首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Red‐cockaded woodpeckers (RCW; Dryobates borealis) declined after human activities reduced their fire‐maintained pine ecosystem to <3% of its historical range in the southeastern United States and degraded remaining habitat. An estimated 1.6 million RCW cooperative breeding groups declined to about 3,500 groups with no more than 10,000 birds by 1978. Management has increased RCW population abundances since they were at their lowest in the 1990s. However, no range‐wide study has been undertaken since then to investigate the impacts of this massive bottleneck or infer the effects of conservation management and recent demographic recoveries. We used mitochondrial DNA sequences (mtDNA) and nine nuclear microsatellite loci to determine if range‐wide demographic declines resulted in changes to genetic structure and diversity in RCW by comparing samples collected before 1970 (mtDNA data only), between 1992 and 1995 (mtDNA and microsatellites), and between 2010 and 2014 (mtDNA and microsatellites). We show that genetic diversity has been lost as detected by a reduction in the number of mitochondrial haplotypes. This reduction was apparent in comparisons of pre‐1970 mtDNA data with data from the 1992–1995 and 2010–2014 time points, with no change between the latter two time points in mtDNA and microsatellite analyses. The mtDNA data also revealed increases in range‐wide genetic differentiation, with a genetically panmictic population present throughout the southeastern United States in the pre‐1970s data and subsequent development of genetic structure that has remained unchanged since the 1990s. Genetic structure was also uncovered with the microsatellite data, which like the mtDNA data showed little change between the 1992–1995 and 2010–2014 data sets. Temporal haplotype networks revealed a consistent, star‐like phylogeny, suggesting that despite the overall loss of haplotypes, no phylogenetically distinct mtDNA lineages were lost when the population declined. Our results may suggest that management during the last two decades has prevented additional losses of genetic diversity.  相似文献   

2.
Bald eagles (Haliaeetus leucocephalus) are currently protected in the United States under the Bald and Golden Eagle Protection Act of 1940 and Migratory Bird Treaty Act of 1918. Given these protections and the increasing development of wind energy throughout the United States, it is important for regulators and the wind industry to understand the risk of bald eagle collisions with wind turbines. Prior probability distributions for eagle exposure rates and collision rates have been developed for golden eagles (Aquila chrysaetos) by the United States Fish and Wildlife Service (USFWS). Given similar information has not been available for bald eagles, the current recommendation by the USFWS is to use the prior probability distributions developed using data collected on golden eagles to predict take for bald eagles. But some evidence suggests that bald and golden eagles may be at different risk for collision with wind turbines and the prior probability distributions developed for golden eagles may not be appropriate for bald eagles. We developed prior probability distributions using data collected at MidAmerican Energy Company's operating wind energy facilities in Iowa, USA, from December 2014 to March 2017 for bald eagle exposure rates and collision rates. The prior probability distribution for collision rate developed for bald eagles has a lower mean collision rate and less variability relative to that developed for golden eagles. We determined that the prior probability distributions specific to bald eagles from these operating facilities are a better starting point for predicting take for bald eagles at operating wind energy facilities in an agricultural landscape than those developed for golden eagles. © 2021 The Wildlife Society.  相似文献   

3.
Cerulean Warblers (Setophaga cerulea) are a species with declining populations that exhibit regional variation in habitat selection and demographic rates. The Ozark region of the south‐central United States likely provides important habitat for Cerulean Warblers, but little is known about their breeding biology in that region. We studied Cerulean Warblers in riparian forests of the Ozarks of Arkansas from 2018 to 2020. We assessed multi‐scale habitat selection for vegetative and topographic features, documented their breeding biology, estimated within‐season and annual apparent survival, and estimated territory sizes. We found that Cerulean Warblers selected riparian habitat characterized by large‐diameter trees across all spatial scales. Contrary to the results of previous studies, males appeared to avoid white oaks (Quercus spp., Section Quercus) at the territory scale, but this avoidance may reflect an underlying preference for riparian habitat. Our logistic‐exposure estimate of nest survival (0.32; 85% confidence interval: 0.21–0.46) was similar to the median of estimates reported in previous studies. Our results indicate that maintaining riparian forests with large trees is important to provide suitable habitat for Cerulean Warblers in the Ozark region. Because of similarities in habitat selection among regions, some management practices from other populations, including retaining large trees and promoting a heterogeneous canopy structure, may be useful for managing for Cerulean Warblers in riparian areas of the Ozarks. However, selection for topography and tree species by Cerulean Warblers in our study also suggests that region‐specific management strategies will be beneficial. Finally, our demographic rate estimates for this population should prove valuable in future full‐annual‐cycle population modeling efforts.  相似文献   

