首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although sleep restriction is associated with decrements in daytime alertness and neurobehavioural performance, there are considerable inter-individual differences in the degree of impairment. This study examined the effects of short-term sleep restriction on neurobehavioural performance and sleepiness, and the associations between individual differences in impairments and circadian rhythm phase. Healthy adults (n = 43; 22 M) aged 22.5 ± 3.1 (mean ± SD) years maintained a regular 8:16 h sleep:wake routine for at least three weeks prior to laboratory admission. Sleep opportunity was restricted to 5 hours time-in-bed at home the night before admission and 3 hours time-in-bed in the laboratory, aligned by wake time. Hourly saliva samples were collected from 5.5 h before until 5 h after the pre-laboratory scheduled bedtime to assess dim light melatonin onset (DLMO) as a marker of circadian phase. Participants completed a 10-min auditory Psychomotor Vigilance Task (PVT), the Karolinska Sleepiness Scale (KSS) and had slow eye movements (SEM) measured by electrooculography two hours after waking. We observed substantial inter-individual variability in neurobehavioural performance, particularly in the number of PVT lapses. Increased PVT lapses (r = -0.468, p < 0.01), greater sleepiness (r = 0.510, p < 0.0001), and more slow eye movements (r = 0.375, p = 0.022) were significantly associated with later DLMO, consistent with participants waking at an earlier circadian phase. When the difference between DLMO and sleep onset was less than 2 hours, individuals were significantly more likely to have at least three attentional lapses the following morning. This study demonstrates that the phase of an individual’s circadian system is an important variable in predicting the degree of neurobehavioural performance impairment in the hours after waking following sleep restriction, and confirms that other factors influencing performance decrements require further investigation.  相似文献   

2.
ABSTRACT

Fatigue is recognized as an important safety concern in the transportation industry. In this study, our goal was to investigate how circadian and sleep–wake dependent factors influence St-Lawrence River pilots’ sleep–wake cycle, alertness and psychomotor performance levels at work. A total of 18 male St-Lawrence River ship pilots were recruited to a 16–21-day field study. Pilots’ chronotype, sleepiness and insomnia levels were documented using standardized questionnaires. Their sleep–wake cycle was documented by a sleep–wake log and wrist-worn activity monitoring. Subjective alertness and objective psychomotor performances were assessed ~5×/day for each work and rest day. Ship transits were distributed throughout the 24-h day and lasted on average (± SEM) 5.93 ± 0.67 h. Main sleep periods occurred mainly at night, and objectively lasted 6.04 ± 1.02 h before work days. When going to bed at the end of work days, pilots subjectively reported sleeping 7.64 ± 1.64 h in the prior 24 h. Significant diurnal and wake-dependent effects were observed for subjective alertness and objective psychomotor performance, with minimum levels occurring between 09:00 and 10:00. Thus, despite their irregular work schedule, ship pilots presented, as a group, a diurnal variation of alertness and psychomotor performance indicative of a day-oriented circadian system. Important inter-individual differences were observed on psychomotor performance mesor and phase. In individuals, earlier phases in psychomotor performance were correlated with earlier chronotype. This study indicates that both circadian and homeostatic processes modulate alertness and psychomotor performance levels with worst levels reached when long shifts ended in the morning. This work has potential applications as it indicates fatigue countermeasures considering both processes are scientifically based.  相似文献   

