共查询到20条相似文献,搜索用时 15 毫秒
1.
Haq IU Khan MA Muneer B Hussain Z Afzal S Majeed S Rashid N Javed MM Ahmad I 《Biotechnology letters》2012,34(9):1703-1709
A genomic DNA fragment, encoding a thermotolerant β-glucosidase, of the obligate anaerobe Thermotoga petrophila RKU-1 was cloned after PCR amplification into Escherichia coli strain BL21 CodonPlus. The purified cloned enzyme was a monomeric, 51.5?kDa protein (by SDS-PAGE) encoded by 1.341?kb gene. The estimated K (m) and V (max) values against p-nitrophenyl-β-D-glucopyranoside were 2.8?mM and 42.7?mmol?min(-1)?mg(-1), respectively. The enzyme was also active against other p-nitrophenyl substrates. Possible catalytic sites involved in hydrolyzing different p-nitrophenyl substrates are proposed based on docking studies of enzyme with its substrates. Because of its unique characters, this enzyme is a potential candidate for industrial applications. 相似文献
2.
《Journal of Molecular Catalysis .B, Enzymatic》2009,61(3-4):119-124
A β-mannosidase gene (TM1624) from Thermotoga maritima MSB8, the hyperthermophilic bacterium was expressed as a soluble C-terminal His-tagged protein in E. coli. Heat treatment of cell lysate followed by metal affinity- and anion-exchange chromatographic techniques the recombinant β-mannosidase was purified to apparent homogeneity. The recovery of the purified protein from the crude lysate was 23%. Results of SDS-PAGE analysis (96.8 kDa) and gel permeation chromatography (93.2 kDa) indicated monomeric nature of the β-mannosidase protein. The enzyme displayed its maximal activity at pH 7.0 with pH stability over a range of pH 5.0–9.0. Similarly, the optimum temperature for maximal activity was found to be 95 °C and thermostability of up to 85 °C. The substrate specificity and kinetics of the enzyme was studied using different mannooligosaccharides and pNP-β-d-mannopyranoside. The Km value of the purified enzyme for pNPM was 0.49 mM. Different mannooligosaccharides tested as enzyme substrates were hydrolysed in an exo-wise manner when checked by thin-layer chromatography (TLC). The enzyme also exhibited transglycosidase activity when the reaction was carried out with 10% (w/v) of mannobiose in the presence of alcohols or galactose. Because of extreme thermostability and transglyocosylation properties of β-mannosidase from T. maritima, the enzyme may be of industrial applications in future. This is the first report on the purification and characterization of a β-mannosidase from T. maritima. 相似文献
3.
Souza TA Santos CR Souza AR Oldiges DP Ruller R Prade RA Squina FM Murakami MT 《Protein science : a publication of the Protein Society》2011,20(9):1632-1637
α‐L ‐arabinofuranosidases (EC 3.2.1.55) participate in the degradation of a variety of L ‐arabinose‐containing polysaccharides and interact synergistically with other hemicellulases in the production of oligosaccharides and bioconversion of lignocellulosic biomass into biofuels. In this work, the structure of a novel thermostable family 51 (GH51) α‐L ‐arabinofuranosidase from Thermotoga petrophila RKU‐1 (TpAraF) was determined at 3.1 Å resolution. The TpAraF tertiary structure consists of an (α/β)‐barrel catalytic core associated with a C‐terminal β‐sandwich domain, which is stabilized by hydrophobic contacts. In contrast to other structurally characterized GH51 AraFs, the accessory domain of TpAraF is intimately linked to the active site by a long β‐hairpin motif, which modifies the catalytic cavity in shape and volume. Sequence and structural analyses indicate that this motif is unique to Thermotoga AraFs. Small angle X‐ray scattering investigation showed that TpAraF assembles as a hexamer in solution and is preserved at the optimum catalytic temperature, 65°C, suggesting functional significance. Crystal packing analysis shows that the biological hexamer encompasses a dimer of trimers and the multiple oligomeric interfaces are predominantly fashioned by polar and electrostatic contacts. 相似文献
4.
