首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
异化金属还原菌的研究进展   总被引:5,自引:0,他引:5  
微生物利用金属氧化物作呼吸作用的最终电子受体是一种新的代谢途径。该过程微生物利用有机底物异化还原金属氧化物进行生长代谢。异化金属还原菌对于研究探索古生物呼吸形式、界定生命的上限温度等生命科学问题具有重要研究价值,同时在生物整治、微生物燃料电池等方面具有广阔的应用前景。对异化金属还原菌进行了综述,并对这类菌的研究应用给了评述和展望。  相似文献   

2.
This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.  相似文献   

3.
Biofilms formed in aerobic seawater on stainless steel are known to be efficient catalysts of the electrochemical reduction of oxygen. Based on their genomic analysis, seven bacterial isolates were selected and a cyclic voltammetry (CV) procedure was implemented to check their electrocatalytic activity towards oxygen reduction. All isolates exhibited close catalytic characteristics. Comparison between CVs recorded with glassy carbon and pyrolytic graphite electrodes showed that the catalytic effect was not correlated with the surface area covered by the cells. The low catalytic effect obtained with filtered isolates indicated the involvement of released redox compounds, which was confirmed by CVs performed with adsorbed iron-porphyrin. None of the isolates were able to form electro-active biofilms under constant polarization. The capacity to catalyze oxygen reduction is shown to be a widespread property among bacteria, but the property detected by CV does not necessarily confer the ability to achieve stable oxygen reduction under constant polarization.  相似文献   

4.
微生物燃料电池中产电微生物的研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
产电微生物是微生物燃料电池系统的核心组成, 本文从生物学角度介绍了几种产电微生物的分类学地位、形态特征、生理生化特征及在微生物燃料电池中的产电机理和产电能力, 分析了利用产电微生物进行废水处理同时生物发电的应用前景, 提出产电微生物在MFC系统中的进一步研究方向为微生物的富集、驯化、改造和多种菌种优化组合等。  相似文献   

5.
A low-cost and effective iron-chelated catalyst was developed as an electrocatalyst for the oxygen reduction reaction (ORR) in microbial fuel cells (MFCs). The catalyst was prepared by pyrolyzing carbon mixed iron-chelated ethylenediaminetetraacetic acid (PFeEDTA/C) in an argon atmosphere. Cyclic voltammetry measurements showed that PFeEDTA/C had a high catalytic activity for ORR. The MFC with a PFeEDTA/C cathode produced a maximum power density of 1122 mW/m2, which was close to that with a Pt/C cathode (1166 mW/m2). The PFeEDTA/C was stable during an operation period of 31 days. Based on X-ray diffraction and X-ray photoelectron spectroscopy measurements, quaternary-N modified with iron might be the active site for the oxygen reduction reaction. The total cost of a PFeEDTA/C catalyst was much lower than that of a Pt catalyst. Thus, PFeEDTA/C can be a good alternative to Pt in MFC practical applications.  相似文献   

6.
Wang A  Sun D  Cao G  Wang H  Ren N  Wu WM  Logan BE 《Bioresource technology》2011,102(5):4137-4143
Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m3 H2/m3/d (based on the MEC volume), and a yield of 33.2 mmol H2/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H2/g cellulose, with a total hydrogen production rate of 0.24 m3 H2/m3/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input.  相似文献   

7.
Tao HC  Li W  Liang M  Xu N  Ni JR  Wu WM 《Bioresource technology》2011,102(7):4774-4778
A membrane-free baffled microbial fuel cell (MFC) was developed to treat synthetic Cu(II) sulfate containing wastewater in cathode chamber and synthetic glucose-containing wastewater fed to anode chamber. Maximum power density of 314 mW/m3 with columbic efficiency of 5.3% was obtained using initial Cu2+ concentration of 6400 mg/L. Higher current density favored the cathodic reduction of Cu2+, and removal of Cu2+ by 70% was observed within 144 h using initial concentration of 500 mg/L. Powder X-ray diffraction (XRD) analysis indicated that the Cu2+ was reduced to Cu2O or Cu2O plus Cu which deposited on the cathode, and the deficient cathodic reducibility resulted in the formation of Cu4(OH)6SO4 at high initial Cu2+ concentration (500-6400 mg/L). This study suggested a novel low-cost approach to remove and recover Cu(II) from Cu2+-containing wastewater using MFC-type reactor.  相似文献   

