首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is becoming apparent that a number of pathogenic mechanisms contribute to diabetic neuropathy, so that therapeutic interventions that target one particular mechanism may have limited success. A recently published preclinical study has adopted an alternative approach by using a novel small molecule to induce heat-shock protein 70. This confers upon neurons, and perhaps other cells of the nervous system, the ability to better tolerate the diverse stresses associated with diabetes rather than intervening in their production.  相似文献   

2.
A heat-activated MAP kinase (HAMK), immunologically related to the extracellular signal-regulated kinase (ERK) super-family of protein kinases, has been identified in BY2 cells of tobacco. The activation of HAMK at 37 degrees C was transient and detected within 2 min and reached a maximum level within 5 min. Ca(2+) chelators and channel blockers, and the known inhibitors of MEK, a MAP kinase kinase, prevented the heat activation of HAMK. This suggests that HAMK activation is part of a heat-triggered MAP kinase cascade that requires Ca(2+) influx. The heat shock protein HSP70 accumulated at 37 degrees C, but not when HAMK activation was prevented with the inhibitors of MEK or with Ca(2+) chelators or channel blockers. As previously shown for heat activation of HAMK, heat-induced accumulation of HSP70 requires membrane fluidization and reorganization of cytoskeleton. We concluded that heat-triggered HAMK cascade might play an essential role in the launching of heat shock response and hsp gene expression in tobacco cells.  相似文献   

3.
14-3-3蛋白研究进展   总被引:7,自引:1,他引:7  
文彬  王小菁 《生命科学》2004,16(4):226-230
14-3-3蛋白是高度保守的、所有真核生物细胞中都普遍存在的、在大多数生物物种中由一个基因家族编码的一类蛋白调控家族。它几乎参与生命体所有的生理反应过程,人们在各种组织细胞中发现了各种不同的14-3-3蛋白。作为与磷酸丝氨酸/苏氨酸结合的第一信号分子,14-3-3蛋白在细胞的信号转导中起着至关重要的作用,尤其是它直接参与调节蛋白激酶和蛋白磷酸化酶的活性,被称为蛋白质与蛋白质相互作用的”桥梁蛋白”;它可以与转录因子结合形成复合体,调节相关基因的表达。一些研究表明,14-3-3蛋白调控机制的紊乱可以直接导致疾病的发生,在临床上14-3-3蛋白常常可以作为诊断的标志物。  相似文献   

4.
We previously reported that gentamicin (GM) specifically binds to heat-shock protein with subunit molecular masses of 70 kDa (HSP70). In the present study, we have investigated the effects of GM binding on HSP70-assisted protein folding in vitro. The C-terminal, and not the N-terminal of HSP70 was found to bind to GM. GM significantly suppressed refolding of firefly luciferase in the presence of HSP70 and HSP40, although the ATPase activity of HSP70 was unaffected by GM. A surface plasmon resonance analysis revealed that GM specifically interferes with the binding of HSP70 to a model peptide that mimics the exposed hydrophobic surface of the folding intermediates. These results indicated that GM inhibits the chaperone activity of HSP70 and may suppress protein folding via inhibition of HSP70 in vivo.

Structured summary

MINT-7384283: HSP40 (uniprotkb:P25685) binds (MI:0407) to HSP70 (uniprotkb:P34930) by surface plasmon resonance (MI:0107)MINT-7384430: RNaseA (uniprotkb:P61823) binds (MI:0407) to HSP70 (uniprotkb:P34930) by surface plasmon resonance (MI:0107)  相似文献   

