首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is growing interest in HIV-specific antibody-dependent cellular cytotoxicity (ADCC) as an effective immune response to prevent or control HIV infection. ADCC relies on innate immune effector cells, particularly NK cells, to mediate control of virus-infected cells. The activation of NK cells (i.e., expression of cytokines and/or degranulation) by ADCC antibodies in serum is likely subject to the influence of other factors that are also present. We observed that the HIV-specific ADCC antibodies, within serum samples from a panel of HIV-infected individuals induced divergent activation profiles of NK cells from the same donor. Some serum samples primarily induced NK cell cytokine expression (i.e., IFNγ), some primarily initiated NK cell expression of a degranulation marker (CD107a) and others initiated a similar magnitude of responses across both effector functions. We therefore evaluated a number of HIV-relevant soluble factors for their influence on the activation of NK cells by HIV-specific ADCC antibodies. Key findings were that the cytokines IL-15 and IL-10 consistently enhanced the ability of NK cells to respond to HIV-specific ADCC antibodies. Furthermore, IL-15 was demonstrated to potently activate "educated" KIR3DL1(+) NK cells from individuals carrying its HLA-Bw4 ligand. The cytokine was also demonstrated to activate "uneducated" KIR3DL1(+) NK cells from HLA-Bw6 homozygotes, but to a lesser extent. Our results show that cytokines influence the ability of NK cells to respond to ADCC antibodies in vitro. Manipulating the immunological environment to enhance the potency of NK cell-mediated HIV-specific ADCC effector functions could be a promising immunotherapy or vaccine strategy.  相似文献   

2.
Microglia, macrophage-like cells in the CNS, are multifunctional cells; they play an important role in removal of dead cells or their remnants by phagocytosis in the CNS degeneration and are one of important cells in the CNS cytokine network to produce and respond to a variety of cytokines. The functions of microglia are regulated by inhibitory cytokines. We have reported the expression of interleukin (IL)-10, one of the inhibitory cytokines, and its receptor in mouse microglia; therefore, IL-10 may affect microglial functions. In this study, we investigated the effects of IL-10 on purified microglia in culture. IL-10 inhibited lipopolysaccharide-induced IL-1beta and tumor necrosis factor-alpha production, lysosomal enzyme activity, and superoxide anion production in a dose-dependent manner, but did not affect granulocyte/ macrophage colony-stimulating factor-dependent proliferation of microglia. IL-10 also decreased the expression of both IL-6 receptor and lipopolysaccharide-induced IL-2 receptor but not IL-4 receptor on microglia as measured by flow cytometric analysis with an indirect immunofluorescence technique. IL-10 also decreased mRNA expression of IL-2 and IL-6 cytokine receptors. These results suggest that IL-10 is a unique and potent inhibitory factor in the CNS cytokine network involved in decreasing the expression of cytokine receptors as well as cytokine production by microglia.  相似文献   

3.
4.
Mechanisms of soluble cytokine receptor generation   总被引:6,自引:0,他引:6  
  相似文献   

5.
Toll-like receptors (TLRs) are key components of the innate immune system that detects microbial infection and triggers host defensive responses. To determine the roles of TLR2 and TLR4 in corneal epithelial cells in mediating innate responses against Aspergillus fumigatus , telomerase-immortalized human corneal epithelial cells (THCE) were challenged by TLR2 ligand zymosan, TLR4 ligand lipopolysaccharide and A. fumigatus hyphae, respectively. Culture media were collected at different time points and enzyme-linked immunosorbent assay was performed to detect the levels of inflammatory cytokines interleukin-1β (IL-1β) and IL-6. We found that THCE responded to the challenge of TLR2 or TLR4 ligand by expressing and secreting inflammatory cytokines into the culture media. And exposure of THCE to A. fumigatus hyphae resulted in the upregulation of IL-1β and IL-6. Treatment with TLR2- or TLR4-siRNA plasmid reduced TLR2 or TLR4 expression level in THCE when compared with controls, and caused a significant decrease in A. fumigatus -induced IL-1β and IL-6 production. Our results suggested that THCE can respond to TLR2 and TLR4 ligand challenge by secreting IL-1β and IL-6. They recognize A. fumigatus hyphae via TLR2 and TLR4 and initiate innate immune responses. Corneal epithelial cells play a role in innate defense against fungal infection through the mediation of inflammatory cytokines production.  相似文献   

6.
Activated T lymphocytes modulate the level of many molecules on their cell surface, including cytokine receptors. This regulation of cytokine receptor expression affects the ability of T cells to respond to cytokines and thus influences the outcome of an immune response. The receptor for IFN-gamma, a proinflammatory cytokine, consists of two copies of a ligand binding chain (IFN-gammaR1) as well as two copies of a second chain (IFN-gammaR2) required for signal transduction. The expression of IFN-gammaR2 is down-regulated at the mRNA level on CD4+ T cells when they differentiate into the Th1, but not the Th2, phenotype. This down-regulation has been demonstrated to depend on the ligand, IFN-gamma, which is produced by Th1 but not Th2 T cells. The regulation of the cell-surface expression of IFN-gamma receptors during primary T cell activation has not been reported. Naive and differentiated T lymphocytes express IFN-gammaR1 at the mRNA level and as a cell-surface protein. In this study, we present evidence that cell-surface expression of IFN-gammaR1 is transiently down-regulated on the surface of naive CD4+ T cells shortly after TCR engagement. Furthermore, this down-regulation is not mediated by the ligand, IFN-gamma, but results from TCR engagement and can be inhibited by cyclosporin A.  相似文献   