Zhou Chen Yangliu Liu Lu Liu Yaoyao Chen Siting Li 《Preparative biochemistry & biotechnology》2013,43(7):671-678
AbstractAspergillus flavus has been regarded as a potential candidate for its production of industrial enzymes, but the details of β-glucosidase from this strain is very limited. In herein, we first reported a novel β-glucosidase (AfBglA) with the molecular mass of 94.2?kDa from A. flavus. AfBglA was optimally active at pH 4.5 and 60?°C and is stable between pH 3.5 and 9.0 and at a temperature of up to 55?°C for 30?min remaining more than 90% of its initial activity. It showed an excellent tolerance to Trypsin, Pepsin, Compound Protease, and Flavourzyme and its activity was not inhibited by specific certain cations. AfBglA displayed broad substrate specificity, it acted on all tested pNP-glycosides and barley glucan, indicating this novel β-glucosidase exhibited a β-1, 3-1, 4-glucanase activity. Moreover, the AfBglA could effectively hydrolyze the soybean meal suspension into glucose and exhibit a strong tolerance to the inhibition of glucose at a concentration of 20.0?g/L during the saccharification. The maximum amount of the glucose obtained by AfBglA corresponded to 67.0?g/kg soybean meal. All of these properties mentioned above indicated that the AfBglA possibly attractive for food and feed industry and saccharification of cellulolytic materials. 相似文献
5.
Fumiyoshi Okazaki Nanami Nakashima Chiaki Ogino Yutaka Tamaru Akihiko Kondo 《Applied microbiology and biotechnology》2013,97(15):6749-6757
The biochemical properties of a putative β-1,3-xylanase from the hyperthermophilic eubacterium Thermotoga neapolitana DSM 4359 were determined from a recombinant protein (TnXyn26A) expressed in Escherichia coli. This enzyme showed specific hydrolytic activity against β-1,3-xylan and released β-1,3-xylobiose and β-1,3-xylotriose as main products. It displayed maximum activity at 85 °C during a 10-min incubation, and its activity half-life was 23.9 h at 85 °C. Enzyme activity was stable in the pH range 3–10, with pH 6.5 being optimal. Enzyme activity was significantly inhibited by the presence of N-bromosuccinimide (NBS). The insoluble β-1,3-xylan K m value was 10.35 mg/ml and the k cat value was 588.24 s?1. The observed high thermostability and catalytic efficiency of TnXyn26A is both industrially desirable and also aids an understanding of the chemistry of its hydrolytic reaction. 相似文献
6.
7.
8.
An α-neoagarobiose hydrolase (α-NABH) from Cellulophaga sp. W5C, designated as AhgI, was identified, purified, and characterized. Its 1227 base pairs of coded sequence translate into a 408-amino acid protein that belongs to the GH117 family. Multiple sequence alignment of AhgI with other known α-NABHs showed 83% homology with AhgA from Zobellia galactanivorans. AhgI had an apparent molecular weight of 45 kDa and was highly active at pH 7.0 and 20 °C. The Km and Vmax values for neoagarobiose (NA2) were 1.03 mM and 10.22 U/mg, respectively. Apart from NA2, the enzyme showed activity against other neoagaro-oligosaccharides such as neoagarotetraose (NA4) and neoagarohexaose (NA6). AhgI was then employed in a prototype process to produce D-galactonate from Gelidium amansii. Agar from G. amansii was hydrothermally extracted and then enzymatically hydrolyzed by sequential addition of β-agarases and AhgI. The final hydrolysate containing D-galactose was then utilized for the microbial production of D-galactonate. This is believed to be the first report on the identification and characterization of an α-NABH derived from Cellulophaga species and its subsequent application in the synthesis of a value-added chemical directly from marine macroalgae. 相似文献
9.
A thermostable β-xylosidase gene Tpexyl3 from Thermotoga petrophila DSM 13,995 was cloned and overexpressed by Escherichia coli. Recombinant Tpexyl3 was purified, and its molecular weight was approximately 86.7 kDa. Its optimal activity was exhibited at pH 6.0 and 90 °C. It had broad specificity to xylopyranosyl, arabinopyranosyl, arabinofuranosyl and glucopyranosyl moieties. The β-xylosidase activity of the recombinant Tpexyl3 was 6.81 U/mL in the LB medium and 151.4 U/mL in a 7.5 L bio-reactor. It was applied to transform ginsenoside extract into the pharmacologically active minor ginsenoside 20(S)-Rg3, which was combined with thermostable β-glucosidase Tpebgl3. After transforming under optimal condition, the 20 g/L of ginsenoside extract was transformed into 6.28 g/L of Rg3 within 90 min, with a corresponding molar conversion of 95.0% and Rg3 productivity of 1793.49 mg/L/h, respectively. This study is the highest report of a GH3 family glycosidase with arabinopyranosidase activity and also the first report on the high substrate concentration bioconversion of ginsenoside extract to ginsenoside 20(S)-Rg3 by using two thermostable glycosidases. 相似文献
10.
