首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomimetic testosterone receptors were synthesized via molecular imprinting for use as antibody mimics in immunoassays. As evaluated by radioligand binding assays, imprinted polymers prepared in acetonitrile were very specific for testosterone because the nonimprinted control polymers bound virtually no radiolabeled testosterone. The polymers present an appreciable affinity, with association constants of K(a) = 3.3 x 10(7) M(- 1) (high-affinity binding sites). The binding characteristics of the polymers were also evaluated in aqueous environment to study their viabilities as alternatives to antibodies in molecularly imprinted sorbent assays. Compared with the testosterone-specific antibodies present in commercial kits, our molecularly imprinted polymers are somewhat less sensitive but show a high selectivity.  相似文献   

2.
The surface imprinting of basic protein lysozyme (Lys) was carried out by designing a new route. The copolymerization of N-vinylpyrrolidone (NVP) and 2-hydroxyethyl methacrylate (HEMA) was first conducted in an inverse suspension polymerization system, and the crosslinked copolymeric microspheres HEMA/NVP were prepared. Subsequently, the esterification reaction of methacryloyl (MAO) chloride with the hydroxyl groups on the surfaces of HEMA/NVP microspheres was performed, and the modified microspheres MAO–HEMA/NVP, on which a mass of polymerisable double bonds were introduced, were obtained. In the presence of lysozyme, by initiating of K2S2O8–NaHSO3, the monomer methacrylic acid (MAA) in the solution was crosslink-polymerized on the surfaces of MAO–HEMA/NVP microspheres, resulting in the surface imprinting of lysozyme. After removing the template molecules, the lysozyme molecule-surface-imprinted material MIP-HEMA/NVP was obtained. Because there were strong interactions between lysozyme and monomer MAA, electrostatic interaction and hydrogen bonding, the lysozyme molecule-surface imprinting was successfully realized. The MIP-HEMA/NVP microspheres have very high binding affinity for lysozyme, and the binding capacity gets up to 216 mg/g. It is more important that MIP-HEMA/NVP microspheres have specific recognition selectivity for lysozyme, and the selectivity coefficient for lysozyme with respect to bovine hemoglobin (BHb), which was used as a contrast protein in the experiments, actually reaches 31.07. In the respect of protein imprinting, the imprinting material with such high performance is unwonted.  相似文献   

3.
A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non‐imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non‐imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Sol-gel imprinted materials were prepared against nafcillin, a semisynthetic beta-lactamic antibiotic employed in the treatment of serious infections caused by penicillinase-producing staphylococci. Two approaches were addressed for preparation of the imprinted materials and the controls: as conventional monoliths, which were ground and sieved to a desired particle size for rebinding analysis, and as films on supporting glass slides. The specific binding sites that are created during the imprinting process are analyzed via selective room temperature phosphorescence (RTP) (sol-gel films) measurements as well as via competitive room temperature phosphorescence ligand assay. Results demonstrated the importance of the physical configuration of the imprinted material for minimizing non-specific binding. The close similarities between the structures of different beta-lactamic antibiotics made it possible to interpret the roles of the template structure on specific molecular recognition. In this article, we introduce the use of room temperature phosphorescence as selective transduction method for the template. The imprinted sol-gel films displayed enhanced specific binding characteristics respect to the monolithic sol-gel and can be envisaged for the use as recognition matrices for the screening and rapid selection of antibiotics from a combinatorial library or for the rapid control of nafcillin in biological samples (e.g. milk, serum, urine).  相似文献   