5.
Although considerable effort has been directed at identifying and understanding the function and regulation of stress-induced proteins in herbaceous plants, reports concerning woody plants are limited. Studies with herbaceous crops have revealed similarities in the types of proteins that accumulate in response to a wide array of abiotic stresses and hormonal cues such as the accumulation of abscisic acid. Many of the identified proteins appear to be related to dehydrins (the D-11 subgroup of late-embryogenesis-abundant proteins). The objective of the present study was to determine if seasonal induction of dehydrins is a common feature in woody plants and to see if seasonal patterns existed for other stress-induced proteins. Bark tissues from eight species of woody plants were collected monthly for a period of 1.5 years. The species included: peach (Prunus persica) cv. Loring; apple (Malus domestica) cv. Golden Delicious; thornless blackberry (Rubus sp.) cv. Chester; hybrid poplar (Populus nigra); weeping willow (Salix babylonica); flowering dogwood (Cornus florida); sassafras (Sassafras albidum); and black locust (Robinia pseudo-acacia). Immunoblots of bark proteins were probed with a polyclonal antibody recognizing a conserved region of dehydrin proteins, and monoclonal antibodies directed against members of the HS70 family of heat-shock proteins. Some proteins, immunologically related to dehydrins, appeared to be constitutive; however, distinct seasonal patterns associated with winter acclimation were also observed in all species. The molecular masses of these proteins varied widely, although similarities were observed in related species (willow and poplar). Identification of proteins using the monoclonal antibodies (HSP70, HSC70, BiP) was more definitive because of their inherent specificity, but seasonal patterns were more variable among the eight species examined. This study represents only a precursory examination of several proteins reported to be stress related in herbaceous plants, but the results indicate that these proteins are also common to woody plants and that further research to characterize their regulation and function in relation to stress adaptation and the perennial life cycle of woody plants is warranted.  相似文献   

6.
This study extends to the protein level our previous observations, which had established the stage and cellular specificity of expression of hsp86 and hsp84 in the murine testis in the absence of exogenous stress. Immunoblot analysis was used to demonstrate that HSP86 protein was present throughout testicular development and that its levels increased with the appearance of differentiating germ cells. HSP86 was most abundant in the germ cell population and was present at significantly lower levels in the somatic cells. By contrast, the HSP84 protein was detected in the somatic cells of the testis rather than in germ cells. The steady-state levels of HSP86 and HSP84 paralleled the pattern of the expression of their respective mRNAs, suggesting that regulation at the level of translation was not a major mechanism controlling hsp90 gene expression in testicular cells. Immunoprecipitation analysis revealed that a 70-kDa protein coprecipitated with the HSP86/HSP84 proteins in testicular homogenates. This protein was identified as an HSP70 family member by immunoblot analysis, suggesting that HSP70 and HSP90 family members interact in testicular cells. © 1993Wiley-Liss, Inc.  相似文献   

7.
    
Clustering of membrane proteins plays an important role in many cellular activities such as protein sorting and signal transduction. In this study, we used dissipative particle dynamics simulation method to investigate the clustering of anchored membrane proteins (AMPs) in the presence of transmembrane proteins (TMPs). First, our simulation results show that clustering of AMPs and that of TMPs are in fact interdependent, and depending on their hydrophobic length, both protein mixing and protein demixing are observed. Especially, the protein demixing occurs only when the hydrophobic mismatch of TMPs is negative while that of AMPs is positive. Second, our simulation results indicate that the clustering of TMPs also modulates the coupling of the clustering of AMPs in both leaflets. On the one hand, the coupling between AMPs in different leaflets will be strongly restrained if TMPs form protein mixing with AMPs in one leaflet and protein demixing with AMPs in the other leaflet. On the other hand, the coupling between AMPs can be enhanced or mediated by TMPs when TMPs mix with AMPs in both leaflets. Our results may have some implications on our understanding of how different types of membrane proteins cluster and provide a possible explanation of how TMPs participate in signal transduction across cellular membranes.  相似文献   

8.
In vitro experiments employing the soluble proteins from Escherichia coli reveal that about half of them, in their unfolded or partially folded states, but not in their native states, can form stable binary complexes with chaperonin 60 (groEL). These complexes can be isolated by gel filtration chromatography and are efficiently discharged upon the addition of Mg.ATP. Binary complex formation is substantially reduced if chaperonin 60 is presaturated with Rubisco-I, the folding intermediate of Rubisco, but not with native Rubisco. Binary complex formation is also reduced if the transient species that interact with chaperonin 60 are permitted to progress to more stable states. This implies that the structural elements or motifs that are recognized by chaperonin 60 and that are responsible for binary complex formation are only present or accessible in the unfolded states of proteins or in certain intermediates along their respective folding pathways. Given the high-affinity binding that we have observed in the present study and the normal cellular abundance of chaperonin 60, we suspect that the folding of most proteins in E. coli does not occur in free solution spontaneously, but instead takes place while they are associated with molecular chaperones.  相似文献   

9.
10.
HSP70分子伴侣系统研究进展   总被引:15,自引:0,他引:15       下载免费PDF全文
综述了HSP70分子伴侣系统的晶体结构、功能及作用机理方面的研究进展.HSP70分子伴侣能够帮助细胞内新生蛋白的折叠和跨膜运输、蛋白质多聚体结构的装配和解装配,并能在胁迫下维持蛋白质的特殊构象,防止未折叠的蛋白质变性和使聚集的蛋白质溶解复性.所有这些活性均依赖于ATP调节的HSP70与底物蛋白中的疏水片段的相互作用.  相似文献   

11.
    