4.
Effectively managing take of wildlife resulting from human activities poses a major challenge for applied conservation. Demographic data essential to decisions regarding take are often expensive to collect and are either not available or based on limited studies for many species. Therefore, modeling approaches that efficiently integrate available information are important to improving the scientific basis for sustainable take thresholds. We used the prescribed take level (PTL) framework to estimate allowable take for bald eagles (Haliaeetus leucocephalus) in the conterminous United States. We developed an integrated population model (IPM) that incorporates multiple sources of information and then use the model output as the scientific basis for components of the PTL framework. Our IPM is structured to identify key parameters needed for the PTL and to quantify uncertainties in those parameters at the scale at which the United States Fish and Wildlife Service manages take. Our IPM indicated that mean survival of birds >1 year old was high and precise (0.91, 95% CI = 0.90–0.92), whereas mean survival of first-year eagles was lower and more variable (0.69, 95% CI = 0.62–0.78). We assumed that density dependence influenced recruitment by affecting the probability of breeding, which was highly imprecise and estimated to have declined from approximately 0.988 (95% CI = 0.985–0.993) to 0.66 (95% CI = 0.34–0.99) between 1994 and 2018. We sampled values from the posterior distributions of the IPM for use in the PTL and estimated that allowable take (e.g., permitted take for energy development, incidental collisions with human made structures, or removal of nests for development) ranged from approximately 12,000 to 20,000 individual eagles depending on risk tolerance and form of density dependence at the scale of the conterminous United States excluding the Southwest. Model-based thresholds for allowable take can be inaccurate if the assumptions of the underlying framework are not met, if the influence of permitted take is under-estimated, or if undetected population declines occur from other sources. Continued monitoring and use of the IPM and PTL frameworks to identify key uncertainties in bald eagle population dynamics and management of allowable take can mitigate this potential bias, especially where improved information could reduce the risk of permitting non-sustainable take.  相似文献   

5.
ABSTRACT Buff-breasted flycatchers (Empidonax fulvifrons) are rare in the United States due to a >90% reduction in breeding distribution. Previous authors have implicated fire suppression in montane woodlands as the underlying cause of population declines and range contraction. We examined the effect of fire suppression on population declines of buff-breasted flycatchers by comparing both presence and abundance of flycatchers in areas with and without evidence of recent fire in 9 mountain ranges in southern Arizona, USA. We also replicated previous survey efforts conducted in 1980–1983 and 1995–1996 to determine population trajectory. Twenty-two (63%) of 35 survey routes had negative trends, and the average slope of the declines was −0.105 (10.5% annual decline). The number of buff-breasted flycatchers detected at a survey point was positively associated with severity of recent fires, and flycatchers were particularly associated with areas that had evidence of high-severity surface fire. However, we failed to detect flycatchers in 5 canyons that recently burned, which suggests one or more of the following: 1) fire suppression is not the cause (or is not the main cause) of population decline and range contraction, 2) flycatchers do not colonize burned areas until >10 years postfire, 3) low- or medium-severity fires are insufficient to make fire-suppressed areas suitable for breeding flycatchers, or 4) local recruitment and immigration are insufficient to allow buff-breasted flycatchers to expand into recent firerestored areas. Continued suppression of high-severity forest fires in the southwestern United States may eventually result in the extirpation of buff-breasted flycatchers. A landscape that includes a mosaic of recently burned and unburned forest patches appears to be most suitable for buff-breasted flycatchers. Prescribed burning is unlikely to help restore flycatcher populations unless burns are of high severity, conditions typically avoided during prescribed burns for safety reasons.  相似文献   

