首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2010,45(9):1511-1516
The properties and applications of rhamnolipid surfactants produced by Pseudomonas aeruginosa L2-1 from cassava wastewater added with waste cooking oil (CWO) as low-cost substrate, were investigated and compared with the commercial rhamnolipid mixture JBR599 (Jeneil Biosurfactant Co., Saukville, USA). The rhamnolipids produced by strain L2-1 were characterized by high performance liquid chromatography–mass spectrometry. Sixteen different rhamnolipid congeners were detected, with Rha-C10-C10 and Rha-Rha-C10-C10 being the most abundant. The L2-1 rhamnolipids from CWO showed similar or better tensioactive properties than those from JBR599, with a minimal surface tension of 30 mN/m and a critical micelle concentration (CMC) of 30 mg/l. The L2-1 biosurfactants formed stable emulsions with several hydrocarbons and showed excellent emulsification of soybean oil (100%). These rhamnolipids removed 69% of crude oil present in contaminated sand samples at the CMC and presented antimicrobial activity against Bacillus cereus (32 μg/ml), Micrococcus luteus (32 μg/ml) and Staphylococcus aureus (128 μg/ml). These results demonstrate that the rhamnolipids produced in CWO can be useful for industrial applications, such as the bioremediation of oil spills.  相似文献   

2.
This study was aimed at the development of economical methods for higher yields of biosurfactant by suggesting the use of low-cost raw materials. Two oil-degrading strains, Pseudomonas aeruginosa GS9-119 and DS10-129, were used to optimize a substrate for maximum rhamnolipid production. Among the two strains, the latter produced maxima of 4.31, 2.98, and 1.77 g/L rhamnolipid biosurfactant using soybean oil, safflower oil, and glycerol, respectively. The yield of biosurfactant steadily increased even after the bacterial cultures reached the stationary phase of growth. Characterization of rhamnolipids using mass spectrometry revealed the presence of dirhamnolipids (Rha-Rha-C(10)-C(10)). Emulsification activity of the rhamnolipid biosurfactant produced by P. aeruginosa DS10-129 was greater than 70% using all the hydrocarbons tested, including xylene, benzene, hexane, crude oil, kerosene, gasoline, and diesel. P. aeruginosa GS9-119 emulsified only hexane and kerosene to that level.  相似文献   

3.
Glycolipids are one of the major classes of biosurfactants in which the rhamnolipids are best studied. The present work investigates the optimization of inoculum age and batch time for maximizing the yield of rhamnolipid from Pseudomonas aeruginosa (MTCC 2453). The yield and titer of rhamnolipids were maximum in the fermentation batch with an inoculum age of 24?hr. Batch time studies were performed on biomass production, rhamnolipid production, and sunflower oil utilization. The maximum yield of rhamnolipid was achieved at 96?hr when the culture cells were in the late exponential/early stationary phase. At optimum substrate concentration, maximum yield of 10.8?g/L was achieved. Further, downstream processing of crude rhamnolipid from broth using organic solvent extraction and subsequent purification using adsorption chromatography was done. In this study, chromatographic method was developed for purification of rhamnolipid by adsorption phenomena with more than 88.7% purity and 86.5% recovery. The present study provides new perspective on concepts involving separation by adsorption. Further antimicrobial properties and surfactant properties were studied for rhamnolipid production.  相似文献   

4.
Pseudomonas aeruginosa UFPEDA 614 produced a rhamnolipid biosurfactant when grown on sugarcane bagasse impregnated with a solution containing glycerol. Biosurfactant levels reached 40 g of rhamnolipid per kilogram of dry initial substrate after 12 days. On the basis of the volume of liquid used, the biosurfactant levels were similar to those obtained in submerged liquid culture of a medium identical to the impregnating solution. The properties of the biosurfactant were very similar to those obtained with rhamnolipids produced in submerged culture, with a critical micelle concentration of 46.8 mg/L and an emulsification index at 24 h of over 90% against gasoline. The surface properties were maintained after autoclaving of the fermented solids, meaning that it is possible to minimize safety risks by killing the producing organism with a heat treatment of the solids prior to product extraction. The biosurfactant was used in the washing of soils contaminated with gasoline. An aqueous biosurfactant solution was 3.2-fold more efficient than water in leaching organic material from the soil, demonstrating the viability of application of rhamnolipids in the bioremediation of soils contaminated with gasoline.  相似文献   