Perturbations in the native structure, often caused by stressing cellular conditions, not only impair protein function but also lead to the formation of aggregates, which can accumulate in the cell leading to harmful effects. Some organisms, such as plants, express the molecular chaperone HSP100 (homologous to HSP104 from yeast), which has the remarkable capacity to disaggregate and reactivate proteins. Recently, studies with animal cells, which lack a canonical HSP100, have identified the involvement of a distinct system composed of HSP70/HSP40 that needs the assistance of HSP110 to efficiently perform protein breakdown. As sessile plants experience stressful conditions more severe than those experienced by animals, we asked whether a plant HSP110 could also play a role in collaborating with HSP70/HSP40 in a system that increases the efficiency of disaggregation. Thus, the gene for a putative HSP110 from the cereal Sorghum bicolor was cloned and the protein, named SbHSP110, purified. For comparison purposes, human HsHSP110 (HSPH1/HSP105) was also purified and investigated in parallel. First, a combination of spectroscopic and hydrodynamic techniques was used for the characterization of the conformation and stability of recombinant SbHSP110, which was produced folded. Second, small-angle X-ray scattering and combined predictors of protein structure indicated that SbHSP110 and HsHSP110 have similar conformations. Then, the chaperone activities, which included protection against aggregation, refolding, and reactivation, were investigated, showing that SbHSP110 and HsHSP110 have similar functional activities. Altogether, the results add to the structure/function relationship study of HSP110s and support the hypothesis that plants have multiple strategies to act upon the reactivation of protein aggregates.  相似文献   

12.
    
The amyloid conversion is a massive detrimental modification affecting several proteins upon specific physical or chemical stimuli characterizing a plethora of diseases. In many cases, the amyloidogenic stimuli induce specific structural features to the protein conferring the propensity to misfold and form amyloid deposits. The investigation of mutants, structurally similar to their native isoform but inherently prone to amyloid conversion, may be a viable strategy to elucidate the structural features connected with amyloidogenesis. In this article, we present a computational protocol based on the combination of molecular dynamics (MD) and grid‐based approaches suited for the pairwise comparison of closely related protein structures. This method was applied on the cellular prion protein (PrPC) as a case study and, in particular, addressed to the quali/quantification of the structural features conferred by either E200K mutations and treatment with CaCl2, both able to induce the scrapie conversion of PrP. Several schemes of comparison were developed and applied to this case study, and made up suitable of application to other protein systems. At this purpose an in‐house python codes has been implemented that, together with the parallelization of the GRID force fields program, will spread the applicability of the proposed computational procedure. Proteins 2015; 83:1751–1765. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
分子伴侣的功能和应用   总被引:10,自引:0,他引:10  
本文综述了分子伴侣的分类、功能、作用机理、研究现状及应用前景。分子伴侣是在生物大分子的折叠、组装、转运及降解等过程中起协助作用,参与协助抗原的呈递和遗传物质的复制、转录及构象的确立,但自身并不发生任何变化的一大类广泛存在于生物体内的蛋白质分子。随着对分子伴侣的进一步研究和相关知识的不断深入,分子伴侣在生物产品开发、物种改良、抗衰老,疾病预防、诊断和治疗以及环境监测方面具有广阔的前景。  相似文献   

14.
    