6.
Overabundant populations of feral equids are negatively affecting rangelands in the western United States. To better manage these populations, robust estimates of abundance and demographic rates and cost-effective methods of reducing abundance are necessary. From August 2015 to April 2017, we estimated the abundance of feral burros (Equus asinus) at the Fort Irwin National Training Center (NTC; California, USA) using a double-observer-sightability aerial survey method; captured, radio-collared, and inoculated female burros with porcine zona pellucida (PZP), an immunocontraceptive control agent; estimated female demographic rates; and used matrix population models to simulate how changes in demographic and PZP delivery rates would influence burro abundance. We estimated there were 690 (95% CI = 618–752) feral burros within the surveyed area, but these are part of a much larger population that is not geographically isolated from those in the survey area. Sighting probabilities ranged from 0.19–0.98 and were most strongly influenced by distance from observer and group size. We estimated age-specific demographic rates at the NTC and compiled mean rates across burro populations in arid environments from the literature. Mean fecundity varied from 0.17 to 0.58 foals/adult female with younger females having lower fecundity. Mean survival was 0.90 for foals, 0.98 for yearlings, and 0.96 for adults. The PZP vaccine treatment strategies that suppressed fertility for up to 10 years predicted that burro abundance would be reduced by 67–88% after 15 years (compared with no treatment), but none of these strategies resulted in population extirpation. Population growth rates shifted from increasing to decreasing at adult survival rates below 0.84 and the population was predicted to become extirpated when adult survival declined to <0.60. In the absence of other methods to reduce burro numbers, our findings indicate that current formulations of PZP immunocontraception, which require multiple doses, would be inadequate for controlling population growth rates at the NTC. Our fieldwork also highlighted the difficulty of administering PZP vaccination to large, free-ranging animals. Development of longer-term fertility reduction agents or more efficient vaccine delivery techniques would likely improve the efficacy of fertility control for overabundant ungulate populations. Lack of geographic closure (physical barriers to migration) further complicated efforts to reduce burro numbers. © 2021 The Wildlife Society.  相似文献   

7.
Population viability analyses are useful tools to predict abundance and extinction risk for imperiled species. In southeastern North America, the federally threatened gopher tortoise (Gopherus polyphemus) is a keystone species in the diverse and imperiled longleaf pine (Pinus palustris) ecosystem, and researchers have suggested that tortoise populations are declining and characterized by high extinction risk. We report results from a 30-year demographic study of gopher tortoises in southern Alabama (1991–2020), where 3 populations have been stable and 3 others have declined. To better understand the demographic vital rates associated with stable and declining tortoise populations, we used a multi-state hierarchical mark-recapture model to estimate sex- and stage-specific patterns of demographic vital rates at each population. We then built a predictive population model to project population dynamics and evaluate extinction risk in a population viability context. Population structure did not change significantly in stable populations, but juveniles became less abundant in declining populations over 30 years. Apparent survival varied by age, sex, and site; adults had higher survival than juveniles, but female survival was substantially lower in declining populations than in stable ones. Using simulations, we predicted that stable populations with high female survival would persist over the next 100 years but sites with lower female survival would decline, become male-biased, and be at high risk of extirpation. Stable populations were most sensitive to changes in apparent survival of adult females. Because local populations varied greatly in vital rates, our analysis improves upon previous demographic models for northern populations of gopher tortoises by accounting for population-level variation in demographic patterns and, counter to previous model predictions, suggests that small tortoise populations can persist when habitat is managed effectively. © 2021 The Wildlife Society.  相似文献   

8.
While information about a species’ demography is interesting in its own right, it is an absolute necessity for certain types of population genetic analyses. The most widely used methods to infer a species’ demographic history do not take intralocus recombination or recent divergence into account, and some methods take several weeks to converge. Here, we present Jaatha, a new composite‐likelihood method that does incorporate recent divergence and is also applicable when intralocus recombination rates are high. This new method estimates four demographic parameters. The accuracy of Jaatha is comparable to that of other currently available methods, although it is superior under certain conditions, especially when divergence is very recent. As a proof of concept, we apply this new method to estimate demographic parameters for two closely related wild tomato species, Solanum chilense and S. peruvianum. Our results indicate that these species likely diverged 1.44·N generations ago, where N is the effective population size of S. chilense, and that some introgression between these species continued after the divergence process initiated. Furthermore, S. peruvianum likely experienced a population expansion following speciation.  相似文献   