5.
Deuterated rhamnolipids were produced using strain AD7 of Pseudomonas aeruginosa, which was progressively adapted to increasing levels of deuterium in D2O and carbon substrates. Fourteen different deuterated rhamnolipid structures, including structural isomers, were produced which is similar to normal protonated structures. There were two main products monorhamnolipid Rha-C10-C10 and dirhamnolipid Rha2-C10-C10. The levels of deuteration varied from 16% with 25% D2O + h-glycerol to 90% with 100% D2O + d-glycerol. When d-tetradecane was used with H2O, virtually all the deuterium appeared in the lipid chains while using h-tetradecane + D2O led to the majority of deuterium in the sugars. The adaptation to growth in deuterium appeared to be metabolic since no genetic changes could be found in the key rhamnolipid biosynthetic genes, the rhamnosyl transferases RhlB and RhlC. Deuterated sophorolipids were similarly produced using Candida bombicola and Candida apicola although in this case, no adaptation process was necessary. Up to 40 different sophorolipids were produced by these yeasts. However, unlike the rhamnolipids, use of D2O did not lead to any deuteration of the lipid chains, but direct incorporation into the lipid was achieved using d-isostearic acid. The results from these experiments show the feasibility of producing deuterated bioactive compounds from microorganisms coupled with the possibility of manipulating the pattern of labelling through judicious use of different deuterated substrates.  相似文献   

6.
The aim of present work was to study chemical structures and biological activities of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa MN1 isolated from oil-contaminated soil. The results of liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that total rhamnolipids (RLs) contained 16 rhamnolipid homologues. Di-lipid RLs containing C10-C10 moieties were by far the most predominant congeners among mono-rhamnose (53.29?%) and di-rhamnose (23.52?%) homologues. Mono-rhamnolipids form 68.35?% of the total congeners in the RLs. Two major fractions were revealed in the thin layer chromatogram of produced RLs which were then purified by column chromatography. The retardation factors (R f) of the two rhamnolipid purple spots were 0.71 for RL1 and 0.46 for RL2. LC-MS/MS analysis proved that RL1 was composed of mono-RLs and RL2 consisted of di-RLs. RL1 was more surface-active with the critical micelle concentration (CMC) value of 15?mg/L and the surface tension of 25 mN/m at CMC. The results of biological assay showed that RL1 is a more potent antibacterial agent than RL2. All methicillin-resistant Staphylococcus aureus (MRSA) strains were inhibited by RLs that were independent of their antibiotic susceptibility patterns. RLs remarkably enhanced the activity of oxacillin against MRSA strains and lowered the minimum inhibitory concentrations of oxacillin to the range of 3.12?C6.25???g/mL.  相似文献   

7.
A novel rhamnolipid biosurfactant-producing and Polycyclic Aromatic Hydrocarbon (PAH)-degrading bacterium Pseudomonas aeruginosa strain NY3 was isolated from petroleum-contaminated soil samples. Strain NY3 was characterized by its extraordinary capacity to produce structurally diverse rhamnolipids. A total of 25 rhamnolipid components and 37 different parent molecular ions, representing various metal ion adducts (Na+, 2Na+ and K+), were detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among these compounds are ten new rhamnolipids. In addition to its biosurfactant production, strain NY3 was shown to be capable of efficient degradation of PAHs as well as synergistic improvement in the degradation of high molecular weight PAHs by its biosurfactant. These findings have added novel members to the rhamnolipid group and expanded current knowledge regarding the diversity and productive capability of rhamnolipid biosurfactants from a single specific strain with variation of only one carbon source. Additionally, this paper lays the foundation for improvement in the yield of NY3BS and study of the degradation pathway(s) of PAHs in P. aeruginosa strain NY3.  相似文献   