8.
Zhu F  Wang W  Zhang X  Tao G 《Bioresource technology》2011,102(15):7324-7328
A novel membrane-less microbial fuel cell (MFC) with down-flow feeding was constructed to generate electricity. Wastewater was fed directly onto the cathode which was horizontally installed in the upper part of the MFC. Oxygen could be utilized readily from the air. The concentration of dissolved oxygen in the influent wastewater had little effect on the power generation. A saturation-type relationship was observed between the initial COD and the power generation. The influent flow rate could affect greatly the power density. Fed by the synthetic glucose wastewater with a COD value of 3500 mg/L at a flow rate of 4.0 mL/min, the developed MFC could produce a maximum power density of 37.4 mW/m2. Its applicability was further evaluated by the treatment of brewery wastewater. The system could be scaled up readily due to its simple configuration, easy operation and relatively high power density.  相似文献   

9.
Effective wastewater treatment using microbial fuel cells (MFCs) will require a better understanding of how operational parameters and solution chemistry affect treatment efficiency, but few studies have examined power generation using actual wastewaters. The efficiency of wastewater treatment of a beer brewery wastewater was examined here in terms of maximum power densities, Coulombic efficiencies (CEs), and chemical oxygen demand (COD) removal as a function of temperature and wastewater strength. Decreasing the temperature from 30°C to 20°C reduced the maximum power density from 205 mW/m2 (5.1 W/m3, 0.76 A/m2; 30°C) to 170 mW/m2 (20°C). COD removals (R COD) and CEs decreased only slightly with temperature. The buffering capacity strongly affected reactor performance. The addition of a 50-mM phosphate buffer increased power output by 136% to 438 mW/m2, and 200 mM buffer increased power by 158% to 528 mW/m2. In the absence of salts (NaCl), maximum power output varied linearly with wastewater strength (84 to 2,240 mg COD/L) from 29 to 205 mW/m2. When NaCl was added to increase conductivity, power output followed a Monod-like relationship with wastewater strength. The maximum power (P max) increased in proportion to the solution conductivity, but the half-saturation constant was relatively unaffected and showed no correlation to solution conductivity. These results show that brewery wastewater can be effectively treated using MFCs, but that achievable power densities will depend on wastewater strength, solution conductivity, and buffering capacity.  相似文献   

10.
Liu Z  Liu J  Zhang S  Xing XH  Su Z 《Bioresource technology》2011,102(22):10221-10229
A wall-jet microbial fuel cell (MFC) was developed for the monitoring of anaerobic digestion (AD). This biofilm based MFC biosensor had a character of being portable, short hydraulic retention time (HRT) for sample flow through and convenient for continuous operation. The MFC was installed in the recirculation loop of an upflow anaerobic fixed-bed (UAFB) reactor in bench-scale where pH of the fermentation broth and biogas flow were monitored in real time. External disturbances to the AD were added on purpose by changing feedstock concentration, as well as process configuration. MFC signals had good correlations with online measurements (i.e. pH, gas flow rate) and offline analysis (i.e. COD) over 6-month operation. These results suggest that the MFC signal can reflect the dynamic variation of AD and can potentially be a valuable tool for monitoring and control of bioprocess.  相似文献   

11.
Wang G  Huang L  Zhang Y 《Biotechnology letters》2008,30(11):1959-1966
A novel approach to Cr(VI)-contaminated wastewater treatment was investigated using microbial fuel cell technologies in fed-batch mode. By using synthetic Cr(VI)-containing wastewater as catholyte and anaerobic microorganisms as anodic biocatalyst, Cr(VI) at 100 mg/l was completely removed during 150 h (initial pH 2). The maximum power density of 150 mW/m2 (0.04 mA/cm2) and the maximum open circuit voltage of 0.91 V were generated with Cr(VI) at 200 mg/l as electron acceptor. This work verifies the possibility of simultaneous electricity production and cathodic Cr(VI) reduction.  相似文献   