9.
Unsanctioned travel routes through alpine ecosystems can influence water drainage patterns, cause sedimentation of streams, and erode soils. These disturbed areas can take decades to revegetate. In 2012, a volunteer‐driven project restored a 854‐m section of unsanctioned road along the Continental Divide in Colorado, United States. The restored area was seeded with three native grass species and then treated by installing erosion matting or adding supplemental rock cover. Four years later, results suggest that the seeding along with the use of erosion matting or supplemental rock can enhance revegetation. Matting appeared to accumulate litter, and this effect might have contributed to enhanced moisture retention. Treated areas contained 40% of the vegetation cover found on adjacent controls, which averaged 69% vascular plant absolute cover. Recovery on both treatments was markedly higher than published estimates of passive revegetation of disturbed areas measured elsewhere suggesting seeding with added cover or protection led to substantial vegetative cover after 4 years. Two of the 3 seeded grass species, Trisetum spicatum and Poa alpina, dominated the restored plots, composing 81.7% of relative vegetation cover on matting sites and 73.4% of relative cover on rock‐supplemented areas. Presumably due to its preference for moister sites, Deschampsia cespitosa had low establishment rates. Volunteer species, that is species that appeared on their own, contributed 6.3% to the absolute vegetation cover of matting and rock sites, and species such as Minuartia biflora, Minuartia obtusiloba, Poa glauca, and Festuca brachyphylla should be considered for use in future restorations.  相似文献   

10.
Species associated with early successional habitats have experienced dramatic declines in the eastern United States as a result of land use changes and human disruption of natural disturbance regimes. Consequently, active management is required to create early successional habitat and promote plant and animal communities that depend on periodic forest disturbance. Ruffed grouse (Bonasa umbellus) depend on recently disturbed forest habitat, and have experienced dramatic declines over the last half-century. Although ruffed grouse are extensively studied, little effort has been made to link population dynamics with habitat management at landscape scales. We used stochastic, spatially explicit population models that combined landscape conditions derived from a Geographic Information System with demographic data, and applied the model to a declining ruffed grouse population in Rhode Island, USA. We identified vital rates that influence ruffed grouse population dynamics using baseline models constructed with current demographic rates and landscape conditions, and assessed the effect of landscape-scale forest management alternatives on population persistence by running multiple management simulations. Baseline models typically predicted population decline, and we concluded that vital rates (survival and recruitment) had a greater influence on population persistence than did dispersal capability, carrying capacity, or initial population size. Management simulations predicted greater population persistence under a scenario where high-quality habitat was provided in fewer large blocks as opposed to many small blocks, and the rate at which we allowed ruffed grouse to colonize newly created habitat had a substantial impact on management success. Populations of ruffed grouse in the eastern United States are likely to continue to decline given current disturbance regimes, and our work provides a link between ruffed grouse demography and landscape-scale habitat conditions to support management decisions. © 2011 The Wildlife Society.  相似文献   

11.
Abstract: Woodpecker damage to homes and buildings is a widespread and locally severe problem in vertebrate pest control. Woodpeckers may cause an average of $300 (United States currency) in damage to affected houses, resulting in millions of dollars of property damage annually in the United States. However, there is no known, practical, consistently effective technique to prevent woodpecker damage. We tested the effectiveness of 6 woodpecker control techniques available commercially, used anecdotally by homeowners, and recommended by wildlife specialists in different Cooperative Extension publications. These deterrents included Prowler Owls, Irri-TapeTM, the Bird Pro Sound System, Scare-Eyes (all manufactured by Bird-X, Inc., Chicago, IL), suet feeders, and roost boxes. We conducted our study in late spring and autumn during August 2003 through December 2004 in the Town of Ithaca, Tompkins County, New York, USA. We evaluated 16 homes with active woodpecker damage, and visited each house about 3 times per week to determine a rate of new woodpecker holes per day. We then placed a deterrent at the house and monitored the rate of new holes per day. Although none of the deterrents that we tested was completely successful in keeping woodpeckers from creating new holes in house siding, homes where Irri-Tape was installed exhibited the greatest reduction in woodpecker damage. Avoiding earth-tone stain and paint colors may be the best long-term solutions for preventing woodpecker damage in wooded areas. Homeowners should avoid using natural-colored stains, as brightly painted houses (white, light blue, pastels) were less likely to attract woodpeckers.  相似文献   

12.
Sandhill cranes (Antigone canadensis) were broadly extirpated from much of their historical range in North America at the beginning of the twentieth century. Various conservation-related legislation, such as the United States Migratory Bird Treaty Act, have assisted with population recovery. The eastern population of sandhill cranes has been growing rapidly since the 1980s and is thought to have expanded its geographic range to Quebec, Canada. Understanding the colonization and habitat use by the species in previously unoccupied breeding areas is necessary to develop and apply management measures. Using a dynamic occupancy modeling approach, we investigated the recent colonization and extirpation patterns of sandhill cranes in Quebec from 2004–2019. We combined data from 3 data sets (helicopter surveys, breeding bird atlas surveys, and eBird) to increase the spatial coverage and the number of species occurrence records while accounting for imperfect detection probability. Detection probability was highest for the helicopter survey (0.70), whereas the 2 other data sets had relatively low detection levels (0.10–0.26). Based on a simulation study, we found that excluding the eBird data from the analysis produced more biased estimates than excluding the atlas and helicopter survey data sets. Throughout the study, sandhill cranes seemed to have completed their colonization of western Quebec and only recently started to nest in eastern areas. Initial occupancy increased with wetland cover and colonization probability increased weakly with the cover of agricultural areas, suggesting that in our study area sandhill cranes rely essentially on natural wetlands during the breeding season.  相似文献   