8.
Pseudomonas aeruginosa F722 produces a biosurfactant (BS) during its degradation of carbon and hydrocarbon compounds. The culture conditions for upgrading the biosurfactant productivity were investigated. The concentration of the biosurfactant produced byP. aeruginosa F722 was 0.78 g/L in C-medium; however, this increased to 1.66 g/L in BS medium, which was experimentally adjusted to optimal conditions. NaNO2 was found to be most effective for microbial growth, with an O.D600nm of 1.18 for 0.1% NaNO2. Microbial growths, according to the O.D600nm were 2.53, 2.68, 2.89, and 2.87 for glucose, glycerol,n-C10, andn-C22, respectively. Clear zone diameters (cm), indicating biosurfactant activity, were 9.0, 8.8, 5.7, and 8.5 for glucose, glycerol,n-C10, andn-C22, respectively. Microbial growth was not consistent with the biosurfactant activity. The best biosurfactant activity was found with a C/N ratio of 20. Under optimal culture condition, the average surface tension decreased from 70 to 30 mN/m after 5 days. With aeration of 1.0 vvm, the biosurfactant produced increased to 1.94 g/L (up to 20%) compared to that of 1.66 g/L with no aeration. With aeration, the velocities of glucose degradation during both the log and stationary growth phases increased from 0.25 and 0.18 h−1 to 0.33 and 0.29 h−1, respectively, and the time for the culture to arrive at the maximum clear zone diameter became shorter, from 80 down to 60 h with no aeration.  相似文献   

9.
Pseudomonas nitroreducens MILB-8054A isolated from petroleum-contaminated soil, immobilized on calcium alginate beads, and under resting cell condition, produced biosurfactants. Immobilized cells gave a best yield of 5.6 g rhamnolipid l?1 using sucrose as carbon source. Time course study using resting cells showed that 2 % v/v of palm oil (preculture carbon source) and 10 % diesel (carbon source) gave the best rhamnolipid yield of 5.1 g l?1 at pH 8 and temperature of 30 °C. Carbon utilization by resting cells was compared with that of growing cells. The best biosurfactant recovery procedure was acetone extraction.  相似文献   

10.

Objectives

To improve rhamnolipid production and its potential application in removal of crude oil, the recombinant Pseudomonas aeruginosa strain DAB was constructed to enhance yield of rhamnolipids.

Results

Strain DAB had a higher yield of 17.3 g rhamnolipids l?1 in the removal process with crude oil as the sole carbon source than 10 g rhamnolipids l?1 of wild-type strain DN1, where 1% crude oil was degraded more than 95% after 14 days cultivation. These rhamnolipids reduced the surface tension of water from 72.92 to 26.15 mN m?1 with CMC of 90 mg l?1. The predominant rhamnolipid congeners were Rha–C10–C10 and Rha–Rha–C10–C10 detected by MALDI-TOF MS analysis with approx. 70% relative abundance, although a total of 21 rhamnolipid congeners were accumulated.

Conclusion

Increasing the copy number of rhlAB genes efficiently enhanced the production of rhamnolipids by the recombinant P. aeruginosa DAB and thus presents a promising application for the bioremediation process.
  相似文献   

11.
Eleven biosurfactant producing bacteria were isolated from different petroleum‐contaminated soil and sludge samples. Among these 11 isolates, two were identified as promising, as they reduced the surface tension of culture medium to values below 27 mN m?1. Besides biosurfactant production property, they exhibited good flocculating activity. Microbacterium sp. was identified as a new addition to the list of biosurfactant and bioflocculant‐producers. Optimization of various conditions for rhamnolipid production was carried out for one of the promising isolate, Pseudomonas aeruginosa BS‐161R. Bioglycerol (2.5%), as a cheap renewable carbon source, attained better rhamnolipid yield, while sodium nitrate appeared to be the preferable nitrogen source. The optimum carbon to nitrogen (C/N) and carbon to iron (C/Fe) ratios achieved were 15 and 28,350, respectively, which favored rhamnolipid production. Physical parameters like pH, temperature, and agitation speed also affected the production of rhamnolipids. Results from shake flask optimization indicated that the concentration of bioglycerol, sodium nitrate, and iron were the most significant factors affecting rhamnolipid production, which was supported by the results of central composite rotatable design. After optimization of the culture conditions, the production of rhamnolipids increased by ninefold from 0.369 to 3.312 g L?1. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