3.
The transition from sleep to wakefulness entails a temporary period of reduced alertness and impaired performance known as sleep inertia. The extent to which its severity varies with task and cognitive processes remains unclear. We examined sleep inertia in alertness, attention, working memory and cognitive throughput with the Karolinska Sleepiness Scale (KSS), the Psychomotor Vigilance Task (PVT), n-back and add tasks, respectively. The tasks were administered 2 hours before bedtime and at regular intervals for four hours, starting immediately after awakening in the morning, in eleven participants, in a four-way cross-over laboratory design. We also investigated whether exposure to Blue-Enhanced or Bright Blue-Enhanced white light would reduce sleep inertia. Alertness and all cognitive processes were impaired immediately upon awakening (p<0.01). However, alertness and sustained attention were more affected than cognitive throughput and working memory. Moreover, speed was more affected than accuracy of responses. The light conditions had no differential effect on performance except in the 3-back task (p<0.01), where response times (RT) at the end of four hours in the two Blue-Enhanced white light conditions were faster (200 ms) than at wake time. We conclude that the effect of sleep inertia varies with cognitive domain and that it’s spectral/intensity response to light is different from that of sleepiness. That is, just increasing blue-wavelength in light may not be sufficient to reduce sleep inertia. These findings have implications for critical professions like medicine, law-enforcement etc., in which, personnel routinely wake up from night-time sleep to respond to emergency situations.  相似文献   

4.
Previous studies have shown increased sleepiness and mood changes in shiftworkers, which may be due to sleep deprivation or circadian disruption. Few studies, however, have compared responses of experienced shiftworkers and non-shiftworkers to sleep deprivation in an identical laboratory setting. The aim of this laboratory study, therefore, was to compare long-term shiftworkers and non-shiftworkers and to investigate the effects of one night of total sleep deprivation (30.5 h of continuous wakefulness) and recovery sleep on psychomotor vigilance, self-rated alertness, and mood. Eleven experienced male shiftworkers (shiftwork ≥5 yrs) were matched with 14 non-shiftworkers for age (mean ± SD: 35.7 ± 7.2 and 32.5 ± 6.2 yrs, respectively) and body mass index (BMI) (28.7 ± 3.8 and 26.6 ± 3.4 kg/m(2), respectively). After keeping a 7-d self-selected sleep/wake cycle (7.5/8 h nocturnal sleep), both groups entered a laboratory session consisting of a night of adaptation sleep and a baseline sleep (each 7.5/8 h), a sleep deprivation night, and recovery sleep (4-h nap plus 7.5/8 h nighttime sleep). Subjective alertness and mood were assessed with the Karolinska Sleepiness Scale (KSS) and 9-digit rating scales, and vigilance was measured by the visual psychomotor vigilance test (PVT). A mixed-model regression analysis was carried out on data collected every hour during the sleep deprivation night and on all days (except for the adaptation day), at .25, 4.25, 5.25, 11.5, 12.5, and 13.5 h after habitual wake-up time. Despite similar circadian phase (melatonin onset), demographics, food intake, body posture, and environmental light, shiftworkers felt significantly more alert, more cheerful, more elated, and calmer than non-shiftworkers throughout the laboratory study. In addition, shiftworkers showed a faster median reaction time (RT) compared to non-shiftworkers, although four other PVT parameters did not differ between the groups. As expected, both groups showed a decrease in subjective alertness and PVT performance during and following the sleep deprivation night. Subjective sleepiness and most aspects of PVT performance returned to baseline levels after a nap and recovery sleep. The mechanisms underlying the observed differences between shiftworkers and non-shiftworkers require further study, but may be related to the absence of shiftwork the week prior to and during the laboratory study as well as selection into and out of shiftwork.  相似文献   

