首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
乳链菌肽前体基因(nisZ)在乳酸乳球菌中的克隆和表达   总被引:8,自引:1,他引:7  
用PCR技术从克隆有完整乳链菌肽生物合成基因簇(来自于乳链菌肽高产菌株L.lactis AL2)的重组噬菌体λHJ-3中扩增了编码乳链菌肽的前体基因,与pMG36e连接得到重组质粒pHJ201,用电击转化法将pHJ201转化到L.lactis NZ9800中,经活性测定和Tricine-SDS-PAGE电泳证实乳链菌肽前体基因获得了功能表达。DNA序列分析表明乳链菌肽高产菌株L.lactis AL2产生的是NisinZ。发现pHJ201d L.lactis NZ9800 中有良好的稳定性。  相似文献   

2.
Four lactobacilli strains (Lactobacillus bulgaricus, Lactobacillus acidophilus, Lactobacilus casei and Lactobacillus reuteri) were grown in MRS broth and three lactococci strains (Streptococcus thermophilus, Lactococcus lactis subsp. Lactis and Lactococcus lactis subsp. lactis biovar. diacetilactis) were grown in M17 broth. L. reuteri and S. thermophilus were chosen on the basis of the best mean beta-galactosidase activity of 10.44 and 10.01 U/ml respectively, for further studies on permeate-based medium. The maximum production of beta-galactosidase by L. reuteri was achieved at lactose concentration of 6%, initial pH 5.0-7.5, ammonium phosphate as nitrogen source at a concentration of 0.66 g N/L and incubation temperature at 30 degrees C/24 hrs to give 6.31 U/ml. While in case of S. thermophilus, maximum beta-galactosidase production was achieved at 10% lactose concentration of permeate medium, supplemented with phosphate buffer ratio of 0.5:0.5 (KH2PO4:K2HPO4, g/L), at initial pH 6.0-6.5, ammonium phosphate (0.66g N/L) as nitrogen source and incubation temperature 35 degrees C for 24 hrs to give 7.85 U/ml.  相似文献   

3.
Lactococcus lactis subsp. lactis strains show glutamate decarboxylase activity, whereas L. lactis subsp. cremoris strains do not. The gadB gene encoding glutamate decarboxylase was detected in the L. lactis subsp. cremoris genome but was poorly expressed. Sequence analysis showed that the gene is inactivated by the frameshift mutation and encoded in a nonfunctional protein.  相似文献   

4.
Citrate Fermentation by Lactococcus and Leuconostoc spp   总被引:1,自引:0,他引:1  
Citrate and lactose fermentation are subject to the same metabolic regulation. In both processes, pyruvate is the key intermediate. Lactococcus lactis subsp. lactis biovar diacetylactis homofermentatively converted pyruvate to lactate at high dilution (growth) rates, low pH, and high lactose concentrations. Mixed-acid fermentation with formate, ethanol, and acetate as products was observed under conditions of lactose limitation in continuous culture at pH values above 6.0. An acetoin/butanediol fermentation with alpha-acetolactate as an intermediate was found upon mild aeration in continuous culture and under conditions of excess pyruvate production from citrate. Leuconostoc spp. showed a limited metabolic flexibility. A typical heterofermentative conversion of lactose was observed under all conditions in both continuous and batch cultures. The pyruvate produced from either lactose or citrate was converted to d-lactate. Citrate utilization was pH dependent in both L. lactis and Leuconostoc spp., with maximum rates observed between pH 5.5 and 6.0. The maximum specific growth rate was slightly stimulated by citrate, in L. lactis and greatly stimulated by citrate in Leuconostoc spp., and the conversion of citrate resulted in increased growth yields on lactose for both L. lactis and Leuconostoc spp. This indicates that energy is conserved during the metabolism of citrate.  相似文献   

5.
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth.  相似文献   

6.
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth.  相似文献   

7.
Nisin-resistant Leuconostoc mesenteroides NCK293 and nisin-producing Lactococcus lactis subsp. lactis NCK401 were evaluated separately and in combination for growth and nisin production in a model sauerkraut fermentation. Strains were genetically marked and selectively enumerated by using antibiotic-containing media. The growth and survival of L. mesenteroides were similar in the presence and absence of Lactococcus lactis subsp. lactis. The growth of Lactococcus lactis subsp. lactis was not inhibited, although the maximum cell density was reduced and the population decline was more pronounced in the presence of L. mesenteroides. Nisin was detected within 24 h, and levels were relatively constant over the 12-day test period. The maximum cell populations and nisin level achieved could be altered by changing the initial cell ratios of L. mesenteroides and lactococcus lactis subsp. lactis. Isogenic nisin-producing and nisin-negative Lactococcus lactis subsp. lactis derivatives were used in combination with nisin-resistant L. mesenteroides to demonstrate that nisin levels produced in mixed culture were sufficient to retard the onset of the growth of nisin-sensitive, homofermentative Lactobacillus plantarum ATCC 14917.  相似文献   