12.
We recently reported that a strain of the non-pathogenic bacterial species Pseudomonas chlororaphis was capable of producing the biosurfactant molecule, rhamnolipids. Previous to this report the organisms known to produce rhamnolipids were almost exclusively pathogens. The newly described P. chlororaphis strain produced rhamnolipids at room temperature in static minimal media, as opposed to previous reports of rhamnolipid production which occurred at elevated temperatures with mechanical agitation. The non-pathogenic nature and energy conserving production conditions make the P. chlororaphis strain an attractive candidate for commercial rhamnolipid production. However, little characterization of molecular/biochemical processes in P. chlororaphis have been reported. In order to achieve a greater understanding of the process by which P. chlororaphis produces rhamnolipids, a survey of proteins differentially expressed during rhamnolipid production was performed. Separation and measurement of the bacteria’s proteome was achieved using Beckman Coulter’s Proteome Lab PF2D packed column-based protein fractionation system. Statistical analysis of the data identified differentially expressed proteins and known orthologues of those proteins were identified using an AB 4700 Proteomics Analyzer mass spectrometer system. A list of proteins differentially expressed by P. chlororaphis strain NRRL B-30761 during rhamnolipid production was generated, and confirmed through a repetition of the entire separation process.Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

13.
Biosurfactant producing bacterium was identified as Pseudoxanthomonas sp. PNK-04 based on morphological, physiological, biochemical tests and 16S rRNA gene sequencing. This strain was screened for biosurfactant production using different carbon sources by measuring the surface tension of the medium at different time intervals, and hemolytic activity. The produced biosurfactant was found to be a rhamnolipid based on the formation of dark blue haloes around the colonies in CTAB–methylene blue agar plates and the content of rhamnose sugar. The rhamnolipids produced by this bacterium were found to contain mono- and dirhamnose units linked to β-hydroxy alkonic acids containing 8–12 carbon atoms. This biosurfactant has high emulsifying activity when compared to chemical surfactants such as Tween-80 and Triton X-100 with respect to aliphatic and aromatic hydrocarbons. Further, the biosurfactant stimulates the degradation of 2-chlorobenzoic acid, 3-chlorobenzoic acid and 1-methyl naphthalene by Pseudoxanthomonas sp. PNK-04 probably by aiding in the uptake and increasing the solubility.  相似文献   

14.
The algicidal activity of the rhamnolipid biosurfactants (the mixture of Rha-Rha-C10-C10 and Rha-C10-C10) produced by Pseudomonas aeruginosa was investigated in the present paper. The results indicated that the biosurfactants had potential algicidal effects on the harmful algal bloom (HAB) species, Heterosigma akashiwo. The growth of H. akashiwo was strongly inhibited in medium containing rhamnolipids (0.4–3.0 mg L−1); moreover, the rhamnolipids showed strong lytic activity toward H. akashiwo at higher concentrations (≥4.0 mg L−1). In addition, the effects of the rhamnolipids on the growth of Gymnodinium sp. and Prorocentrum dentatum, another two kinds of HAB species, were also studied. Compared with the dramatic algicidal effect on H. akashiwo, the cells of P. dentatum were inhibited or lysed at higher concentrations (1.0–10.0 mg L−1), while the cells of Gymnodinium sp. were not suppressed with the same treatment, indicating the rhamnolipids had the potential for the selective control of HABs.Morphometric analysis at ultrastructural level by transmission electron micrographs indicated that the extent of ultrastructural damage of the alga was severe at high concentrations of rhamnolipids and during extended periods of contact. The first response occurred in the plasma membrane which partly disintegrated. The lack of membrane facilitated the rhamnolipid biosurfactants into the cells and allowed damage to other organelles, which resulted in the injury of chloroplast, vacuolization of mitochondria and deformation of the cristae, disruption of nuclear membrane and condensation of chromatin in nucleus, suggesting that the lytic activity of rhamnolipids was mainly due to their powerful surfactivity and their tendency to cohere on the surface of phospholipids bimolecular layer of the cells and further destroyed the layers, and then the structure of quasi-membrane configurations inside the cells was disintegrated, following by the irreversible damage to the ultrastructure and the loss of the function of organelles, consequently leading the cells to lyse.  相似文献   