5.
Previous studies have shown increased sleepiness and mood changes in shiftworkers, which may be due to sleep deprivation or circadian disruption. Few studies, however, have compared responses of experienced shiftworkers and non-shiftworkers to sleep deprivation in an identical laboratory setting. The aim of this laboratory study, therefore, was to compare long-term shiftworkers and non-shiftworkers and to investigate the effects of one night of total sleep deprivation (30.5?h of continuous wakefulness) and recovery sleep on psychomotor vigilance, self-rated alertness, and mood. Eleven experienced male shiftworkers (shiftwork ≥5 yrs) were matched with 14 non-shiftworkers for age (mean?±?SD: 35.7?±?7.2 and 32.5?±?6.2 yrs, respectively) and body mass index (BMI) (28.7?±?3.8 and 26.6?±?3.4?kg/m2, respectively). After keeping a 7-d self-selected sleep/wake cycle (7.5/8?h nocturnal sleep), both groups entered a laboratory session consisting of a night of adaptation sleep and a baseline sleep (each 7.5/8?h), a sleep deprivation night, and recovery sleep (4-h nap plus 7.5/8?h nighttime sleep). Subjective alertness and mood were assessed with the Karolinska Sleepiness Scale (KSS) and 9-digit rating scales, and vigilance was measured by the visual psychomotor vigilance test (PVT). A mixed-model regression analysis was carried out on data collected every hour during the sleep deprivation night and on all days (except for the adaptation day), at .25, 4.25, 5.25, 11.5, 12.5, and 13.5?h after habitual wake-up time. Despite similar circadian phase (melatonin onset), demographics, food intake, body posture, and environmental light, shiftworkers felt significantly more alert, more cheerful, more elated, and calmer than non-shiftworkers throughout the laboratory study. In addition, shiftworkers showed a faster median reaction time (RT) compared to non-shiftworkers, although four other PVT parameters did not differ between the groups. As expected, both groups showed a decrease in subjective alertness and PVT performance during and following the sleep deprivation night. Subjective sleepiness and most aspects of PVT performance returned to baseline levels after a nap and recovery sleep. The mechanisms underlying the observed differences between shiftworkers and non-shiftworkers require further study, but may be related to the absence of shiftwork the week prior to and during the laboratory study as well as selection into and out of shiftwork. (Author correspondence: )  相似文献   

6.
This study examines the individual reproducibility of alterations of subjective, objective, and EEG measures of alertness during 27 h of continuous wakefulness and analyzes their interrelationships. Eight subjects were studied twice under similar constant-routine conditions. Scales and performance tasks were administered at hourly intervals to define temporal changes in subjective and objective alertness. The wake EEG was recorded every 2 h, 2 min with eyes open and 2 min with eyes closed. Plasma glucose and melatonin levels were measured to estimate brain glucose utilization and individual circadian phase, respectively. Decrements of subjective alertness and performance deficits were found to be highly reproducible for a given individual. Remarkably, there was no relationship between the impairments of subjective and objective alertness. With increased duration of wakefulness, EEG activity with eyes closed increased in the delta range and decreased in the alpha range, but the magnitudes of these changes were also unrelated. These findings indicate that sleep deprivation has highly reproducible, but independent, effects on brain mechanisms controlling subjective and objective alertness.  相似文献   

7.

Background

Cognitive performance deteriorates during extended wakefulness and circadian phase misalignment, and some individuals are more affected than others. Whether performance is affected similarly across cognitive domains, or whether cognitive processes involving Executive Functions are more sensitive to sleep and circadian misalignment than Alertness and Sustained Attention, is a matter of debate.

Methodology/Principal Findings

We conducted a 2 × 12-day laboratory protocol to characterize the interaction of repeated partial and acute total sleep deprivation and circadian phase on performance across seven cognitive domains in 36 individuals (18 males; mean ± SD of age = 27.6±4.0 years). The sample was stratified for the rs57875989 polymorphism in PER3, which confers cognitive susceptibility to total sleep deprivation. We observed a deterioration of performance during both repeated partial and acute total sleep deprivation. Furthermore, prior partial sleep deprivation led to poorer cognitive performance in a subsequent total sleep deprivation period, but its effect was modulated by circadian phase such that it was virtually absent in the evening wake maintenance zone, and most prominent during early morning hours. A significant effect of PER3 genotype was observed for Subjective Alertness during partial sleep deprivation and on n-back tasks with a high executive load when assessed in the morning hours during total sleep deprivation after partial sleep loss. Overall, however, Subjective Alertness and Sustained Attention were more affected by both partial and total sleep deprivation than other cognitive domains and tasks including n-back tasks of Working Memory, even when implemented with a high executive load.