Fuchs A  Kirschner A  Frishman D 《Proteins》2009,74(4):857-871
Despite rapidly increasing numbers of available 3D structures, membrane proteins still account for less than 1% of all structures in the Protein Data Bank. Recent high-resolution structures indicate a clearly broader structural diversity of membrane proteins than initially anticipated, motivating the development of reliable structure prediction methods specifically tailored for this class of molecules. One important prediction target capturing all major aspects of a protein's 3D structure is its contact map. Our analysis shows that computational methods trained to predict residue contacts in globular proteins perform poorly when applied to membrane proteins. We have recently published a method to identify interacting alpha-helices in membrane proteins based on the analysis of coevolving residues in predicted transmembrane regions. Here, we present a substantially improved algorithm for the same problem, which uses a newly developed neural network approach to predict helix-helix contacts. In addition to the input features commonly used for contact prediction of soluble proteins, such as windowed residue profiles and residue distance in the sequence, our network also incorporates features that apply to membrane proteins only, such as residue position within the transmembrane segment and its orientation toward the lipophilic environment. The obtained neural network can predict contacts between residues in transmembrane segments with nearly 26% accuracy. It is therefore the first published contact predictor developed specifically for membrane proteins performing with equal accuracy to state-of-the-art contact predictors available for soluble proteins. The predicted helix-helix contacts were employed in a second step to identify interacting helices. For our dataset consisting of 62 membrane proteins of solved structure, we gained an accuracy of 78.1%. Because the reliable prediction of helix interaction patterns is an important step in the classification and prediction of membrane protein folds, our method will be a helpful tool in compiling a structural census of membrane proteins.  相似文献   

15.
Recognition of Ras by its downstream target Raf is mediated by a Ras-recognition region in the Ras-binding domain (RBD) of Raf. Residues 78–89 in this region occupy two different conformations in the ensemble of NMR solution structures of the RBD: a fully α-helical one, and one where 87–90 form a type IV β-turn. Molecular dynamics simulations of the RBD in solution were performed to explore the stability of these and other possible conformations of both the wild-type RBD and the R89K mutant, which does not bind Ras. The simulations sample a fully helical conformation for residues 78–89 similar to the NMR helical structures, a conformation where 85–89 form a 310-helical turn, and a conformation where 87–90 form a type I |iB-turn, whose free energies are all within 0.3 kcal/mol of each other. NOE patterns and Hα chemical shifts from the simulations are in reasonable agreement with experiment. The NMR turn structure is calculated to be 3 kcal/mol higher than the three above conformations. In a simulation with the same implicit solvent model used in the NMR structure generation, the turn conformation relaxes into the fully helical conformation, illustrating possible structural artifacts introduced by the implicit solvent model. With the Raf R89K mutant, simulations sample a fully helical and a turn conformation, the turn being 0.9 kcal/mol more stable. Thus, the mutation affects the population of RBD conformations, and this is expected to affect Ras binding. For example, if the fully helical conformation of residues 78–89 is required for binding, its free energy increase in R89K will increase the binding free energy by about 0.6 kcal/mol. Proteins 31:186–200, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
    
Binding of the protein Raf to the active form of Ras promotes activation of the MAP kinase signaling pathway, triggering cell growth and differentiation. Raf/Arg89 in the center of the binding interface plays an important role determining Ras-Raf binding affinity. We have investigated experimentally and computationally the Raf-R89K mutation, which abolishes signaling in vivo. The binding to [gamma-35S]GTP-Ras of a fusion protein between the Raf-binding domain (RBD) of Raf and GST was reduced at least 175-fold by the mutation, corresponding to a standard binding free energy decrease of at least 3.0 kcal/mol. To compute this free energy and obtain insights into the microscopic interactions favoring binding, we performed alchemical simulations of the RBD, both complexed to Ras and free in solution, in which residue 89 is gradually mutated from Arg into Lys. The simulations give a standard binding free energy decrease of 2.9+/-1.9 kcal/mol, in agreement with experiment. The use of numerous runs with three different force fields allows insights into the sources of uncertainty in the free energy and its components. The binding decreases partly because of a 7 kcal/mol higher cost to desolvate Lys upon binding, compared to Arg, due to better solvent interactions with the more concentrated Lys charge in the unbound state. This effect is expected to be general, contributing to the lower propensity of Lys to participate in protein-protein interfaces. Large contributions to the free energy change also arise from electrostatic interactions with groups up to 8 A away, namely residues 37-41 in the conserved effector domain of Ras (including 4 kcal/mol from Ser39 which loses a bifurcated hydrogen bond to Arg89), the conserved Lys84 and Lys87 of Raf, and 2-3 specific water molecules. This analysis will provide insights into the large experimental database of Ras-Raf mutations.  相似文献   

17.
    
