首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Backgound

Long-term studies allow capture of a wide breadth of environmental variability and a broader context within which to maximize our understanding of relationships to specific aspects of wildlife behavior. The goal of our study was to improve our understanding of the biological value of dense conifer cover to deer on winter range relative to snow depth and ambient temperature.

Methodology/Principal Findings

We examined variation among deer in their use of dense conifer cover during a 12-year study period as potentially influenced by winter severity and cover availability. Female deer were fitted with a mixture of very high frequency (VHF, n = 267) and Global Positioning System (GPS, n = 24) collars for monitoring use of specific cover types at the population and individual levels, respectively. We developed habitat composites for four study sites. We fit multinomial response models to VHF (daytime) data to describe population-level use patterns as a function of snow depth, ambient temperature, and cover availability. To develop alternative hypotheses regarding expected spatio-temporal patterns in the use of dense conifer cover, we considered two sets of competing sub-hypotheses. The first set addressed whether or not dense conifer cover was limiting on the four study sites. The second set considered four alternative sub-hypotheses regarding the potential influence of snow depth and ambient temperature on space use patterns. Deer use of dense conifer cover increased the most with increasing snow depth and most abruptly on the two sites where it was most available, suggestive of an energy conservation strategy. Deer use of dense cover decreased the most with decreasing temperatures on the sites where it was most available. At all four sites deer made greater daytime use (55 to >80% probability of use) of open vegetation types at the lowest daily minimum temperatures indicating the importance of thermal benefits afforded from increased exposure to solar radiation. Date-time plots of GPS data (24 hr) allowed us to explore individual diurnal and seasonal patterns of habitat use relative to changes in snow depth. There was significant among-animal variability in their propensity to be found in three density classes of conifer cover and other open types, but little difference between diurnal and nocturnal patterns of habitat use.

Conclusions/Significance

Consistent with our findings reported elsewhere that snow depth has a greater impact on deer survival than ambient temperature, herein our population-level results highlight the importance of dense conifer cover as snow shelter rather than thermal cover. Collectively, our findings suggest that maximizing availability of dense conifer cover in an energetically beneficial arrangement with quality feeding sites should be a prominent component of habitat management for deer.  相似文献   

2.
3.
Continental tropical forests are thought to be resistant to alien plant invasion due to a lack of disturbance, or low propagule pressure from introduced species. We assessed the importance of disturbance and edge effects by surveying areas of submontane and lowland forest of Amani Nature Reserve in the East Usambara mountains, Tanzania. These areas are in the vicinity of Amani Botanic Garden (ABG)—a propagule source for many alien plant species. We surveyed three edges in the vicinity of the ABG plantations, using plots interspersed along multiple 250 m transects. Survey plots were either in secondary or seminatural forest, representing a difference in past disturbance). Alien plant species richness and abundance declined with increasing distance from forest edges, indicating that edge effects were important. In addition, the effect of distance on richness and abundance of alien species as adults was much smaller in seminatural than secondary forest, emphasizing that invasion of seminatural forest is less likely to occur. Abundance and occurrence of individual species showed broadly similar declines with increasing distance from the forest edge, and lower abundance in seminatural compared to secondary forest. Alien species were dominant in 15 percent of plots surveyed. As 28 percent of the Amani nature reserve forest is within 250 m of an edge, the importance of disturbance and edges could make a potentially large proportion of the forest vulnerable to alien species invasion.  相似文献   

4.
The invasion of North American forests by exotic earthworms is producing profound ecosystem changes, such as alterations in soil nutrient cycling, and redistribution and loss of soil organic matter. However, the present and future extent of these invasions is difficult to evaluate without a better understanding of the factors that control the distribution and abundance of earthworms in previously non-invaded habitats. In this study, the species composition and short-term dynamics of three exotic earthworm invasion fronts were studied at a northern hardwood forest in south-central New York State (USA). Belt transects were established at each of the three locations to sample from earthworm-invaded areas through transition zones and into invasion front areas. Lumbricus rubellus, L. terrestrisandOctolasion tyrtaeum were the most common species, but their distribution was not homogeneous along the transects. Whereas, L. rubellus was the only species with relatively high adult densities at transition zones and invasion fronts, L. terrestris and O. tyrtaeum occurred mostly in the heavily earthworm-invaded areas and were rare at the invasion fronts. The density of earthworms along the transects decreased by 60–87 from June 2001 to October 2002 and then recovered in 2003 to values similar to those of 2001. This decrease was apparently caused by reduced recruitment of immature earthworms, probably related to the severe drought periods that the study area experienced in 2001 and 2002. Our data suggest that climate and topography, through their effects on soil moisture patterns, can be critical factors controlling the distribution and spread of exotic earthworms in previously non-invaded habitats.  相似文献   