Conclusions/Significance

Sleep loss has a primary effect on Sleepiness and Sustained Attention with much smaller effects on challenging Working Memory tasks. These findings have implications for understanding how sleep debt and circadian rhythmicity interact to determine waking performance across cognitive domains and individuals.  相似文献   

8.
《Chronobiology international》2013,30(10):1209-1217
Extended wakefulness, sleep loss, and circadian misalignment are factors associated with an increased accident risk in shiftwork. Splitting shifts into multiple shorter periods per day may mitigate these risks by alleviating prior wake. However, the effect of splitting the sleep–wake schedule on the homeostatic and circadian contributions to neurobehavioural performance and subjective assessments of one’s ability to perform are not known. Twenty-nine male participants lived in a time isolation laboratory for 13?d, assigned to one of two 28-h forced desynchrony (FD) schedules. Depending on the assigned schedule, participants were provided the same total time in bed (TIB) each FD cycle, either consolidated into a single period (9.33?h TIB) or split into two equal halves (2?×?4.67?h TIB). Neurobehavioural performance was regularly assessed with a psychomotor vigilance task (PVT) and subjectively-assessed ability was measured with a prediction of performance on a visual analogue scale. Polysomnography was used to assess sleep, and core body temperature was recorded to assess circadian phase. On average, participants obtained the same amount of sleep in both schedules, but those in the split schedule obtained more slow wave sleep (SWS) on FD days. Mixed-effects ANOVAs indicated no overall difference between the standard and split schedules in neurobehavioural performance or predictions of performance. Main effects of circadian phase and prior wake were present for both schedules, such that performance and subjective ratings of ability were best around the circadian acrophase, worst around the nadir, and declined with increasing prior wake. There was a schedule by circadian phase interaction for all neurobehavioural performance metrics such that performance was better in the split schedule than the standard schedule around the nadir. There was no such interaction for predictions of performance. Performance during the standard schedule was significantly better than the split schedule at 2?h of prior wake, but declined at a steeper rate such that the schedules converged by 4.5–7?h of prior wake. Overall, the results indicate that when the total opportunity for sleep per day is satisfactory, a split sleep–wake schedule is not detrimental to sleep or performance. Indeed, though not reflected in subjective assessments of performance capacity, splitting the schedule may be of some benefit, given its reduction of neurobehavioural impairment at night and its association with increased SWS. Therefore, for some industries that require operations to be sustained around the clock, implementing a split work–rest schedule may be of assistance.  相似文献   

9.
10.
The authors present here mathematical models in which levels of subjective alertness and cognitive throughput are predicted by three components that interact with one another in a nonlinear manner. These components are (1) a homeostatic component (H) that falls in a sigmoidal manner during wake and rises in a saturating exponential manner at a rate that is determined by circadian phase during sleep; (2) a circadian component (C) that is a function of the output of our mathematical model of the effect of light on the circadian pacemaker, with the amplitude further regulated by the level of H; and (3) a sleep inertia component (W) that rises in a saturating exponential manner after waketime. The authors first construct initial models of subjective alertness and cognitive throughput based on the results of sleep inertia studies, sleep deprivation studies initiated across all circadian phases, 28-h forced desynchrony studies, and alertness and performance dose response curves to sleep. These initial models are then refined using data from nearly one hundred fifty 30- to 50-h sleep deprivation studies in which subjects woke at their habitual times. The interactive three-component models presented here are able to predict even the fine details of neurobehavioral data from sleep deprivation studies and, after further validation, may provide a powerful tool for the design of safe shift work and travel schedules, including those in which people are exposed to unusual patterns of light.  相似文献   