5.
In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme‐specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25–65°C), optimum pH (3–10), thermal stability (4–70°C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Conductive composite films comprised of single‐walled carbon nanotubes coated with molecularly imprinted poly‐4‐vinylphenol are produced and characterized using ultraviolet and infrared spectroscopies, confirming the successful molecular imprinting of the film with cotinine. The electrical resistance of the imprinted film changes significantly upon binding cotinine, by more than 30 kΩ, while the unimprinted film in comparison elicits little response. Additionally, once the cotinine template desorbs from the film, the resistance of the imprinted film returns to a value close to the pre‐adsorption baseline. Scanning electron microscopy is used to study the morphology of the film compared with the unimprinted control, and gas chromatography quantitatively confirms that the imprinted film selectively detects cotinine while discriminating against the structurally similar alkaloid, nicotine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Combining the surface modification and molecular imprinting technique, a novel piezoelectric sensing platform with excellent molecular recognition capability was established for the detection of uric acid (UA) based on the immobilization of TiO2 nanoparticles onto quartz crystal microbalance (QCM) electrode and modification of molecularly imprinted TiO2 (MIT) layer on TiO2 nanoparticles. The performance of the fabricated biosensor was evaluated, and the results indicated that the biosensor exhibited high sensitivity in UA detection, with a linear range from 0.04 to 45 μM and a limit of detection of 0.01 μM. Moreover, the biosensor presented high selectivity towards UA in comparison with other interferents. The analytical application of the UA biosensor confirmed the feasibility of UA detection in urine sample.  相似文献   

8.
Hu T  Su Z 《Journal of biotechnology》2003,100(3):267-275
A solid phase adsorption method was proposed to prepare well-defined bovine serum albumin–bovine hemoglobin (Hb) conjugate. After adsorption by the solid phase, Q Sepharose Fast Flow media, bovine serum albumin (BSA) molecules were allowed to react with glutaraldehyde. The spacing out of BSA molecules on the solid phase was assumed to limit polymerization of BSA molecules, except some molecules bound closely on the solid phase resulting in minor dimer formation. Following the elution procedure, the activated monomeric BSA was separated from the dimers by gel filtration chromatography on Superdex 200 and then reacted with bovine Hb at 4 °C and pH 9.5. The 1:1 (BSA:Hb) conjugate was obtained with the yield of 64%. The P50 values of the conjugates, prepared under anaerobic and aerobic conditions, were 19.1 and 14.2 mmHg, respectively. The dependence of the P50 on chloride ions for the conjugate was slightly diminished, presumably due to covalent attachment of BSA to bovine Hb.  相似文献   

9.
Purification and analyzing of proteins is an essential means for understanding their function and diseases associated with their lack or defect. In this research, a new lanthanide-chelate based molecularly imprinted polymer (MIP) was synthesized for selective separation of Hemoglobin (Hb) from human serum in the presence of various interference molecules. The Hb-imprinted polymer was prepared by using complex functional monomer N-methacryloylamido antipyrine (MAAP)-Ce(III) and 2-Hydroxyethyl methacrylate (HEMA) in accordance of cryopolymerization techniques. The nonimprinted cryogel (NIP) was also prepared at same polymerization conditions in the absence of template Hb molecule. The effects of pH, initial Hb concentration, flow rate, temperature and ionic strength on the binding capacity of both imprinted and nonimprinted cryogels was investigated. The maximum binding capacity for the MIP column was found to be as 79.41 mg g−1 dry cryogel, that is four times higher than the NIP column under the optimum conditions (pH 5.0, flow rate: 1.0 mL min−1, T: 25 °C). Moreover, selectivity experiments were performed by using two interference proteins as myoglobin (Mb) and cytochrome c (Cyt-c) and the relative selectivity coefficients (k') for Hb/Mb and Hb/Cyt-c pairs were determined as 36.59 and 37.22, respectively.  相似文献   