5.
Overabundant populations of ungulates have caused environmental degradation and loss of biological diversity in ecosystems throughout the world. Culling or regulated harvest is often used to control overabundant species. These methods are difficult to implement in national parks, other types of conservation reserves, or in residential areas where public hunting may be forbidden by policy. As a result, fertility control has been recommended as a non-lethal alternative for regulating ungulate populations. We evaluate this alternative using white-tailed deer in national parks in the vicinity of Washington, D.C., USA as a model system. Managers seek to reduce densities of white-tailed deer from the current average (50 deer per km2) to decrease harm to native plant communities caused by deer. We present a Bayesian hierarchical model using 13 years of population estimates from 8 national parks in the National Capital Region Network. We offer a novel way to evaluate management actions relative to goals using short term forecasts. Our approach confirms past analyses that fertility control is incapable of rapidly reducing deer abundance. Fertility control can be combined with culling to maintain a population below carrying capacity with a high probability of success. This gives managers confronted with problematic overabundance a framework for implementing management actions with a realistic assessment of uncertainty.  相似文献   

6.
Maternal care influences offspring quality and can improve a mother’s inclusive fitness. However, improved fitness may only occur when offspring quality (i.e., offspring birth mass) persists throughout life and enhances survival and/or reproductive success. Although maternal body mass, age, and social rank have been shown to influence offspring birth mass, the inter-dependence among these variables makes identifying causation problematic. We established that fawn birth mass was related to adult body mass for captive male and female white-tailed deer (Odocoileus virginianus), thus maternal care should improve offspring fitness. We then used path analysis to identify which maternal characteristic(s) most influenced fawn birth mass of captive female white-tailed deer. Maternal age, body mass and social rank had varying effects on fawn birth mass. Maternal body mass displayed the strongest direct effect on fawn birth mass, followed by maternal age and social rank. Maternal body mass had a greater effect on social rank than age. The direct path between social rank and fawn birth mass may indicate dominance as an underlying mechanism. Our results suggest that heavier mothers could use dominance to improve access to resources, resulting in increased fitness through production of heavier offspring.  相似文献   

7.
Abstract: Surgical sterilization by tubal ligation has been proposed as a technique for controlling white-tailed deer (Odocoileus virginianus) populations in urban or suburban areas where other forms of population control are impractical, but little is known about demographic rates in populations under management with surgical sterilization. We analyzed seasonal movement and mortality data collected during a 4-year study of surgical sterilization in suburban Chicago, Illinois, USA. We calculated 323 home range size estimates for 62 individual females within season and year. Non-gravid females without young exhibited home range sizes 52% larger than gravid females and females with fawns. Mortality rate was positively correlated with home range size. We suggest that the increased mortality rate observed in surgically sterilized females may be due to greater movement by non-maternal females. Population managers will need to account for potential effects of maternal status on movement and mortality when considering the use of sterilization for management of suburban populations of white-tailed deer.  相似文献   

8.
Basic knowledge of the previous forest types or ecosystem present in an area ought to be an essential part of all landscape restoration. Here, we present a detailed study of forest and land use history over the past 2,000 years, from a large estate in southernmost Sweden, which is currently undergoing a restoration program. In particular, the aim was to identify areas with long continuity of important tree species and open woodland conditions. We employed a multidisciplinary approach using paleoecological analyses (regional and local pollen, plant macrofossil, tree ring) and historical sources (taxation documents, land surveys, forest inventories). The estate has been dominated by temperate broad‐leaved trees over most of the studied period. When a forest type of Tilia, Corylus, and Quercus started to decline circa 1,000 years ago, it was largely replaced by Fagus. Even though extensive planting of Picea started in mid‐nineteenth century, Fagus and Quercus have remained rather common on the estate up to present time. Both species show continuity on different parts of the estate from eighteenth century up to present time, but in some stands, for the entire 2,000 years. Our suggestions for restoration do not aim for previous “natural” conditions but to maintain the spatial vegetational pattern created by the historical land use. This study gives an example of the spatial and temporal variation of the vegetation that has historically occurred within one area and emphasizes that information from one methodological technique provides only limited information about an area’s vegetation history.  相似文献   