12.
  总被引:4,自引:0,他引:4  
A facultative anaerobic bacterium was isolated from a mediator-less microbial fuel cell fed with artificial wastewater containing acetate and designated as PA3. The isolate was identified as a strain of Aeromonas hydrophila based on its biochemical, physiological and morphological characteristics as well as 16S rDNA sequence analysis and DNA-DNA hybridization. PA3 used glucose, glycerol, pyruvate and hydrogen to reduce Fe(III), nitrate and sulfate. Cyclic voltammetry showed that PA3 was electrochemically active and was the culture collection strain A. hydrophila KCTC 2358. Electricity was generated from a fuel cell-type reactor, the anode compartment of which was inoculated with cell suspensions of the isolate or A. hydrophila KCTC 2358. The electrochemical activities are novel characteristics of A. hydrophila.  相似文献   

13.
Liu L  Yuan Y  Li FB  Feng CH 《Bioresource technology》2011,102(3):2468-2473
Cr(VI) was reduced in-situ at a carbon felt cathode in an air-cathode dual-chamber microbial fuel cell (MFC). The reduction of Cr(VI) was proven to be strongly associated with the electrogenerated H2O2 at the cathode driven by iron-reducing bacteria. At pH 2.0, only 42.5% of Cr(VI) was reduced after 12 h in the nitrogen-bubbling-cathode MFC, while complete reduction of Cr(VI) was achieved in 4 h in the air-bubbling-cathode MFC in which the reduction of oxygen to H2O2 was confirmed. Conditions that affected the efficiency of the reduction of Cr(VI) were evaluated experimentally, including the cathodic electrolyte pH, the type of iron-reducing species, and the addition of redox mediators. The results showed that the efficient reduction of Cr(VI) could be achieved with an air-bubbling-cathode MFC.  相似文献   

14.
Co-naphthalocyanine (CoNPc) was prepared by heat treatment for cathode catalysts to be used in microbial fuel cells (MFCs). Four different catalysts (Carbon black, NPc/C, CoNPc/C, Pt/C) were compared and characterized using XPS, EDAX and TEM. The electrochemical characteristics of oxygen reduction reaction (ORR) were compared by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The Co-macrocyclic complex improves the catalyst dispersion and oxygen reduction reaction of CoNPc/C. The maximum power of CoNPc/C was 64.7 mW/m2 at 0.25 mA as compared with 81.3 mW/m2 of Pt/C, 29.7 mW/m2 of NPc/C and 9.3 mW/m2 of carbon black when the cathodes were implemented in H-type MFCs. The steady state cell, cathode and anode potential of MFC with using CoNPc/C were comparable to those of Pt/C.  相似文献   

15.
Construction of efficient performance of microbial fuel cells (MFCs) requires certain practical considerations. In the single chamber microbial fuel cell, there is no border between the anode and the cathode, thus the diffusion of the dissolved oxygen has a contrary effect on the anodic respiration and this leads to the inhibition of the direct electron transfer from the biofilm to the anodic surface. Here, a fed-batch single chambered microbial fuel cells are constructed with different distances 3 and 6?cm (anode- cathode spacing), while keeping the working volume is constant. The performance of each MFC is individually evaluated under the effects of vitamins & minerals with acetate as a fed load. The maximum open circuit potential during testing the 3 and 6?cm microbial fuel cells is about 946 and 791?mV respectively. By decreasing the distance between the anode and the cathode from 6 to 3?cm, the power density is decreased from 108.3?mW?m?2 to 24.5?mW?m?2. Thus, the short distance in membrane-less MFC weakened the cathode and inhibited the anodic respiration which affects the overall performance of the MFC efficiency. The system is displayed a maximum potential of 564 and 791?mV in absence & presence of vitamins respectively. Eventually, the overall functions of the acetate single chamber microbial fuel cell can be improved by the addition of vitamins & minerals and increasing the distance between the cathode and the anode.  相似文献   

16.
The growth of the yeast Saccharomyces cerevisiae, the fungus Rhizopus nigricans and Nicotiana tabacum cells with perfluorodecalin as an oxygen carrier has been studied. The volumetric mass transfer coefficient (kLa) measured by the dynamic method was higher for the perfluorodecalin oxygenation system than for the conventional aeration system. The results show that perfluorocarbon can be successfully used as an efficient gas carrier, especially for the culture of delicate plant cells. The increase in yeast biomass in the suspension culture aerated by perfluorodecalin was as much as 110% higher than in the culture aerated by air. The fungus R. nigricans grew better when the conventional aeration system was used due to the fact that growth of the mycelium is limited by the transport of oxygen by diffusion in the pellets rather than by interfacial oxygen transport. In the case of isolated tobacco cells, an increase of over 350% in biomass growth was observed for the PFC aeration system.  相似文献   