11.
ABSTRACT

Travel across time zones disrupts circadian rhythms causing increased daytime sleepiness, impaired alertness and sleep disturbance. However, the effect of repeated consecutive transmeridian travel on sleep–wake cycles and circadian dynamics is unknown. The aim of this study was to investigate changes in alertness, sleep–wake schedule and sleepiness and predict circadian and sleep dynamics of an individual undergoing demanding transmeridian travel. A 47-year-old healthy male flew 16 international flights over 12 consecutive days. He maintained a sleep–wake schedule based on Sydney, Australia time (GMT + 10?h). The participant completed a sleep diary and wore an Actiwatch before, during and after the flights. Subjective alertness, fatigue and sleepiness were rated 4 hourly (08:00–00:00), if awake during the flights. A validated physiologically based mathematical model of arousal dynamics was used to further explore the dynamics and compare sleep time predictions with observational data and to estimate circadian phase changes. The participant completed 191?h and 159 736?km of flying and traversed a total of 144 time-zones. Total sleep time during the flights decreased (357.5?min actigraphy; 292.4?min diary) compared to baseline (430.8?min actigraphy; 472.1?min diary), predominately due to restricted sleep opportunities. The daily range of alertness, sleepiness and fatigue increased compared to baseline, with heightened fatigue towards the end of the flight schedule. The arousal dynamics model predicted sleep/wake states during and post travel with 88% and 95% agreement with sleep diary data. The circadian phase predicted a delay of only 34?min over the 16 transmeridian flights. Despite repeated changes in transmeridian travel direction and flight duration, the participant was able to maintain a stable sleep schedule aligned with the Sydney night. Modelling revealed only minor circadian misalignment during the flying period. This was likely due to the transitory time spent in the overseas airports that did not allow for resynchronisation to the new time zone. The robustness of the arousal model in the real-world was demonstrated for the first time using unique transmeridian travel.  相似文献   

12.
The objective of this study was to confirm the effects of ADL (Activity of Daily Living) and gender on circadian rhythms of the elderly in a nursing home. Twenty-one elderly volunteers, aged over 65 years, were divided in four groups depending on their ADL and gender: subjects with almost no problem in ADL (H males, H females) and those who were almost bedridden (L males, L females). Oral temperature, heart rate, blood pressure, time of sleep and wake, subjective sleepiness, overall feeling and vitality were measured every 4 hours during the day continuously for six days. The circadian rhythm was calculated by using the least squares fit of cosine function. Subjective sleep quality was also surveyed. In the sleep/wake rhythm, the mesor was significantly higher in L males compared to the other groups and the amplitude was significantly lower in L females compared to other groups. The subjective sleepiness was higher in L males compared to the other groups and L females showed a higher sleepiness compared to H females. No significant difference among the group was observed in subjective sleep quality. In conclusion, these results indicate that the subjective sleepiness and sleep/wake rhythm differ depending on ADL and gender, although no significant difference was observed in physiological parameters. ADL and gender based difference in subjective sleepiness and sleep/wake rhythm should be taken into account with regard to the care of the elderly in nursing homes.  相似文献   