9.
Introduced mammalian herbivores can significantly affect ecosystems. Here, I review evidence on effects of introduced mammalian herbivores in the temperate forest of the southern Andes. Available data suggest that introduced herbivores decrease the abundance of seedlings and saplings of dominant tree species in some forest types, which could impair forest regeneration. They also affect understory species composition. The mechanisms of the effects of introduced herbivores are complex, and include direct effects of browsing or trampling and more complex interactions such as indirect effects through other species. Some native mammalian and avian predators may benefit from increased food availability resulting from high densities of some introduced mammalian herbivores. In turn, enhanced populations of predators may have resulted in increased predation on native prey. Competition for resources and disease transmission have also been proposed as possible negative effects of introduced herbivores on native herbivores, but little evidence supports this claim. Little is known about effects on invertebrates.  相似文献   

10.
We compared the biogeochemical cycling of phosphorus (P) in northern hardwood forest plots invaded by exotic earthworms versus adjacent uninvaded reference plots. In three of the six pairs of plots, earthworm invasion resulted in significantly more total P in the upper 12 cm of soil. The finding of increased amounts of unavailable and occluded inorganic P forms in the invaded plots suggests that earthworm activity mobilized unweathered soil particles from deeper layers of the soil, increasing the stocks of total P in surface soils. In two pairs of plots, the earthworm-invaded soils had less total P than the reference soils. In these plots, earthworm activity resulted in augmented rates of P cycling and alteration of the physical structure of the soil that increased loss of P in leaching water, reducing the total amount of P. We hypothesize that the different effects of earthworm invasion on the soil P cycle result from unique characteristics of the ecological groups of earthworms dominating each site. The invaded plots with increased total P were dominated by the anecic species Lumbricus terrestris, a large earthworm that constructs deep, vertical burrows and is effective at moving soil materials from and to deeper layers of the profile. In contrast, the earthworm-invaded plots where the total P in the surface soil decreased were dominated by the epi-endogeic species L. rubellus, which feeds and lives in the upper organic layers of the soil. In these plots, earthworms significantly increased the amount of readily exchangeable P in the soil, increasing the loss of this element in leaching water.  相似文献   

11.
To ensure indicators of ecosystem health are integrated into environmental decision-making, it is imperative to provide a comprehensive framework for indicator selection and use. The same framework can also be used to evaluate the utility of any given indicator. The Atlantic Slope Consortium (ASC) has developed such a framework, based upon three primary elements: 1) The specific questions to be answered (the type of indicator), recognizing the following types of questions/indicators: Condition assessment: snapshot of the current state of the system; Stressor diagnosis: identification of causative factors of condition; Communication to the public: encouraging comprehension of condition in its most elementary or integrated form; Futures assessment: estimating the probable trajectory of condition, or assessing the vulnerability of any system to a stochastic event; Evaluation: a subset of condition indicators that evaluate the effectiveness of management actions. 2) The spatial and/or temporal scale of the issue being addressed (the spatial/temporal scale over which the indicator is valid). 3) The context of the question, using categories of surrounding land use as surrogates for social choices. A Fish Community Index (FCI) developed for the ASC will provide an example of utilizing the framework to select an indicator, as well as using the framework to judge the utility of the indicator.  相似文献   

12.
13.
The anthropogenic spread of exotic ecosystem engineers profoundly impacts native ecosystems. Exotic earthworms were shown to alter plant community composition of the understory of deciduous forests previously devoid of earthworms. We investigated the effect of two exotic earthworm species (Lumbricus terrestris L. and Octolasion tyrtaeum Savigny) belonging to different ecological groups (anecic and endogeic) on the emergence of plants from the seed bank of a northern North American deciduous forest using the seedling emergence method. We hypothesized that (1) exotic earthworms change the seedling emergence from the plant seed bank, (2) L. terrestris increases the emergence of plant seedlings of the deeper soil layer but decreases that of the upper soil layer due to plant seed burial, and (3) O. tyrtaeum decreases plant seedling emergence due the damage of plant seeds. Indeed, exotic earthworms altered the emergence of plant seedlings from the seed bank and the functional composition of the established plant seedlings. Surprisingly, although L. terrestris only marginally affected seedling emergence, O. tyrtaeum changed the emergence of native plant species from the seed bank considerably. In particular, the number of emerging grass and herb seedlings were increased in the presence of O. tyrtaeum in both soil layers. Moreover, the impacts of earthworms depended on the identity of plant functional groups; herb species benefited, whereas legumes suffered from the presence of exotic earthworms. The results highlight the strong effect of invasive belowground ecosystem engineers on aboveground ecosystem characteristics and suggest fundamental changes of ecosystems by human-spread earthworm species.  相似文献   

