.
-Chymotrypsin inactivated with 8 M urea and 100 mM dithiothreitol could be completely reactivated by subjecting it to three-phase partitioning (TPP). TPP consisted of adding 30% w/v ammonium sulfate and t-butanol (volume equivalent to aqueous solution of denatured -chymotrypsin) at 25°C. The activated -chymotrypsin was recovered as an interfacial precipitate between the upper organic and lower aqueous phase. It was found that this could be extended to a thermally inactivated smart bioconjugate of -chymotrypsin with Eudragit S-100 (a reversibly soluble-insoluble methmethacrylate). The thermally inactivated bioconjugate had to be further subjected to urea and dithiothreitol before refolding by three-phase partitioning. Ninety per cent of the activity of the bioconjugate could be recovered. The free enzyme and its bioconjugate which lost activity in the presence of 90% dioxane recovered 94 and 90% of their activities, respectively, by employing TPP. The refolded free enzyme and its bioconjugate were evaluated in terms of V max/K m and their fluorescence emission spectra.  相似文献   

15.
This study reports on the preparation of chitosan (CS)/polyethylene glycol (PEG) hydrogel beads using sodium diclofenac (DFNa) as a model drug. Following the optimization of the polymer to drug ratio, the chitosan beads were modified by ionic crosslinking with sodium tripolyphosphate (TPP). The CS/PEG/DFNa beads obtained from a (w/w/w) ratio of 1/0.5/0.5 with crosslinking in 10% (w/v) TPP at pH 6.0 for 30 min yielded excellent DFNa encapsulation levels with over 90% loading efficiency. The dissolution profile of DFNa from CS/PEG/DFNa beads demonstrated that this formulation was able to maintain a prolonged drug release for approximately 8 h. Among the formulations tested, the CS/PEG/DFNa (1/0.5/1 (w/w/w)) beads crosslinked with a combination of TPP (10% (w/v) for 30 min) and glutaraldehyde (GD) (5% (w/v)) were able to provide minimal DFNa release in the gastric and duodenal simulated fluids (pH 1.2 and 6.8, respectively) allowing for a principally gradual drug release over 24 h in the intestinal (jejunum and ileum) simulated fluid (pH 7.4). Thus, overall the CS/PEG beads crosslinked with TPP and GD look to be a promising and novel alternative gastrointestinal drug release system.  相似文献   

16.
Ethanol production from Undaria pinnatifida (Sea mustard, Miyuk) was performed using yeast acclimated to specific sugars. Pretreatment conditions were optimized by thermal acid hydrolysis and enzyme treatment to increase the monosaccharide yield. Pretreatment by thermal acid hydrolysis was carried out using seaweed powder at 8 ~ 17% (w/v) solid content with a treatment time of 30 ~ 60 min. Enzyme treatment was carried out with 1% (v/v) Viscozyme L (1.2 FGU/mL), 1% (v/v) Celluclast 1.5 L (8.5 EGU/mL), 1% (v/v) AMG 300 L (3.0 AGU/mL), and 1% (v/v) Termamyl 120 L (0.72 KNU/mL). All enzymes except Termamyl 120 L, which was applied during pretreatment, were treated at 45°C for 24 h following pretreatment. Optimal pretreatment and enzyme conditions were determined to be 75 mM H2SO4, 13% (w/v) slurry, and 2.88 KNU/mL Termamyl 120 L at 121°C for 60 min. A maximum monosaccharide concentration of 33.1 g/L with 50.1% theoretical yield was obtained. To increase the ethanol yield, Pichia angophorae KCTC 17574 was acclimated to a high concentration (120 g/L) of galactose and mannitol at 30oC for 24 h. Ethanol production of 12.98 g/L with 40.12% theoretical yield was obtained from U. pinnatifida through fermentation with 0.35 g dry cell weight/L P. angophorae KCTC 17574 acclimated to mannitol and galactose.  相似文献   

17.
Hybrids between Escherichia coli and Lactobacillus brevis were generated via protoplast fusion. Growth kinetics of five hybrid strains and E. coli were used to evaluate the butanol tolerance of the novel strains under different conditions. The hybrid strains tolerated up to 2% (v/v) butanol compared to the 1% (v/v) maximum for E. coli. The growth inhibitory effects of butanol were also significantly less in several of the hybrids compared to E. coli. These results demonstrate the potential use of protoplast fusion to generate butanol-tolerant strains.  相似文献   

18.
Medium development for chitinase production by Trichoderma virens was first carried out using conventional method of one-factor-at-a-time. The medium was further optimized using Central Composite Design in which response surface was generated later from the derived model. An experimental design of four variables including various initial pH values, chitin, ammonium sulphate, and methanol concentrations were created using Design Expert® Software, Version 6.0. The design consists of 30 experiments, which include 6 replicates at center points. The optimal value for each variable are 3.0 g/L, chitin; 0.1 g/L, ammonium sulphate; 0.4% (v/v), methanol; and initial pH, 4.0 with predicted chitinase activity of 0.1495 U/mL. These predicted parameters were tested in the laboratory and the final chitinase activity obtained was 0.1471 U/mL, which is almost reaching the predicted value. The optimal medium design showed an improvement of chitinase activity of 80.9% compared to activity obtained from the original Absidia medium composition.  相似文献   

19.
The effect of a saponin-rich extract from rhizomes of Soapwort (Saponaria officinalis L) and four synthetic surfactants: sodium lauryl sulphate (SLS), sodium laureth sulphate (SLES), ammonium lauryl sulphate (ALS) and cocamidopropyl betaine (CAPB) on two model lipid monolayers is analyzed using surface pressure, surface dilatational rheology and fluorescence microscopy. The following monolayers were employed: dipalmitoylphosphatidylcholine/cholesterol mixture in a molar ratio of 7:3 (DPPC/CHOL) and Ceramide [AP]/stearic acid/cholesterol in a molar ratio of 14:14:10 (CER/SA/CHOL). They mimicked a general bilayer structure and an intercellular lipid mixture, respectively. Both lipid mixtures on Milli-Q water were first compressed to the initial surface pressure, Π0 = 30 mN/m and then the subphase was exchanged with the respective (bio)surfactant solution at 1% (w/w). All four synthetic surfactants behaved in a similar way: they increased surface pressure to about 40 mN/m and reduced the storage modulus of surface dilational surface rheology, E′, to the values close to zero. The corresponding fluorescence microscopy pictures confirmed that the lipids mimicking the stratum corneum components were almost completely removed by the synthetic surfactants under the present experimental conditions. The components of the Soapwort extract (SAP) increased surface pressure to significantly higher values than the synthetic surfactants, but even more spectacular increase was observed for the storage modulus of the SAP-penetrated lipid monolayers (up to E′= 715 mN/m).  相似文献   

20.
Three phase partitioning (TPP) is generally carried out by adding ammonium sulfate and t-butanol to a solution of a macromolecule. Chitosan could be obtained as an interfacial precipitate with 88% yield by subjecting 0.2% (w/v) chitosan solution to TPP with 45% (w/v) ammonium sulfate, with an equal volume of t-butanol at 40 °C. TPP resulted in structural changes which could be seen in its UV spectra, FT-IR spectra and solubility characteristics. TPP-treated chitosan also showed decreased susceptibility towards hydrolysis by chitinase. Thus, TPP can be used as a useful way of altering the properties of chitosan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号