13.
Changes in demographic rates underpin changes in population size, and understanding demographic rates can greatly aid the design and development of strategies to maintain populations in the face of environmental changes. However, acquiring estimates of demographic parameters at relevant spatial scales is difficult. Measures of annual survival rates can be particularly challenging to obtain because large‐scale, long‐term tracking of individuals is difficult and the resulting data contain many inherent biases. In recent years, advances in both tracking and analytical techniques have meant that, for some taxonomic groups, sufficient numbers of survival estimates are available to allow variation within and among species to be explored. Here we review published estimates of annual adult survival rates in shorebird species across the globe, and construct models to explore the phylogenetic, geographical, seasonal and sex‐based variation in survival rates. Models of 295 survival estimates from 56 species show that survival rates calculated from recoveries of dead individuals or from return rates of marked individuals are significantly lower than estimates from mark–recapture models. Survival rates also vary across flyways, largely as a consequence of differences in the genera that have been studied and the analytical methods used, with published estimates from the Americas and from smaller shorebirds (Actitis, Calidris and Charadrius spp.) tending to be underestimated. By incorporating the analytical method used to generate each estimate within a mixed model framework, we provide method‐corrected species‐specific and genus‐specific adult annual survival estimates for 52 species of 15 genera.  相似文献   

14.
Understanding how land cover and potential competition with invasive species shape patterns of occupancy, extirpation, and colonization of native species across a landscape can help target management for declining native populations. Mourning dove (Zenaida macroura) populations have declined throughout the United States from 1965–2015. The expansion of the Eurasian collared-dove (Streptopelia decaocto), an introduced species with similar food preferences, may further threaten mourning dove populations. We analyzed data from 2009–2016 from a large-scale monitoring program in the Western Great Plains of the United States in a 2-species occupancy model to assess the effects of collared-doves on mourning dove distributions, while accounting for imperfect detection and variation in land cover across the landscape. Mourning dove occupancy was stable or increasing across our study area, and despite overlap in resource use and co-occurrence between mourning doves and Eurasian collared-doves, we found no evidence that collared-doves are extirpating mourning doves from preferred habitat during the breeding season. © 2020 The Wildlife Society.  相似文献   

15.
The dominant criterion to determine when an introduced species is established relies on the maintenance of a self-sustaining population in the area of introduction, i.e. on the viability of the population from a demographic perspective. There is however a paucity of demographic studies on introduced species, and establishment success is thus generally determined by expert opinion without undertaking population viability analyses (PVAs). By means of an intensive five year capture-recapture monitoring program (involving >12,000 marked individuals) we studied the demography of five introduced passerine bird species in southern Spain which are established and have undergone a fast expansion over the last decades. We obtained useful estimates of demographic parameters (survival and reproduction) for one colonial species (Ploceus melanocephalus), confirming the long-term viability of its local population through PVAs. However, extremely low recapture rates prevented the estimation of survival parameters and population growth rates for widely distributed species with low local densities (Estrilda troglodytes and Amandava amandava) but also for highly abundant yet non-colonial species (Estrilda astrild and Euplectes afer). Therefore, determining the establishment success of introduced passerine species by demographic criteria alone may often be troublesome even when devoting much effort to field-work. Alternative quantitative methodologies such as the analysis of spatio-temporal species distributions complemented with expert opinion deserve thus their role in the assessment of establishment success of introduced species when estimates of demographic parameters are difficult to obtain, as is generally the case for non-colonial, highly mobile passerines.  相似文献   