10.
A molecularly imprinted composite cryogel (MICC) was prepared for depletion of hemoglobin from human blood prior to use in proteome applications. Poly(hydroxyethyl methacrylate) based MICC was prepared with high gel fraction yields up to 90%, and characterized by Fourier transform infrared spectrophotometer, scanning electron microscopy, swelling studies, flow dynamics and surface area measurements. MICC exhibited a high binding capacity and selectivity for hemoglobin in the presence of immunoglobulin G, albumin and myoglobin. MICC column was successfully applied in fast protein liquid chromatography system for selective depletion of hemoglobin for human blood. The depletion ratio was highly increased by embedding microspheres into the cryogel (93.2%). Finally, MICC can be reused many times with no apparent decrease in hemoglobin adsorption capacity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Atrazine is a common agricultural pesticide which has been reported to occur widely in surface drinking water, making it an environmental pollutant of concern. In the quest for developing sensitive detection methods for pesticides, the use of quantum dots (QDs) as sensitive fluorescence probes has gained momentum in recent years. QDs have attractive and unique optical properties whilst coupling of QDs to molecularly imprinted polymers (MIPs) has been shown to offer excellent selectivity. Thus, the development of QD@MIPs based fluorescence sensors could provide an alternative for monitoring herbicides like atrazine in water. In this work, highly fluorescent CdSeTe/ZnS QDs were fabricated using the conventional organometallic synthesis approach and were then encapsulated with MIPs. The CdSeTe/ZnS@MIP sensor was characterized and applied for selective detection of atrazine. The sensor showed a fast response time (5 min) upon interaction with atrazine and the fluorescence intensity was linearly quenched within the 2–20 mol L?1 atrazine range. The detection limit of 0.80 × 10?7 mol L?1 is comparable to reported environmental levels. Lastly, the sensor was applied in real water samples and showed satisfactory recoveries (92–118%) in spiked samples, hence it is a promising candidate for use in water monitoring.  相似文献   

12.
In conjunction with polyacrylamide gel electrophoresis (PAGE), molecular imprinting methods have been applied to produce a multilayer mini-slab in order to evaluate how selectively and specifically a hydrogel-based molecularly imprinted polymer (MIP) binds bovine haemoglobin (BHb, ~64.5 kDa). A three-layer mini-slab comprising an upper and lower layer and a MIP, or a non-imprinted control polymer dispersion middle layer has been investigated. The discriminating MIP layer, also based on polyacrylamide, was able to specifically bind BHb molecules in preference to a protein similar in molecular weight such as bovine serum albumin (BSA, ~66 kDa). Protein staining allowed us to visualise the protein retention strength of the MIP layer under the influence of an electric field. This method could be applied to other proteins with implications in effective protein capture, disease diagnostics, and protein analysis.  相似文献   

13.
A series of molecular dynamics simulations of prepolymerization mixtures for phenylalanine anilide imprinted co-(ethylene glycol dimethacrylate-methacrylic acid) molecularly imprinted polymers have been employed to investigate the mechanistic basis for template selective recognition in these systems. This has provided new insights on the mechanisms underlying template recognition, in particular the significant role played by the crosslinking agent. Importantly, the study supports the occurrence of template self-association events that allows us to resolve debate between the two previously proposed models used to explain this system's underlying recognition mechanisms. Moreover, the complexity of the molecular level events underlying template complexation is highlighted by this study, a factor that should be considered in rational molecularly imprinted polymer design, especially with respect to recognition site heterogeneity.  相似文献   