15.
A biosurfactant-producing strain S6 was isolated from oil-containing wastewater and identified as Pseudomonas aeruginosa based on physiological and biochemical tests together with 16S rDNA sequence analysis. Thin layer chromatography (TLC) and high-performance liquid chromatography electrospray ionization mass spectra (HPLC-ESI-MS) worked together to reveal that the strain S6 produced rhamnolipid biosurfactant. Mass spectrometry confirmed the presence of some major components in the rhamnolipid surfactant showing m/z of 675.8, 529.6, 503.3 and 475.4, which corresponded to RhaRhaC10C12:1, RhaC12:1C10, RhaC10C10 and RhaC8C10, respectively. The biosurfactant produced by strain S6 had the ability to decrease the surface tension of water from 72 to 33.9 mN m?1, with the critical micelle concentration (CMC) of 50 mg L?1. Emulsification experiment indicated that this biosurfactant effectively emulsified the crude petroleum and the measurements of surface tension demonstrated that the biosurfactant possessed stable surface activity at variable ranges of pH and salinity. The biosurfactant also exhibited good performance of phenanthrene solubilization with about 23 times higher solubility of phenanthrene in water than the control. Thus, this biosurfactant may have a potential for application in bioremediation of crude oil contamination.  相似文献   

16.

Background

Rhamnolipids are biosurfactants featuring surface-active properties that render them suitable for a broad range of industrial applications. These properties include their emulsification and foaming capacity, critical micelle concentration, and ability to lower surface tension. Further, aspects like biocompatibility and environmental friendliness are becoming increasingly important. Rhamnolipids are mainly produced by pathogenic bacteria like Pseudomonas aeruginosa. We previously designed and constructed a recombinant Pseudomonas putida KT2440, which synthesizes rhamnolipids by decoupling production from host-intrinsic regulations and cell growth.

Results

Here, the molecular structure of the rhamnolipids, i.e., different congeners produced by engineered P. putida are reported. Natural rhamnolipid producers can synthesize mono- and di-rhamnolipids, containing one or two rhamnose molecules, respectively. Of each type of rhamnolipid four main congeners are produced, deviating in the chain lengths of the β-hydroxy-fatty acids. The resulting eight main rhamnolipid congeners with variable numbers of hydrophobic/hydrophilic residues and their mixtures feature different physico-chemical properties that might lead to diverse applications. We engineered a microbial cell factory to specifically produce three different biosurfactant mixtures: a mixture of di- and mono-rhamnolipids, mono-rhamnolipids only, and hydroxyalkanoyloxy alkanoates, the precursors of rhamnolipid synthesis, consisting only of β-hydroxy-fatty acids. To support the possibility of second generation biosurfactant production with our engineered microbial cell factory, we demonstrate rhamnolipid production from sustainable carbon sources, including glycerol and xylose. A simple purification procedure resulted in biosurfactants with purities of up to 90%. Finally, through determination of properties specific for surface active compounds, we were able to show that the different mixtures indeed feature different physico-chemical characteristics.

Conclusions

The approach demonstrated here is a first step towards the production of designer biosurfactants, tailor-made for specific applications by purposely adjusting the congener composition of the mixtures. Not only were we able to genetically engineer our cell factory to produce specific biosurfactant mixtures, but we also showed that the products are suited for different applications. These designer biosurfactants can be produced as part of a biorefinery from second generation carbon sources such as xylose.
  相似文献   