14.
Nitrogen Fixation in the Canopy of Temperate Forest Trees: A Re-examination   总被引:1,自引:0,他引:1  
JONES  K. 《Annals of botany》1982,50(3):329-334
15N2 studies and acetylene reduction assays of leaves and shootsof Douglas fir and other forest trees do not confirm previousreports that extensive nitrogen fixation occurs on leaf surfacesand it is concluded that the importance of nitrogen fixationin the canopy of forest trees has been exaggerated. The presenceof nitrogen-fixing bacteria on the leaves of trees is confirmed,however, and they have been identified as Enterobacter agglomerans,Clostridium butyricum and Bacillus sp. Their distribution onleaves is fortuitous since dead oak leaves and artificial leavesbecome colonized to the same extent as living oak leaves. nitrogen fixation, acetylene reduction, Enterobacter agglomerans, Clostridium butyricum, Bacillus sp, Douglas fir, Pseudotsuga menziensii, larch, Larix x oak, Quercus petraea.  相似文献   

15.
We examined the spatial pattern of an introduced population of Norway maple (Acer platanoides L.) on a temperate forested island in order to quantify the influence of landscape context on invasion pattern. The spatial location of every Norway maple tree and sapling (≥0.5 m tall) that had invaded the island forest (n = 4496) was mapped using a global positioning system. The influence of landscape context was examined with the aid of a geographic information system and indices of spatial association. We found that the coniferous forest type was the most heavily invaded (71.9% of all Norway maple stems) when compared to either the hardwood or mixed conifer–hardwood forest types (5.4% and 19.3%, respectively). Across all forest types (excluding urban trees), the population was highly aggregated around roads and other Norway maple trees. For example, 90% of the population was within 40.8 m of a road with an average distance from road of 21.02 ± 0.40 m. This association around roads was significantly greater than would be predicted by chance alone (P < 0.001). Similarly, nearest neighbor distances averaged 4.5 ± 0.2 m with 90% of individuals within 8.3 m of another Norway maple. Measures of spatial association indicated that the invasion was significantly aggregated at both the stand and island scale. Nevertheless, a comparatively small but potentially influential set of individuals were observed at relatively long distances from the main invasion front. Ramifications of these disjunct establishments and other observed patterns are discussed in the context of current spread pattern theory, invasive species monitoring, and control efforts.  相似文献   

16.
Abstract: We assessed winter forage selection by white-tailed deer (Odocoileus virginianus) on Anticosti Island, Quebec, Canada, using cafeteria-feeding trials. Winter habitat on Anticosti is degraded and free-ranging deer at high densities consume 70% balsam fir (Abies balsamea) and 20% white spruce (Picea glauca), even though spruce is much more available than fir. Deer ate 89.9% balsam fir and 10.1% white spruce when the availability of both trees was equal. Deer did not eat shredded twigs more than intact twigs. Fiber content and condensed tannins were greater in white spruce than in balsam fir. Deer preference for fir was not based on texture but, more likely, on plant constituents, so we concluded that deer will nearly eliminate fir before they use any significant amount of white spruce. Management actions, therefore, need to be undertaken to enhance balsam fir regeneration.  相似文献   

17.
Invasive species, local plant communities and invaded ecosystems change over space and time. Quantifying this change may lead to a better understanding of the ecology and the effective management of invasive species. We used data on density of the highly invasive shrub Lantana camara (lantana) for the period 1990–2008 from a 50 ha permanent plot in a seasonally dry tropical forest of Mudumalai in southern India. We used a cumulative link mixed-effects regression approach to model the transition of lantana from one qualitative density state to another as a function of biotic factors such as indicators of competition from local species (lantana itself, perennial grasses, invasive Chromolaena odorata, the native shrub Helicteres isora and basal area of native trees) and abiotic factors such as fire frequency, inter-annual variability of rainfall and relative soil moisture. The density of lantana increased substantially during the study period. Lantana density was negatively associated with the density of H. isora, positively associated with basal area of native trees, but not affected by the presence of grasses or other invasive species. In the absence of fire, lantana density increased with increasing rainfall. When fires occurred, transitions to higher densities occurred at low rainfall values. In drier regions, lantana changed from low to high density as rainfall increased while in wetter regions of the plot, lantana persisted in the dense category irrespective of rainfall. Lantana seems to effectively utilize resources distributed in space and time to its advantage, thus outcompeting local species and maintaining a population that is not yet self-limiting. High-risk areas and years could potentially be identified based on inferences from this study for facilitating management of lantana in tropical dry forests.  相似文献   