8.
Lacticin, a bacteriocin produced by Lactobacillus delbrueckii subsp. lactis   总被引:2,自引:2,他引:0  
Twenty-one strains of Lactobacillus delbrueckii and L. helveticus were tested for bacteriocin production against each other. Lactobacillus delbrueckii subsp. lactis JCM 1106 and 1107 produced an inhibitory agent active against L. delbrueckii subsp. bulgaricus JCM 1002 and NIAI yB-62, L. delbrueckii subsp. lactis JCM 1248 and L. delbrueckii subsp. delbrueckii JCM 1012. Lactobacillus delbrueckii subsp. lactis JCM 1248 inhibited only the growth of L. delbrueckii subsp. bulgaricus NIAI yB-62. These agents were sensitive to proteolytic enzymes and heating (at 60°C for 10min). These agents were considered to be bacteriocins and designated lacticin A and B.  相似文献   

9.
AIMS: To investigate the growth and release of Lactococcus lactis subsp. lactis in gel beads and to affect rates of cell release by changing the growth conditions. METHODS AND RESULTS: The rate of release and the distribution of immobilized L. lactis subsp. lactis in alginate beads were studied in continuous fermentations for 48 h. A change in operating pH from 6.5 to 9.25 initially reduced the ratio of the rates of cell release to lactate production by almost a factor of 105. Compared with fermentations at pH 6.5, growth at pH 9.25 also increased the final internal bead biomass concentration by a factor of 5 and increased the final rate of lactate production by 25%. After 48 h, the ratio of the rates of cell release to lactate production was still 10 times lower than in fermentations at pH 6.5. CONCLUSIONS: A change in the operating pH from 6.5 to 9.25 reduced rates of cell release throughout 48 h of fermentation and increased the final rates of lactate production and internal bead biomass concentration. SIGNIFICANCE AND IMPACT OF THE STUDY: These data illustrate that diffusional limitations and corresponding pH gradients can be exploited in affecting the distribution of immobilized growing cells and their concomitant release.  相似文献   

10.
Nisin-resistant Leuconostoc mesenteroides NCK293 and nisin-producing Lactococcus lactis subsp. lactis NCK401 were evaluated separately and in combination for growth and nisin production in a model sauerkraut fermentation. Strains were genetically marked and selectively enumerated by using antibiotic-containing media. The growth and survival of L. mesenteroides were similar in the presence and absence of Lactococcus lactis subsp. lactis. The growth of Lactococcus lactis subsp. lactis was not inhibited, although the maximum cell density was reduced and the population decline was more pronounced in the presence of L. mesenteroides. Nisin was detected within 24 h, and levels were relatively constant over the 12-day test period. The maximum cell populations and nisin level achieved could be altered by changing the initial cell ratios of L. mesenteroides and lactococcus lactis subsp. lactis. Isogenic nisin-producing and nisin-negative Lactococcus lactis subsp. lactis derivatives were used in combination with nisin-resistant L. mesenteroides to demonstrate that nisin levels produced in mixed culture were sufficient to retard the onset of the growth of nisin-sensitive, homofermentative Lactobacillus plantarum ATCC 14917.  相似文献   

11.
为了在乳酸乳球菌中分泌表达具有生物活性的猪IL-18蛋白,并检测其生物活性,故通过分离猪外周血单核淋巴细胞(PBMC),以其为模板,采用RT-PCR方法扩增猪白细胞介素18(pIL-18)基因,将目的基因与乳酸乳球菌表达载体pAMJ399进行连接,并电转化至乳酸乳球菌MG1363中,通过SDS-PAGE和Western blotting分析检测目的蛋白的表达,并通过脾淋巴细胞增殖试验和细胞病变抑制法对pIL-18的生物活性进行检测。Western blotting分析检测结果与生物活性检测结果显示,在重组菌pAMJ399-pIL18/MG1363的上清和菌体沉淀中19 kDa处均出现pIL-18的特异蛋白反应带,且分泌表达的pIL-18蛋白能明显促进猪脾淋巴细胞的增殖,并对病毒增殖有明显的抑制作用。以上结果表明pIL-18可在乳酸乳球菌分泌表达,且表达产物具有良好的生物活性。  相似文献   