14.
Chiral resolution of binaphthylamine is often a toilful conundrum in the field of analytical chemistry and biomedicine. The work puts forward a selective, sensitive, and miniaturized analytical method based on molecularly imprinted polymers (MIPs) as adsorbent for miniaturized tip solid-phase extraction (MTSPE) in the separation of binaphthylamine enantiomer. This method combines the advantages of MIPs (high selectivity), MTSPE (low consumption), and high-performance liquid chromatography (HPLC, high sensitivity). A simple synthesis methodology of MIP (P2) was conducted through bulk polymerization with (S)-(?)-1,1′-binaphthyl-2,2′-diamine (S-DABN) as template together with methacrylic acid monomer, and ethylene glycol dimethacrylate as cross-linker in proper porogen, realizing a selective recognition and efficient enrichment for S-DABN. The method exhibited appreciable linearity (0.06–1.00 mg ml?1), low quantification limit (0.056 mg ml?1), good absolute recoveries (45.70%–69.29%), and high precision (relative standard deviations ≤ 3.54%), along with low consumption (0.50 ml sample solution and 25.0 mg adsorbent). Based on the density functional theory, computational simulation was used to make a preliminary prediction for rational design of MIPs and gave a reasonable elaboration involving the potential mechanism of templates interacting with functional monomers. The adsorption kinetics and thermodynamics were investigated to evaluate the recombination process of substrates. In addition, the selectivity of MIPs for S-DABN was obtained by MIP-MTSPE coupled with HPLC, which supports the feasibility of this convenient design process. The proposed method was employed for selective extraction of S-DABN and exhibited promising potential in the application of chiral analysis.  相似文献   

15.
This study presents a novel, sensitive and selective molecularly imprinted solid‐phase extraction (MISPE)–spectrofluorimetric method for the removal and determination of atenolol from human urine. Molecularly imprinted and non‐imprinted polymers were synthesized thermally using a radical chain polymerization technique and used as solid‐phase extraction sorbents. Acrylic acid ethylene glycol dimethacrylate, dibenzoyl peroxide and dichloroethane were used as a functional monomer, cross‐linker, initiator and porogen, respectively. The calibration curve was in the range of 0.10–2.0 μg/ml for the developed method. Limit of detection and limit of quantification values were 0.032 and 0.099 μg/ml, respectively. Owing to the selectivity of the MISPE technique and the sensitivity of spectrofluorimetry, trace levels of atenolol have been successfully determined from both organic and aqueous media. Relatively high imprinting factor (4.18) and recovery results (74.5–75.3%) were obtained. In addition, intra‐ and interday precision values were 0.38–1.03% and 0.47–2.05%, respectively, proving the precision of the proposed method. Thus, a selective, sensitive and simple MISPE–spectrofluorimetric method has been developed and applied to the direct determination of atenolol from human urine.  相似文献   

16.
A novel fluorescent nanosensor using molecularly imprinted silica nanospheres embedded CdTe quantum dots (CdTe@SiO2@MIP) was developed for detection and quantification of chloramphenicol (CAP). The imprinted sensor was prepared by synthesis of molecularly imprinting polymer (MIP) on the hydrophilic CdTe quantum dots via reverse microemulsion method using small amounts of solvents. The resulting CdTe@SiO2@MIP nanoparticles were characterized by fluorescence, UV–vis absorption and FT‐IR spectroscopy and transmission electron microscopy. They preserved 48% of fluorescence quantum yield of the parent quantum dots. CAP remarkably quenched the fluorescence of prepared CdTe@SiO2@MIP, probably via electron transfer mechanism. Under the optimal conditions, the relative fluorescence intensity of CdTe@SiO2@MIP decreased with increasing CAP by a Stern–Volmer type equation in the concentration range of 40–500 µg L–1. The corresponding detection limit was 5.0 µg L–1. The intra‐day and inter‐day values for the precision of the proposed method were all <4%. The developed sensor had a good selectivity and was applied to determine CAP in spiked human and bovine serum and milk samples with satisfactory results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
We follow template‐binding induced aggregation of nanoparticles enantioselectively imprinted against (S)‐propranolol, and the non‐imprinted ones, using photon correlation spectroscopy (dynamic light scattering). The method requires no separation steps. We have characterized binding of (R,S)‐propranolol to the imprinted polymers and determined the degree of non‐specificity by comparing the specific binding with the results obtained using non‐imprinted nanoparticles. Using (S)‐propranolol as a template for binding to (S)‐imprinted nanoparticle, and (R)‐propranolol as a non‐specific control, we have determined range of concentrations where chiral recognition can be observed. By studying aggregation induced by three analytes related to propranolol, atenolol, betaxolol, and 1‐amino‐3‐(naphthalen‐1‐yloxy)propan‐2‐ol, we were able to determine which parts of the template are involved in the specific binding, discuss several details of specific adsorption, and the structure of the imprinted site. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, molecularly imprinted polymers (MIPs) prepared using a multifunctional and a monofunctional monomer were compared with respect to their affinities, selectivities, and imprinting efficiencies for organophosphates. This is of interest because multifunctional monomers have higher affinities than traditional monofunctional monomers for their target analytes and thus should yield MIPs with higher affinities and selectivities. However, polymers containing multifunctional monomer may also have a higher number of unselective, non-templated binding sites. This increase in background binding sites could lead to a decrease in the magnitude of the imprinting effect and in the selectivity of the MIP. Therefore, phosphate selective imprinted and non-imprinted polymers (NIPs) were prepared using a novel multifunctional triurea monomer. The binding properties of these polymers were compared with polymers prepared using a monofunctional monourea monomer. The binding affinities and selectivities of the monomers, imprinted polymers, and NIPs were characterized by NMR titration, binding uptake studies, and binding isotherms. MIPs prepared with the triurea monomer showed higher binding affinity and selectivity for the diphenylphosphate anion in organic solvents than the MIPs prepared with the monofunctional monomer. Surprisingly, the binding properties of the NIPs revealed that the polymers prepared using the multifunctional and monofunctional monomers were very similar in affinity and selectivity. Thus, the multifunctional monomers increase not only the affinity of the MIP but also enhance the imprinting effect.  相似文献   