18.
Dissolved organic matter (DOM) plays an important role in transporting carbon and nitrogen from forest floor to mineral soils in temperate forest ecosystems. Thus, the retention of DOM via sorption or microbial assimilation is one of the critical steps for soil organic matter formation in mineral soils. The chemical properties of DOM are assumed to control these processes, yet we lack fundamental information that links litter quality, DOM chemistry, and DOM retention. Here, we studied whether differences in litter quality affect solution chemistry and whether changes in litter inputs affect DOM quality and removal in the field. The effects of litter quality on solution chemistry were evaluated using chemical fractionation methods for laboratory extracts and for soil water collected from a temperate coniferous forest where litter inputs had been altered. In a laboratory extraction, litter type (needle, wood, root) and the degree of decomposition strongly influenced solution chemistry. Root litter produced more than 10 times more water-extractable dissolved organic N (DON) than any other litter type, suggesting that root litter may be most responsible for DON production in this forest ecosystem. The chemical composition of the O-horizon leachate was similar under all field treatments (doubled needle, doubled wood, and normal litter inputs). O-horizon leachate most resembled laboratory extracts of well-decomposed litter (that is, a high proportion of hydrophobic acids), in spite of the significant amount of litter C added to the forest floor and a tendency toward higher mean DOM under doubled-Litter treatments. A lag in DOM production from added litter or microbial modification might have obscured chemical differences in DOM under the different treatments. Net DOM removal in this forest soil was strong; DOM concentration in the water deep in the mineral soil was always low regardless of concentrations in water that entered the mineral soil and of litter input manipulation. High net removal of DOM from O-horizon leachate, in spite of extremely low initial hydrophilic neutral content (labile DOM), coupled with the lack of influence by season or soil depth, suggests that DOM retention in the soil was mostly by abiotic sorption.  相似文献   

19.
Although studies on edge effects on species richness and abundance are numerous, the responses of ecosystem processes to these effects have received considerably less attention. How ecosystem processes respond to edge effects is particularly important in temperate forests, where small fragments and edge habitats form a considerable proportion of the total forest area. Soil fauna are key contributors to decomposition and soil biogeochemical cycling processes. Using the bait lamina technique, we quantified soil fauna feeding activity, and its dependence on soil moisture and distance to the edge in a broad-leaved forest in Southern England. Feeding activity was 40% lower at the forest edge than in the interior, and the depth of edge influence was approximately 75 m. A watering treatment showed that moisture limitation was the main driver of the reduced feeding activity at the edge. In England, only 33% of the forest area is greater than 75 m from the edge. Therefore, assuming that the results from this single-site study are representative for the landscape, it implies that only one- third of the forest area in England supports activity levels typical for the forest core, and that edge effects reduce the mean feeding activity across the landscape by 17% (with lower and upper 90% confidence intervals of 1.3 and 23%, respectively). Changing climatic conditions, such as summer droughts may exacerbate such effects as edges lose water faster than the forest interior. The results highlight the importance of taking edge effects into account in ecological studies and forest management planning in highly fragmented landscapes.  相似文献   

20.
The success of restoration plantings in restoring indigenous forest vascular plant and ground invertebrate biodiversity was assessed on previously grass-covered sites in the eastern South Island, New Zealand. The composition and structure of grassland, three different aged restoration plantings (12, 30, and 35 years old), a naturally regenerating forest (100 years old), and a remnant of the original old-growth forest of the area were measured. The restoration plantings are dominated by the native tree Olearia paniculata, which is not indigenous to the study area. Despite this, indigenous forest invertebrate and plant species are present in all three restoration sites and with increasing age the restoration sites become compositionally more similar to the naturally regenerating and mature forest sites. In particular the regenerating vegetation of the restoration sites is very similar floristically to the regenerating vegetation of the naturally regenerating and mature forest sites, despite marked differences in the current canopy vegetation reflecting the presence of the planted O. paniculata. The presence of regeneration in all three restoration sites indicates that the functional processes that initiate regeneration, such as dispersal, are present. The majority of regenerating tree species (71%) are bird dispersed and it is clear that birds play an important role in the recolonization of plant species at these sites despite the absence of edible fruit attractive to frugivorous birds on O. paniculata, a wind-dispersed species. The strong correlations between plant and invertebrate community composition and study-site age (r = 0.80, ?0.24, ?0.68 for plants, beetles, and spiders, respectively) suggest that the restoration site plant and invertebrate communities are undergoing change in the direction of the naturally regenerating and mature forest communities. Without restoration, colonization of grassland by forest plants is very slow in the study area and the restoration plantings studied here have been successful because they have considerably accelerated the return to forest at these sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号