12.
A group of nine presumptive enterococci was isolated on enterococcal selective media Slanetz-Bartley agar and/or kanamycin-esculin-azide agar during a screening of Enterococcus spp. in surface waters. All strains formed a homogeneous cluster separated from all enterococcal species using rep-PCR fingerprinting with the (GTG)(5) primer but they matched fingerprints revealed by Lactococcus lactis subsp. lactis representatives. Further identification using extensive biotyping and automated ribotyping with EcoRI (RiboPrinter(R) microbial characterization system) confirmed all strains as L. lactis subsp. lactis in full correspondence with the (GTG)(5)-PCR. We demonstrated that L. lactis subsp. lactis strains occur in different surface waters and can be confused with enterococci due to their positive growth on selective enterococcal media as well as positive results in tests commonly used for identification of the genus Enterococcus (esculin hydrolysis, acetoin and pyrrolidonyl arylamidase production, growth at 10 degrees C and in 6.5% NaCl). The (GTG)(5)-PCR fingerprinting was revealed as a reliable and fast method for the identification of L. lactis subsp lactis while automated ribotyping with EcoRI proved to be a good tool for intrasubspecies typing purposes.  相似文献   

13.
The proteolytic system of Bifidobacterium animalis subsp. lactis was analyzed, and an intracellular endopeptidase (PepO) was identified and characterized. This work reports the first complete cloning, purification, and characterization of a proteolytic enzyme in Bifidobacterium spp. Aminopeptidase activities (general aminopeptidases, proline iminopeptidase, X-prolyl dipeptidylaminopeptidase) found in cell extracts of B. animalis subsp. lactis were higher for cells that had been grown in a milk-based medium than for those grown in MRS. A high specific proline iminopeptidase activity was observed in B. animalis subsp. lactis. Whole cells and cell wall-bound protein fractions showed no caseinolytic activity; however, the combined action of intracellular proteolytic enzymes could hydrolyze casein fractions rapidly. The endopeptidase activity of B. animalis subsp. lactis was examined in more detail, and the gene encoding an endopeptidase O in B. animalis subsp. lactis was cloned and overexpressed in Escherichia coli. The deduced amino acid sequence for B. animalis subsp. lactis PepO indicated that it is a member of the M13 peptidase family of zinc metallopeptidases and displays 67.4% sequence homology with the predicted PepO protein from Bifidobacterium longum. The recombinant enzyme was shown to be a 74-kDa monomer. Activity of B. animalis subsp. lactis PepO was found with oligopeptide substrates of at least 5 amino acid residues, such as met-enkephalin, and with larger substrates, such as the 23-amino-acid peptide alpha s1-casein(f1-23). The predominant peptide bond cleaved by B. animalis subsp. lactis PepO was on the N-terminal side of phenylalanine residues. The enzyme also showed a post-proline secondary cleavage site.  相似文献   

14.
The bactericidal activity of three bacteriocin-producing lactic acid bacteria alone and in combination with milk lactoperoxidase (LP) system activation against Listeria monocytogenes in refrigerated raw milk was studied. After 4 d at 4°C, the population of L. monocytogenes in milk inoculated with bacteriocin-producing Lactococcus lactis subsp. lactis ATCC 11454, L. lactis subsp. lactis ESI 515 or Enterococcus faecalis INIA 4 was reduced by 0·21–0·24 log units. Activation of the LP system did not enhance inhibition at this temperature. After 4 d at 8°C, L. monocytogenes levels in the non-activated LP system milk inoculated with L. lactis subsp. lactis ATCC 11454, L. lactis subsp. lactis ESI 515 or Ent. faecalis INIA 4 were reduced by 1·87, 1·54 and 1·11 log units compared to control milk, whereas in the activated LP system milk, this reduction was 1·99, 2·10 and 1·06, respectively. The higher nisin production by L. lactis subsp. lactis ESI 515 in milk with activated LP system than in non-activated LP system milk was responsible for the more pronounced decrease of L. monocytogenes counts in the former.  相似文献   