Aspartate transcarbamylase is a large (310 kD), multisubunit protein that binds substrates cooperatively and undergoes a large change in quaternary structure when substrates bind. The forces that drive this transition are poorly understood. We evaluated the electrostatic component of these forces by using finite difference and multigrid methods to solve the nonlinear Poisson-Boltzmann equation for complexes of the enzyme with several substrates and substrate analogs. The results have been compared with calculations for the unliganded protein. While pK½ values of most ionizable residues fall within 3 pH units of values for model compounds, 31 have pK½ values that fall outside the range 0–17. Many of these residues are at the active site, where they interact with the highly charged substrate, in the 80s loop or 240s loop or interact with these loops. The pK½ values of eight ionizable residues related by the twofold molecular axes differ by more than 3 pH units, providing additional evidence for asymmetry within the crystal. As in the unliganded structure, a set of residues forms a network in which ionizable groups with Wij values greater than 2 kcal-m-1 are separated by distances greater than 5 Å. Some residues participate in this network in both the unliganded and N-phosphonacetyl-L-aspartate (PALA)-liganded structure, while others are found in only one structure. The network is more extensive in the PALA-liganded structure than in the unliganded structure, but consists of two separate networks in the two halves of the molecule. Proteins 32:200–210, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
    
Network theory methods and molecular dynamics (MD) simulations are accepted tools to study allosteric regulation. Indeed, dynamic networks built upon correlation analysis of MD trajectories provide detailed information about communication paths between distant sites. In this context, we aimed to understand whether the efficiency of intramolecular communication could be used to predict the allosteric potential of a given site. To this end, we performed MD simulations and network theory analyses in cathepsin K (catK), whose allosteric sites are well defined. To obtain a quantitative measure of the efficiency of communication, we designed a new protocol that enables the comparison between properties related to ensembles of communication paths obtained from different sites. Further, we applied our strategy to evaluate the allosteric potential of different catK cavities not yet considered for drug design. Our predictions of the allosteric potential based on intramolecular communication correlate well with previous catK experimental and theoretical data. We also discuss the possibility of applying our approach to other proteins from the same family.  相似文献   

19.
    
In this study, we have collected and screened a total of 268 stool samples from diarrheal patients admitted to an Infectious disease hospital in Kolkata for the presence of Cryptosporidium spp. The initial diagnosis was carried out by microscopy followed by genus specific polymerase chain reaction assays based on 70 kDa heat shock proteins (HSP70). DNA sequencing of the amplified locus has been employed for determination of genetic diversity of the local isolates. Out of 268 collected samples, 12 (4.48%) were positive for Cryptosporidium spp. Sequences analysis of 70 kDa heat shock proteins locus in 12 Cryptosporidium local isolates revealed that 2.24% and 1.86% of samples were showing 99% to 100% identity with C. parvum and C. hominis. Along with the other 2 major species one recently described globally distributed pathogenic species Cryptosporidium viatorum has been identified. The HSP70 locus sequence of the isolate showed 100% similarity with a previously described isolate of C. viatorum (Accession No. {\"type\":\"entrez-nucleotide\",\"attrs\":{\"text\":\"JX978274.1\",\"term_id\":\"441431305\",\"term_text\":\"JX978274.1\"}}JX978274.1, {\"type\":\"entrez-nucleotide\",\"attrs\":{\"text\":\"JX978273.1\",\"term_id\":\"441431303\",\"term_text\":\"JX978273.1\"}}JX978273.1, and {\"type\":\"entrez-nucleotide\",\"attrs\":{\"text\":\"JN846706.1\",\"term_id\":\"385399407\",\"term_text\":\"JN846706.1\"}}JN846706.1) present in GenBank.  相似文献   

20.
When eukaryotic cells are exposed to environmental stress such as elevated temperature, the synthesis of heat shock proteins (HSP) is stimulated. We have raised a monoclonal antibody to a 70 kDa cytoskeleton-associated protein; this antibody also appears to recognize HSPs 68, 70 and 90, as well as an additional 40 kDa non-heat shock protein. We have used this monoclonal antibody to study the localization of the 70 kDa protein in the cytoskeletons of NIL8 hamster fibroblasts. By selective sequential solubilization of the components of NIL8 cells and analysis of the resulting cytoskeletal preparations by Western blot technique and indirect immunofluorescence, we have shown that the 70 kDa protein is associated with microtubules in mitotic and interphase cells and comigrates with HSP70 on 2-dimensional gel electrophoretigrams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号