In this study, a α-l-rhamnosidase gene from Bacteroides thetaiotaomicron VPI-5482 was cloned and expressed in Escherichia coli. The specific activity of rhamnosidase was 0.57 U/mg in LB medium with 0.1 mM Isopropyl β-d-Thiogalactoside (IPTG) induction at 28 °C for 8 h. The protein was purified by Ni-NTA affinity, which molecular weight approximately 83.3 kDa. The characterization of BtRha was determined. The optimal activity was at 55 °C and pH 6.5. The enzyme was stable in the pH range 5.0–8.0 for 4 h over 60%, and had a 1-h half-life at 50 °C. The Kcat and Km for p-nitrophenyl-α-l-rhamnopyranoside (pNPR) were 1743.29 s−1 and 2.87 mM, respectively. The α-l-rhamnosidase exhibited high selectivity to cleave the α-1,2 and α-1,6 glycosidic bond between rhamnoside and rhamnoside, rhamnoside and glycoside, respectively, which could hydrolyze rutin, hesperidin, epimedin C and 2″-O-rhamnosyl icariside II. Under the optimal conditions, BtRha transformed epimedin C (1 g/L) to icariin by 90.5% in 4 h. This study provides the first demonstration that the α-l-rhamnosidase could hydrolyze α-1,2 glycosidic bond between rhamnoside and rhamnoside. 相似文献
11.
12.
A thermostable beta-xylosidase from a hyperthermophilic bacterium, Thermotoga maritima, was over-expressed in Escherichia coli using the T7 polymerase expression system. The expressed beta-xylosidase was purified in two steps, heat treatment and immobilized metal affinity chromatography, and gave a single band on SDS-PAGE. The maximum activity on p-nitrophenyl beta-D-xylopyranoside was at 90 degrees C and pH 6.1. The purified enzyme had a half-life of over 22-min at 95 degrees C, and retained over 57% of its activity after holding a pH ranging from 5.4 to 8.5 for 1 h at 80 degrees C. Among all tested substrates, the purified enzyme had specific activities of 275, 50 and 29 U mg(-1) on pNPX, pNPAF, and pNPG, respectively. The apparent Michaelis constant of the beta-xylosidase was 0.13 mM for p NPX with a V (max) of 280 U mg(-1). When the purified beta-xylosidase was added to xylanase, corncob xylan was hydrolized completely to xylose. 相似文献
13.
Tony Marcio da Silva Michele Michelin Andre Ricardo de Lima Damásio Alexandre Maller Fausto Bruno Dos Reis Almeida Roberto Ruller Richard John Ward José Cesar Rosa João Atilio Jorge Héctor Francisco Terenzi Maria de Lourdes Teixeira de Moraes Polizeli 《Antonie van Leeuwenhoek》2009,96(4):569-578
An extracellular α-glucosidase produced by Aspergillus niveus was purified using DEAE-Fractogel ion-exchange chromatography and Sephacryl S-200 gel filtration. The purified protein migrated as a single band in 5% PAGE and 10% SDS–PAGE. The enzyme presented 29% of glycosylation, an isoelectric point of 6.8 and a molecular weight of 56 and 52 kDa as estimated by SDS-PAGE and Bio-Sil-Sec-400 gel filtration column, respectively. The enzyme showed typical α-glucosidase activity, hydrolyzing p-nitrophenyl α-d-glucopyranoside and presented an optimum temperature and pH of 65°C and 6.0, respectively. In the absence of substrate the purified α-glucosidase was stable for 60 min at 60°C, presenting t 50 of 90 min at 65°C. Hydrolysis of polysaccharide substrates by α-glucosidase decreased in the order of glycogen, amylose, starch and amylopectin. Among malto-oligosaccharides the enzyme preferentially hydrolyzed malto-oligosaccharide (G10), maltopentaose, maltotetraose, maltotriose and maltose. Isomaltose, trehalose and β-ciclodextrin were poor substrates, and sucrose and α-ciclodextrin were not hydrolyzed. After 2 h incubation, the products of starch hydrolysis measured by HPLC and thin layer chromatography showed only glucose. Mass spectrometry of tryptic peptides revealed peptide sequences similar to glucan 1,4-alpha-glucosidases from Aspergillus fumigatus, and Hypocrea jecorina. Analysis of the circular dichroism spectrum predicted an α-helical content of 31% and a β-sheet content of 16%, which is in agreement with values derived from analysis of the crystal structure of the H. jecorina enzyme. 相似文献
14.