15.
Glutathione protects Lactococcus lactis against oxidative stress   总被引:2,自引:0,他引:2  
Glutathione was found in several dairy Lactococcus lactis strains grown in M17 medium. None of these strains was able to synthesize glutathione. In chemically defined medium, L. lactis subsp. cremoris strain SK11 was able to accumulate up to approximately 60 mM glutathione when this compound was added to the medium. Stationary-phase cells of strain SK11 grown in chemically defined medium supplemented with glutathione showed significantly increased resistance (up to fivefold increased resistance) to treatment with H2O2 compared to the resistance of cells without intracellular glutathione. The resistance to H2O2 treatment was found to be dependent on the accumulation of glutathione in 16 strains of L. lactis tested. We propose that by taking up glutathione, L. lactis might activate a glutathione-glutathione peroxidase-glutathione reductase system in stationary-phase cells, which catalyzes the reduction of H2O2. Glutathione reductase, which reduces oxidized glutathione, was detectable in most strains of L. lactis, but the activities of different strains were very variable. In general, the glutathione reductase activities of L. lactis subsp. lactis are higher than those of L. lactis subsp. cremoris, and the activities were much higher when strains were grown aerobically. In addition, glutathione peroxidase is detectable in strain SK11, and the level was fivefold greater when the organism was grown aerobically than when the organism was grown anaerobically. Therefore, the presence of glutathione in L. lactis could result in greater stability under storage conditions and quicker growth upon inoculation, two important attributes of successful starter cultures.  相似文献   

16.
A functional pyc gene was isolated from Lactococcus lactis subsp. lactis C2 and was found to complement a Pyc defect in L. lactis KB4. The deduced lactococcal Pyc protein was highly homologous to Pyc sequences of other bacteria. The pyc gene was also detected in Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis bv. diacetylactis strains.  相似文献   

17.
Four mutations observed between tripeptidases from Lactococcus lactis subsp. lactis and subsp. cremoris were introduced one by one to the corresponding points in wild-type tripeptidase from L. lactis subsp. lactis. The k(cat) values of four resultant mutants were analyzed and discussed in stereographical terms. Change in catalytic activity appeared to be related to the sequential and steric location of mutation point within the enzyme protein, even though no drastic change was observed with one point mutation.  相似文献   

18.
The enzyme pyruvate formate-lyase (PFL) from Lactococcus lactis was produced in Escherichia coli and purified to obtain anti-PFL antibodies that were shown to be specific for L. lactis PFL. It was demonstrated that activated L. lactis PFL was sensitive to oxygen, as in E. coli, resulting in the cleavage of the PFL polypeptide. The PFL protein level and its in vivo activity and regulation were shown by Western blotting, enzyme-linked immunosorbent assay, and metabolite measurement to be dependent on the growth conditions. The PFL level during anaerobic growth on the slowly fermentable sugar galactose was higher than that on glucose. This shows that variation in the PFL protein level may play an important role in the regulation of metabolic shift from homolactic to mixed-acid product formation, observed during growth on glucose and galactose, respectively. During anaerobic growth in defined medium, complete activation of PFL was observed. Strikingly, although no formate was produced during aerobic growth of L. lactis, PFL protein was indeed detected under these conditions, in which the enzyme is dispensable due to the irreversible inactivation of PFL by oxygen. In contrast, no oxygenolytic cleavage was detected during aerobic growth in complex medium. This observation may be the result of either an effective PFL deactivase activity or the lack of PFL activation. In E. coli, the PFL deactivase activity resides in the multifunctional alcohol dehydrogenase ADHE. It was shown that in L. lactis, ADHE does not participate in the protection of PFL against oxygen under the conditions analyzed. Our results provide evidence for major differences in the mechanisms of posttranslational regulation of PFL activity in E. coli and L. lactis.  相似文献   

19.
A beta-galactosidase gene from Clostridium acetobutylicum NCIB 2951 was expressed after cloning into pSA3 and electroporation into derivatives of Lactococcus lactis subsp. lactis strains H1 and 7962. When the clostridial gene was introduced into a plasmid-free derivative of the starter-type Lact. lactis subsp. lactis strain H1, the resulting construct had high beta-galactosidase activity but utilized lactose only slightly faster than the recipient. beta-galactosidase activity in the construct decreased by over 50% if the 63 kb Lac plasmid pDI21 was also present with the beta-galactosidase gene. Growth rates of Lac+ H1 and 7962 derivatives were not affected after introduction of the clostridial beta-galactosidase, even though beta-galactosidase activity in a 7962 construct was more than double that of the wild-type strain. When pDI21 was electroporated into a plasmid-free variant of strain 7962, the recombinant had high phospho-beta-galactosidase activity and a growth rate equal to that of the H1 wild-type strain. The H1 plasmid-free strain grew slowly in T5 complex medium, utilized lactose and contained low phospho-beta-galactosidase activity. We suggest that beta-galactosidase expression can be regulated by the lactose phosphotransferase system-tagatose pathway and that Lact. lactis subsp. lactis strain H1 has an inefficient permease for lactose and contains chromosomally-encoded phospho-beta-galactosidase genes.  相似文献   

20.
Comparative and functional genomics of lactococci   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号