17.
A microbial surfactant (biosurfactant) was investigated for its potential to enhance bioavailability and, hence, the biodegradation of octadecane. The rhamnolipid biosurfactant used in this study was extracted from culture supernatants after growth of Pseudomonas aeruginosa ATCC 9027 in phosphate-limited proteose peptone-glucose-ammonium salts medium. Dispersion of octadecane in aqueous solutions was dramatically enhanced by 300 mg of the rhamnolipid biosurfactant per liter, increasing by a factor of more than 4 orders of magnitude, from 0.009 to > 250 mg/liter. The relative enhancement of octadecane dispersion was much greater at low rhamnolipid concentrations than at high concentrations. Rhamnolipid-enhanced octadecane dispersion was found to be dependent on pH and shaking speed. Biodegradation experiments done with an initial octadecane concentration of 1,500 mg/liter showed that 20% of the octadecane was mineralized in 84 h in the presence of 300 mg of rhamnolipid per liter, compared with only 5% octadecane mineralization when no surfactant was present. These results indicate that rhamnolipids may have potential for facilitating the bioremediation of sites contaminated with hydrocarbons having limited water solubility.  相似文献   

18.
Classic methods of biosurfactant separation are difficult and require large amounts of organic solvents, thus generate high amounts of waste. This work presents and discusses in detail an original procedure to separate rhamnolipid from fermentation broth using high performance membrane techniques. Due to the unique properties of surface active agents, such as capability of forming aggregates above the critical micelle concentration, it is possible to easily purify the biosurfactant with high efficacy using inexpensive and commonly used membranes. In this article, two-stage ultrafiltration is proposed as a method for separating and purifying rhamnolipid from the culture medium. The obtained purified rhamnolipid solution was capable of reducing surface tension of water down to 28.6 mN/m at critical micelle concentration of 40 mg/l. Separation of rhamnolipid was confirmed by HPLC; three types of rhamnolipids were identified (RL1, RL2, RL4), with considerable predominance of RL2.  相似文献   

19.
The main byproduct of biodiesel production is glycerol. Here, crude glycerol – byproduct of biodiesel industry – was evaluated as sole carbon source in rhamnolipids production by Pseudomonas aeruginosa. The optimal concentration of crude glycerol and sodium nitrate was assessed using response surface methodology, resulting in about 40–50 mg/L.h of rhamnolipids, which was about four times higher than previously reported in the literature. Fermentation parameters were similar to those observed with commercial glycerol as sole carbon source. The optimized medium was suitable for production using simple (22.9 mg/L.h) and fed-batch (32.4 mg/L.h) fermentation in oxygen-controlled bioreactor without foaming formation. Composition and relative abundance of rhamnolipid congeners showed that crude glycerol had little effect on metabolic pathways involved in their production. CMC values were approximately 130 mg/L and 230–260 mg/L for rhamnolipids from crude and commercial glycerol fermentation, respectively, which were about 2–6 times lower than CMC values of synthetic surfactants.  相似文献   

20.
Rhamnolipids have multiple potential applications as “green” surfactants for industry, remediation, and medicine. As a result, they have been intensively investigated to add to our understanding of their biosynthesis and improve yields. Several studies have noted that the addition of a fatty acid cosubstrate increases rhamnolipid yields, but a metabolic explanation has not been offered, partly because biosynthesis studies to date have used sugar or sugar derivatives as the carbon source. The objective of this study was to investigate the role of fatty acid cosubstrates in improving rhamnolipid biosynthesis. A combination of stable isotope tracing and gene expression assays was used to identify lipid precursors and potential lipid metabolic pathways used in rhamnolipid synthesis when fatty acid cosubstrates are present. To this end, we compared the rhamnolipids produced and their yields using either glucose alone or glucose and octadecanoic acid-d35 as cosubstrates. Using a combination of sugar and fatty acids, the rhamnolipid yield was significantly higher (i.e., doubled) than when glucose was used alone. Two patterns of deuterium incorporation (either 1 or 15 deuterium atoms) in a single Rha-C10 lipid chain were observed for octadecanoic acid-d35 treatment, indicating that in the presence of a fatty acid cosubstrate, both de novo fatty acid synthesis and β-oxidation are used to provide lipid precursors for rhamnolipids. Gene expression assays showed a 200- to 600-fold increase in the expression of rhlA and rhlB rhamnolipid biosynthesis genes and a more modest increase of 3- to 4-fold of the fadA β-oxidation pathway gene when octadecanoic acid was present. Taken together, these results suggest that the simultaneous use of de novo fatty acid synthesis and β-oxidation pathways allows for higher production of lipid precursors, resulting in increased rhamnolipid yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号