17.
Recent advances in the separators for microbial fuel cells   总被引:2,自引:0,他引:2  
Separator plays an important role in microbial fuel cells (MFCs). Despite of the rapid development of separators in recent years, there are remaining barriers such as proton transfer limitation and oxygen leakage, which increase the internal resistance and decrease the MFC performance, and thus limit the practical application of MFCs. In this review, various separator materials, including cation exchange membrane, anion exchange membrane, bipolar membrane, microfiltration membrane, ultrafiltration membranes, porous fabrics, glass fibers, J-Cloth and salt bridge, are systematically compared. In addition, recent progresses in separator configuration, especially the development of separator electrode assemblies, are summarized. The advances in separator materials and configurations have opened up new promises to overcome these limitations, but challenges remain for the practical application. Here, an outlook for future development and scaling-up of MFC separators is presented and some suggestions are highlighted.  相似文献   

18.
Microbial desalination cells (MDCs) hold great promise for drinking water production because of potential energy savings during the desalination process. In this study, we developed a continuously operated MDC - upflow microbial desalination cell (UMDC) for the purpose of salt removal. During the 4-month operation, the UMDC constantly removed salts and generated bio-electricity. At a hydraulic retention time (HRT) of 4 days (salt solution) and current production of ∼62 mA, the UMDC was able to remove more than 99% of NaCl from the salt solution that had an initial salt concentration of 30 g total dissolved solids (TDS)/L. In addition, the TDS removal rate was 7.50 g TDS L−1 d−1 (salt solution volume) or 5.25 g TDS L−1 d−1 (wastewater volume), and the desalinated water met the drinking water standard, in terms of TDS concentration. A high charge transfer efficiency of 98.6% or 81% was achieved at HRT 1 or 4 d. The UMDC produced a maximum power density of 30.8 W/m3. The phenomena of bipolar electrodialysis and proton transport in the UMDC were discussed. These results demonstrated the potential of the UMDC as either a sole desalination process or a pre-desalination reactor for downstream desalination processes.  相似文献   

19.
This study examines the effects of biofouling on the electrochemical properties of cation exchange membranes (CEMs), such as membrane electrical resistance (MER), specific proton conductivity (SC), and ion transport number (t+), in addition to on microbial fuel cell (MFC) performance. CEM biofouling using a 15.5 ± 4.6 μm biofilm was found to slightly increase the MER from 15.65 Ω cm2 (fresh Nafion) to 19.1 Ω cm2, whereas an increase of almost two times was achieved when the electrolyte was changed from deionized water to an anolyte containing a high cation concentration supporting bacterial growth. The simple physical cleaning of CEMs had little effect on the Coulombic efficiency (CE), whereas replacing a biofouled CEM with new one resulted in considerable increase of up to 59.3%, compared to 45.1% for a biofouled membrane. These results clearly suggest the internal resistance increase of MFC was mainly caused by the sulfonate functional groups of CEM being occupied with cations contained in the anolyte, rather than biofouling itself.  相似文献   

20.
Mohan SV  Srikanth S 《Bioresource technology》2011,102(22):10210-10220
Microbially catalyzed treatment of wastewater was evaluated in both the anode and cathode chambers in dual chambered microbial fuel cell (MFC) under varying biocathode microenvironment. MFC operation with aerobic biocathode showed significant increment in both TDS (cathode, 90.2±1%; anode, 39.7±0.5%) and substrate (cathode, 98.07±0.06%; anode, 96.2±0.3%) removal compared to anaerobic biocathode and abiotic cathode operations (COD, 80.25±0.3%; TDS, 30.5±1.2%). Microbially catalyzed reduction of protons and electrons at cathode will be higher during aerobic biocathode operation which leads to gradual substrate removal resulting in stable bio-potential for longer periods facilitating salts removal. Bio-electro catalytic behavior showed higher exchange current density during aerobic biocathode operation resulting in induced electrochemical oxidation which supports the enhanced treatment. Anaerobic biocathode operation depicted relatively less TDS removal (anode, 16.35%; cathode, 16.04%) in both the chambers in spite of good substrate degradation (anode, 84%; cathode, 87.39%). Both the chambers during anaerobic biocathode operation competed as electron donors resulting in negligible bio-potential development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号