13.
The aim of the study was to evaluate the influence of chronotype (morning-type versus evening-type) living in a fixed sleep-wake schedule different from one's preferred sleep schedules on the time course of neurobehavioral performance during controlled extended wakefulness. The authors studied 9 morning-type and 9 evening-type healthy male subjects (21.4 ± 1.9 yrs). Before the experiment, all participants underwent a fixed sleep-wake schedule mimicking a regular working day (bedtime: 23:30 h; wake time: 07:30 h). Then, following two nights in the laboratory, both chronotypes underwent a 36-h constant routine, performing a cognitive test of sustained attention every hour. Core body temperature, salivary melatonin secretion, objective alertness (maintenance of wakefulness test), and subjective sleepiness (visual analog scale) were also assessed. Evening-types expressed a higher level of subjective sleepiness than morning types, whereas their objective levels of alertness were not different. Cognitive performance in the lapse domain remained stable during the normal waking day and then declined during the biological night, with a similar time course for both chronotypes. Evening types maintained optimal alertness (i.e., 10% fastest reaction time) throughout the night, whereas morning types did not. For both chronotypes, the circadian performance profile was correlated with the circadian subjective somnolence profile and was slightly phase-delayed with melatonin secretion. Circadian performance was less correlated with circadian core body temperature. Lapse domain was phase-delayed with body temperature (2-4 h), whereas optimal alertness was slightly phase-delayed with body temperature (1 h). These results indicate evening types living in a fixed sleep-wake schedule mimicking a regular working day (different from their preferred sleep schedules) express higher subjective sleepiness but can maintain the same level of objective alertness during a normal waking day as morning types. Furthermore, evening types were found to maintain optimal alertness throughout their nighttime, whereas morning types could not. The authors suggest that evening-type subjects have a higher voluntary engagement of wake-maintenance mechanisms during extended wakefulness due to adaptation of their sleep-wake schedule to social constraints.  相似文献   

14.
Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; 7 men) with no medical disorders other than mild asthma were studied. Following 2 baseline days and nights, subjects underwent a forced desynchrony protocol composed of seven 28-h sleep/wake cycles, while maintaining a sleep/wakefulness ratio of 1:2 throughout. Subjects were awakened by a standardized auditory stimulus 3 times each sleep period for sleep inertia assessments. The magnitude of sleep inertia was quantified as the change in cognitive performance (number of correct additions in a 2-min serial addition test) across the first 20 min of wakefulness. Circadian phase was estimated from core body temperature (fitted temperature minimum assigned 0 degrees ). Data were segregated according to: (1) circadian phase (60 degrees bins); (2) sleep stage; and (3) 3rd of the night after which awakenings occurred (i.e., tertiary 1, 2, or 3). To control for any effect of sleep stage, the circadian rhythm of sleep inertia was initially assessed following awakenings from Stage 2 (62% of awakening occurred from this stage; n = 110). This revealed a significant circadian rhythm in the sleep inertia of cognitive performance (p = 0.007), which was 3.6 times larger during the biological night (circadian bin 300 degrees , approximately 2300-0300 h in these subjects) than during the biological day (bin 180 degrees , approximately 1500-1900 h). The circadian rhythm in sleep inertia was still present when awakenings from all sleep stages were included (p = 0.004), and this rhythm could not be explained by changes in underlying sleep drive prior to awakening (changes in sleep efficiency across circadian phase or across the tertiaries), or by the proportion of the varied sleep stages prior to awakenings. This robust endogenous circadian rhythm in sleep inertia may have important implications for people who need to be alert soon after awakening.  相似文献   

15.
The aim of the study was to evaluate the influence of chronotype (morning-type versus evening-type) living in a fixed sleep-wake schedule different from one's preferred sleep schedules on the time course of neurobehavioral performance during controlled extended wakefulness. The authors studied 9 morning-type and 9 evening-type healthy male subjects (21.4?±?1.9 yrs). Before the experiment, all participants underwent a fixed sleep-wake schedule mimicking a regular working day (bedtime: 23:30?h; wake time: 07:30?h). Then, following two nights in the laboratory, both chronotypes underwent a 36-h constant routine, performing a cognitive test of sustained attention every hour. Core body temperature, salivary melatonin secretion, objective alertness (maintenance of wakefulness test), and subjective sleepiness (visual analog scale) were also assessed. Evening-types expressed a higher level of subjective sleepiness than morning types, whereas their objective levels of alertness were not different. Cognitive performance in the lapse domain remained stable during the normal waking day and then declined during the biological night, with a similar time course for both chronotypes. Evening types maintained optimal alertness (i.e., 10% fastest reaction time) throughout the night, whereas morning types did not. For both chronotypes, the circadian performance profile was correlated with the circadian subjective somnolence profile and was slightly phase-delayed with melatonin secretion. Circadian performance was less correlated with circadian core body temperature. Lapse domain was phase-delayed with body temperature (2–4?h), whereas optimal alertness was slightly phase-delayed with body temperature (1?h). These results indicate evening types living in a fixed sleep-wake schedule mimicking a regular working day (different from their preferred sleep schedules) express higher subjective sleepiness but can maintain the same level of objective alertness during a normal waking day as morning types. Furthermore, evening types were found to maintain optimal alertness throughout their nighttime, whereas morning types could not. The authors suggest that evening-type subjects have a higher voluntary engagement of wake-maintenance mechanisms during extended wakefulness due to adaptation of their sleep-wake schedule to social constraints. (Author correspondence: )  相似文献   