《Process Biochemistry》2014,49(5):775-782
A novel β-galactosidase gene (Tnap1577) from the hyperthermophilic bacterium Thermotoga naphthophila RUK-10 was cloned and expressed in Escherichia coli BL21 (DE3) cells to produce β-galactosidase. The recombinant β-galactosidase was purified in three steps: heat treatment to deactivate E. coli proteins, Ni-NTA affinity chromatography and Q-sepharose chromatography. The optimum temperatures for the hydrolysis of o-nitrophenyl-β-d-galactoside (o-NPG) and lactose with the recombinant β-galactosidase were found to be 90 °C and 70 °C, respectively. The corresponding optimum pH values were 6.8 and 5.8, respectively. The molecular mass of the enzyme was estimated to be 70 kDa by SDS-PAGE analysis. Thermostability studies showed that the half-lives of the recombinant enzyme at 75 °C, 80 °C, 85 °C and 90 °C were 10.5, 4, 1, and 0.3 h, respectively. Kinetic studies on the recombinant β-galactosidase revealed Km values for the hydrolysis of o-NPG and lactose of 1.31 mM and 1.43 mM, respectively. These values are considerably lower than those reported for other hyperthermophilic β-galactosidases, indicating high intrinsic affinity for these substrates. The recombinant β-galactosidase from Thermotoga naphthophila RUK-10 also showed transglycosylation activity in the synthesis of alkyl galactopyranoside. This additional activity suggests the enzyme has potential for broader biotechnological applications beyond the degradation of lactose. 相似文献
15.
Ap-nitrophenyl--d-maltoside-hydrolyzing -glucosidase was purified and characterized from aBacillus subtilis high-temperature growth transformant (H-17), previously generated by transformation ofBacillus subtilis 25S withBacillus caldolyticus C2 DNA. The enzyme showed endo-oligo-1,4-glucosidase activity owing to its hydrolysis of linear malto-oligosaccharides to maltose and glucose, and pullulan hydrolase activity owing to its hydrolysis of pullulan to glucose, maltose, and (iso)panose. The enzyme was inactive againstp-nitrophenyl--d-glucopyranoside, maltose, isomaltose, isomaltotriose, and panose, but slightly hydrolyzed starch. The native structure of the enzyme is a dimer composed of two identical subunits of Mr 55,000. The enzyme had a pI of 4.8, pH optimum of 7.5, was 80% inhibited by 5 mM Tris-HCl, and had a Km value of 1.46 mM for the chromogenic substratep-nitrophenyl--d-maltoside. The enzyme showed optimal activity between 65° and 68°C, and retained 100% of initial activity after incubation at 65°C for 1 h. A minimum concentration of 0.02% 2-mercaptoethanol or 0.005 mM EDTA was required for thermostability. These physiochemical characteristics are similar to those for the previously described corresponding enzyme fromB. subtilis 25S, except that the same enzyme from the transformed strain was thermolabile. Amino acid analysis showed higher levels of alanine, glycine, and proline residues in the H-17 enzyme, compared with 25S. This may account for the enhanced thermostability, owing to increased internal hydrophobicity.Florida Agricultural Experiment Station Journal Series No. R-01123. 相似文献
16.
17.