16.
1. The monarch has undergone considerable population declines over the past decade, and the governments of Mexico, Canada, and the United States have agreed to work together to conserve the species. 2. Given limited resources, understanding where to focus conservation action is key for widespread species like monarchs. To support planning for continental‐scale monarch habitat restoration, we address the question of where restoration efforts are likely to have the largest impacts on monarch butterfly (Danaus plexippus Linn.) population growth rates. 3. We present a spatially explicit demographic model simulating the multi‐generational annual cycle of the eastern monarch population, and use the model to examine management scenarios, some of which focus on particular regions of North America. 4. Improving the monarch habitat in the north central or southern parts of the monarch range yields a slightly greater increase in the population growth rate than restoration in other regions. However, combining restoration efforts across multiple regions yields population growth rates above 1 with smaller simulated improvements in habitat per region than single‐region strategies. 5. S ynthesis and applications: These findings suggest that conservation investment in projects across the full monarch range will be more effective than focusing on one or a few regions, and will require international cooperation across many land use categories.  相似文献   

17.
Decisions affecting wildlife management and conservation policy of imperiled species are often aided by population models. Reliable population models require accurate estimates of vital rates and an understanding of how vital rates vary geographically. The eastern massasauga (Sistrurus catenatus catenatus) is a rattlesnake species found in the Great Lakes region of North America. Populations of the eastern massasauga are fragmented and only a few areas harbor multiple, sizable populations. Eastern massasauga research has typically focused on single populations or local metapopulations but results suggest that demographic parameters vary geographically. We used 21 radiotelemetry datasets comprising 499 telemetered snakes from 16 distinct locations throughout the range of the eastern massasauga to characterize geographic patterns of adult survival using the known-fate model in Program MARK. Annual adult survival ranged from 0.35 to 0.95 (mean = 0.67) and increased along a southwest to northeast geographic axis. Further analysis of 6 datasets indicated no consistent difference in survival between males and females. Our results provide a better understanding of the relationship between survivorship and geography for the eastern massasauga and suggest that such variation should be incorporated into population models as well as local and regional management plans. © 2012 The Wildlife Society.  相似文献   

18.
Assessments of the status of endangered species have focused on population sizes, often without knowledge of demographic and behavioral processes underlying population recovery. We analyzed demographic data from a 28-year study of a critically endangered primate, the northern muriqui, to investigate possible changes in demographic rates as this population recovered from near extirpation. As the population increased from 60 to nearly 300 individuals, its growth rate declined due to increased mortality and male-biased birth sex ratios; the increased mortality was not uniform across ages and sexes, and there has been a recent increase in mortality of prime-aged males. If not for a concurrent increase in fertility rates, the population would have stabilized at 200 individuals instead of continuing to grow. The unexpected increase in fertility rates and in adult male mortality can be attributed to the muriquis’ expansion of their habitat by spending more time on the ground. The demographic consequences of this behavioral shift must be incorporated into management tactics for this population and emphasize the importance of understanding demographic rates in the recovery of endangered species.  相似文献   

19.
Species’ distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species’ climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long‐term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long‐term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species’ climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species‐interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the need to measure demographic responses to changing climate.  相似文献   

20.
Double-crested cormorants (Phalacrocorax auritus) recovered from a demographic bottleneck so well that they are now considered a nuisance species at breeding and wintering grounds across the United States and Canada. Management of this species could be improved by refining genetic population boundaries and assigning individuals to their natal population. Further, recent radio-telemetry data suggest the existence of Interior and Atlantic migratory flyways, which could reduce gene flow and result in substantial genetic isolation. In this study, we used 1,784 individuals collected across the eastern United States, a large panel of microsatellite markers developed for this species, and individuals banded as chicks and recaptured as adults to explore the effects of migratory flyways on population structure, quantify the genetic effects of demographic bottlenecks, and determine whether individuals could be assigned to their natal population based on genotype. We found evidence for genetic population division only along migratory flyways, no evidence of genetic bottlenecks, and mixed effectiveness of assignment tests. Our population structure findings suggest that gene flow is high across large scales; for example, individuals from New York, Minnesota, and Alabama are all in panmixia. We also found that traditional subspecies ranges may not be valid because >1 subspecies was present in single genetic populations. The lack of evidence for genetic bottlenecks also likely underscores the vagility of this species, suggesting that even during demographic bottlenecks, populations were not isolated from allelic exchange. Finally, the failure of assignment tests to consistently perform is likely due in part to imperfect a priori sampling of Atlantic and Interior chicks and the high vagility of adults. We conclude that the demographic bottleneck is not likely to have reduced genetic diversity, and that assignment tests remain unreliable for this species. We recommend double-crested cormorants be managed by flyway. Further development of genomic resources in this species could improve population subdivision resolution, improve assignment tests, and reveal further information on demographic histories. © 2020 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号