16.
The sleep of healthy people--a diary study   总被引:4,自引:0,他引:4  
  相似文献   

17.
Our aim was to investigate how circadian adaptation to night shift work affects psychomotor performance, sleep, subjective alertness and mood, melatonin levels, and heart rate variability (HRV). Fifteen healthy police officers on patrol working rotating shifts participated to a bright light intervention study with 2 participants studied under two conditions. The participants entered the laboratory for 48 h before and after a series of 7 consecutive night shifts in the field. The nighttime and daytime sleep periods were scheduled during the first and second laboratory visit, respectively. The subjects were considered “adapted” to night shifts if their peak salivary melatonin occurred during their daytime sleep period during the second visit. The sleep duration and quality were comparable between laboratory visits in the adapted group, whereas they were reduced during visit 2 in the non-adapted group. Reaction speed was higher at the end of the waking period during the second laboratory visit in the adapted compared to the non-adapted group. Sleep onset latency (SOL) and subjective mood levels were significantly reduced and the LF∶HF ratio during daytime sleep was significantly increased in the non-adapted group compared to the adapted group. Circadian adaptation to night shift work led to better performance, alertness and mood levels, longer daytime sleep, and lower sympathetic dominance during daytime sleep. These results suggest that the degree of circadian adaptation to night shift work is associated to different health indices. Longitudinal studies are required to investigate long-term clinical implications of circadian misalignment to atypical work schedules.  相似文献   

18.
《Chronobiology international》2013,30(9):1249-1257
Operational settings involving shiftwork or extended operations require periods of prolonged wakefulness, which in conjunction with sleep loss and circadian factors, can have a negative impact on performance, alertness, and workplace safety. Napping has been shown to improve performance and alertness after periods of prolonged wakefulness and sleep loss. Longer naps may not only result in longer-lasting benefits but also increase the risk of sleep inertia immediately upon waking. The time course of performance after naps of differing durations is thus an important consideration in weighing the benefits and risks of napping in workplace settings. The objective of this study was to evaluate the effectiveness of nap opportunities of 20, 40, or 60 min for maintaining alertness and performance 1.5–6 h post-nap in simulated nightwork (P1) or extended operations (P2). Each protocol included 12 participants in a within-subjects design in a controlled laboratory environment. After a baseline 8 h time-in-bed, healthy young males (P1 mean age 25.1 yr; P2 mean age 23.2 yr) underwent either ≈20 h (P1) or ≈30 h (P2) of sleep deprivation on four separate occasions, followed by nap opportunities of 0, 20, 40, and 60 min. Sleep on the baseline night and during the naps was recorded polysomnographically. During the nap opportunities, sleep onset latency was short and sleep efficiency was high. A greater proportion of slow-wave sleep (SWS) was obtained in nap opportunities of 40 and 60 min compared with 20 min. Rapid eye movement (REM) sleep occurred infrequently. A subjective sleepiness rating (Karolinska Sleepiness Scale, KSS), 2-Back Working Memory Task (WMT), and Psychomotor Vigilance Task (PVT) were completed 1.5, 2, 2.5, 3, 4, 5, and 6 h post-nap. The slowest 10% of PVT responses were significantly faster after 40 and 60 min naps compared with a 20 min (P1) or no (P2) nap. There were significantly fewer PVT lapses after 40 and 60 min naps compared with no nap (P2), and after 60 min naps compared with 20 min naps (P1). Participants felt significantly less sleepy and made more correct responses and fewer omissions on the WMT after 60 min naps compared with no nap (P2). Subjective sleepiness and WMT performance were not related to the amount of nap-time spent in SWS. However, PVT response speed was significantly slower when time in SWS was <10 min compared with 20–29.9 min. In conclusion, in operationally relevant scenarios, nap opportunities of 40 and 60 min show more prolonged benefits 1.5–6 h post-nap, than a 20 min or no nap opportunity. Benefits were more apparent when the homeostatic pressure for sleep was high and post-nap performance testing occurred across the afternoon (P2). For sustained improvement in cognitive performance, naps of 40–60 min are recommended. (Author correspondence: )  相似文献   