19.
Mono‐dispersed molecularly imprinted hollow spheres (MIHSs) for hemoglobin (Hb) were prepared by employing silica nanospheres as the sacrificial templates. The obtained hollow spheres with uniform particle size of 360 nm in diameter were characterized by transmission electron microscopy. The outstanding affinities of these MIHSs to the target protein were confirmed by adsorption experiment in aqueous solution. Adsorption equilibrium was achieved within 10 min while the binding capacity (Qmax) of Hb was 8.84 µmol g–1 at pH7.0. Furthermore, the MIHSs were successfully assembled into a closely‐packed 3D colloidal array. The molecularly imprinted hollow sphere array (MIHSA) can selectively recognize Hb. As the concentration of Hb increased, the structure color of the MIHSA changed from blue to green, and turn to white finally with maximum red shift for 43 nm. The MIHSA showed promising potential for the naked‐eye detection of target Hb.

Reflection spectra of the MIHSA in response to different Hb concentrations (0.075–15 µmol L–1)  相似文献   


20.
New biosourced chiral cross‐linkers were reported for the first time in the synthesis of methyltestosterone (MT) chiral molecularly imprinted polymers (cMIPs). Isosorbide and isomannide, known as 1,4:3,6‐dianhydrohexitols, were selected as starting diols. The cMIPs were synthesized following a noncovalent approach via thermal radical polymerization and monitored by Raman spectroscopy. These cross‐linkers were fully characterized by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and high‐resolution mass spectrometry. The cross‐polarization magic angle spinning 13C NMR, Fourier transform infrared spectroscopy, scanning electron microscopy, and specific surface areas following the Brunauer‐Emmett‐Teller (BET) method were used to characterize the cMIPs. The effect of stereochemistry of cross‐linkers on the reactivity of polymerization, morphology, and adsorption‐recognition properties of the MIP was evaluated. The results showed that the cMIP exhibited an obvious improvement in terms of rebinding capacity for MT as compared with the nonimprinted polymer (NIP). The highest binding capacity was observed for cMIP‐Is (27.298 mg g−1) for high concentrations (500 mg L−1). However, the isomannide homologue cMIP‐Im showed higher recovery—up to 65% and capacity for low concentrations (15 mg L−1). The experimental data were properly fitted by the Freundlich adsorption isothermal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号