The 2,367-bp ORF of TtAFase from Thermotoga thermarum DSM 5069 encodes a calculated 90-kDa α-l-arabinofuranosidase (TtAFase), which does not belonging to any reported glycosyl hydrolase families α-l-arabinofuranosidases in the database and represents a novel one of glycosyl hydrolase family 2. The purified recombinant TtAFase produced in Escherichia coli BL21 (DE3) had optimum activity at pH 5.5 and at 80 °C. It was stable up to 80 °C and from pH 4.5–8.5. Kinetic experiments at 80 °C with p-nitrophenyl α-l-arabinofuranoside as a substrate gave a K m of 0.77 mM, V max of 2.3 μmol mg?1 min?1 and k cat of 4.5 s?1. The enzyme had no apparent requirement of metal ions for activity, and its activity was significantly inhibited by Cu2+ or Zn2+. 相似文献
18.
A β-glucosidase gene (bglI) from Trichoderma reesei was cloned into the pPIC9 vector and integrated into the genome of Pichia pastoris GS115. Under the control of the methanol-inducible alcohol oxidase (AOX) promoter and using Saccharomyces
cerevisiae secretory signal peptide (α-factor), the recombinant β-glucosidase was expressed and secreted into the culture medium. The
maximum recombinant β-glucosidase activity achieved was 60 U/ml, and β-glucosidase expression reached 0.3 mg/ml. The recombinant
76 kDa β-glucosidase was purified 1.8-fold with 26% yield and a specific activity of 197 U/mg. It was optimally active at
70°C and pH 5.0. 相似文献
19.
Josef Gabelsberger Wolfgang Liebl Karl-Heinz Schleifer 《Applied microbiology and biotechnology》1993,40(1):44-52
A -glucosidase of the hyperthermophilic bacterium Thermotoga maritima has been purified from a recombinant Escherichia coli clone expressing the corresponding gene. The enzyme was found to be a dimer with an apparent molecular mass of approximately 95 kDa as determined by size exclusion chromatography. It was composed of two apparently identical subunits of about 47 kDa (determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis). The enzyme had a bbroadsubstrate specificity and attacked -glucoside, -galactoside, -fucoside, and, to a very small extent, also -xyloside substrates. -Glycosidic bonds were not hydrolysed. Kinetic measurement of the hydrolysis of o-nitrophenyl--d-glucopyranoside (oNPGlc) and o-nitrophenyl--d-galactopyranoside (oNPGal) in the concentration ranges 0.05–20 mm and 0.1–10 mm, respectively, at 75°C resulted in non-linear Lineweaver-Burk and Eadie-Hofstee 3lots whereas cellobiose and lactose did not induce this type of effect. Lactose caused substrate inhibition above 350 mm. The enzyme was optimally active at about pH 6.1. The T. maritima -glucosidase represents the most thermostable -glucosidase described to date. In 50 mm sodium phosphate buffer, pH 6.2, at an enzyme concentration of 50 g/ml, the pure enzyme without additives retained more than 60% of its initial activity after a 6-h incubation at 95°C.
Correspondence to: W. Liebl 相似文献
20.
A novel β-1,3-1,4-glucanase gene (AaBglu12A) from Aspergillus awamori was extracellularly expressed in Pichia pastoris. AaBglu12A showed amino acid identity of 96 % with a glycoside hydrolase family 12 cellulase from A. kawachii and 48 % with a β-1,3-1,4-glucanase from Magnaporthe oryzae. The highest β-1,3-1,4-glucanase activity of 159,500 ± 500 U/mL with protein concentration of 31.7 ± 0.3 g/L was achieved in a 5-L fermentor. AaBglu12A was purified until homogeneous with recovery yield of 92 %. Its maximal activity was found at 55 °C and pH 5.0. The enzyme was stable up to 60 °C and within the pH range of 2.0-9.0. It also demonstrated strict substrate specificity towards oat- and barley-glucans as well as lichenan. The Km values for oat-, barley-glucans, and lichenan were 2.82, 3.51, and 2.53 mg/mL, respectively. The Vmax values for oat-, barley-glucans, and lichenan were 12,068, 10,790, and 7236 μmol/min·mg, respectively. AaBglu12A hydrolyzed oat- and barley-β-glucans to produce tetra- and tri-saccharides. However, lichenan was hydrolyzed to yield trisaccharides as the main end product. The addition of AaBglu12A to the mashing process substantially decreased filtration time by 34.5 % and viscosity by 9.6 %. Therefore, the high-level production of AaBglu12A might be a promising strategy for the brewing industry owing to its favorable properties. 相似文献