19.
The aim of this study was to examine the impact of brief, unscheduled naps during work periods on alertness and vigilance in coastal pilots along the Great Barrier Reef. On certain routes, the duration of the work period can extend well beyond 24 h. Seventeen coastal pilots volunteered for the study, representing almost one‐third of the population. Participants collected sleep/wake and performance data for 28 days using a sleep and work diary and the palm PVT task. The average length of sleep on board was 1.4±1.0 h. Naps were taken regularly such that the average length of time awake between sleep periods on board a ship was 5.3±4.3 h. There was no change in mean reaction time across either the length of a pilotage or across the 24 h day. The results indicate that even though the naps were taken opportunistically, they tended to cluster at the high sleep propensity times. Further, frequent, opportunistic naps appeared to provide adequate recovery such that PVT performance remained stable. Pilots did report increases in subjective fatigue ratings at certain times of the 24 h day and at the end of a work period; however, these did not reach the high range. The fatigue‐risk minimization strategies employed by the Australian Maritime Safety Authority and the coastal pilots appear to be effective in maintaining alertness and vigilance while at work aboard ships.  相似文献   

20.
Eveningness, the preference of being active during the evening in contrast to the morning, has been associated with markedly increased problem behavior in adolescents; however, the underlying mechanisms are still not understood. This study investigates the association of eveningness with behavior and cognition in children aged 7–12 yrs, and explores the potential mediating role of a variety of sleep factors. Parents of 333 school-aged children (mean age?=?9.97 yrs; 55% girls) completed a sleep log and several questionnaires regarding eveningness, sleep habits, and behavioral problems. Intellectual abilities, working memory, and attention were assessed using the short-form of the Wechsler Intelligence Scale for Children (WISC) and subtasks of the Amsterdam Neuropsychological Tasks. Results showed that eveningness predicted behavioral problems over and above the effects of demographic variables (age, sex, and familial socioeconomic status) (p?=?0.003). Significant partial correlation was found for eveningness and sleep duration during weekdays (p?=?0.005), and not during weekends. Furthermore, evening orientation was associated with a reduced rested feeling on weekday mornings (p?<?0.001), but not on weekends. The most important sleep characteristic showing association with many cognitive and behavioral measures was the subjective feeling upon awakening—particularly during weekdays. Bootstrap mediation analyses demonstrated that sleep significantly mediated the effects of eveningness on behavioral problems, working memory, and sustained attention. Interestingly, mediation was only significant through the subjective feeling upon awakening on weekdays. The current findings indicate that the subjective feeling upon awakening is a much better predictor of daytime problems than subjective sleep quantity. Furthermore, the data suggest that negative outcomes in evening types are due to the fact that they wake up before their circadian drive for arousal and prior to complete dissipation of sleep pressure during weekdays. Interventions that target the misalignment of endogenous circadian rhythms and imposed rhythms are discussed. (Author correspondence: kbheijden@fsw.leidenuniv.nl)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号