7.
Cytokine receptors exist in membrane bound and soluble form. Both forms bind their ligands with comparable affinity. While most soluble receptors are antagonists in that they compete for the ligands with their membrane counterparts, some soluble receptors are agonists. In this case, the complex of ligand and soluble receptor binds on target cells to a second receptor subunit and initiates signal transduction. Soluble receptors of the IL-6 family of cytokines are agonists. In vivo, the IL-6/soluble IL-6R complex stimulates several types of target cells not stimulated by IL-6 alone, since they do not express the membrane bound IL-6R. This process has been named transsignaling. We have shown that in several chronic inflammatory diseases like chronic inflammatory bowl disease, peritonitis and rheumatoid arthritis, transsignaling via the soluble IL-6R complexed to IL-6 is a crucial point in the transition from the acute to the chronic state of the disease. The mechanism by which the IL-6/ soluble IL-6R complex regulates the inflammatory state is discussed.  相似文献   

8.
Natural killer (NK) cells are important components of innate immune defense. NK cells kill virus-infected cells and secrete cytokines that are involved in activation of other immune cells. Macrophage-derived cytokines interferon-alpha (IFN-alpha) and interleukin-15 (IL-15) are in turn important activators of NK cells, but the receptors and intracellular pathways that are involved in NK cell functions are still incompletely known. Here we have used expression proteomics to find new IFN-alpha and IL-15 regulated proteins in human NK-92 cells, which have the characteristics of activated NK cells. Cells were stimulated with cytokines for 20 h, lysed, and soluble proteins were separated by two-dimensional electrophoresis, and differentially expressed protein spots were identified with mass spectrometry and database searches. A total of 57 protein spots were found to be reproducibly differentially expressed between control and cytokine stimulated gel pairs, 26 spots being more than 2-fold upregulated and 3 spots being at least 2-fold downregulated. The rest 28 spots showed minor, less than 2-fold changes in their expression levels after quantification. From the differentially expressed protein spots we identified 47 different proteins, most of which are new IFN-alpha and IL-15 target proteins. Interestingly, we show that e.g., adenylate kinase 2 is highly upregulated by IFN-alpha and IL-15 stimulation in NK-92 cells. The expression of selected genes with high expression level differences after cytokine stimulation were further studied at mRNA level. Northern blot analysis showed that the genes studied were induced by IFN-alpha, IL-15, and IL-2 already at 3 h time point, suggesting that they are primary target genes of these cytokines.  相似文献   

9.
When activated by its ligand, the interleukin receptor type I (IL-1RI) transduces signals in cooperation with the IL-1 receptor accessory protein (IL-1RacP). In contrast, IL-1RII functions as a decoy receptor without participating in IL-1 signalling. Brain astrocytes are cellular targets of IL-1 and play a pivotal role in brain responses to inflammation. The regulation of IL-1 receptors on astrocytes by anti-inflammatory cytokines such as IL-4 and IL-10 has not been studied, despite its importance for understanding the way these cells respond to IL-1. Using RT-PCR, we first showed that the expression of IL-1RI and IL-1RII, but not IL-1RacP, mRNAs are up-regulated by IL-1 beta in a time-dependent manner. Using a radioligand binding technique, we then showed that astrocytes display an equivalent number of IL-1RI and IL-1RII. IL-1 beta decreases the number of IL-1RI binding sites, whereas it increases those of IL-1RII. IL-4 and IL-10 both up-regulate IL-1RII IL-1 beta-induced, but only IL-4 does so for IL-1RI. At the protein level, IL-4 and IL-10 dramatically reverse the ability of IL-1 beta to inhibit expression of IL-1RI but neither affects the ability of IL-1 beta to enhance the number of IL-1RII. Collectively, these results establish the existence of receptor cross-talk between pro- and anti-inflammatory cytokines on a critical type of cell that regulates inflammatory events in the brain.  相似文献   

10.
Natural killer (NK) cell-based cell therapy has been emerging as a powerful weapon in the treatment of multiple malignancies. However, the inadequate infiltration of the therapeutic NK cells into solid tumors remains a big challenge to their clinical utility. Chemokine networks, which play essential roles in the migration of lymphocytes, have been recognized as critical in driving the intratumoral infiltration of NK cells via interactions between soluble chemokines and their receptors. Often, such interactions are complex and disease-specific. In the context of NK cells, chemokine receptors of note have included CCR2, CCR5, CCR7, CXCR3, and CX3CR1. The immunobiology of chemokine-receptor interactions has fueled the development of approaches that hope to improve the infiltration of NK cells into the microenvironment of solid tumors. Stimulation of NK cells ex vivo in the presence of various cytokines (such as IL-2, IL-15, and IL-21) and genetic engineering of NK cells have been utilized to alter the chemokine receptor profile and generate NK cells with higher infiltrating capacity. Additionally, the immune-suppressive tumor microenvironment has also been targeted, by introducing, either directly or indirectly, chemokine ligands which NK cells are able to respond to, ultimately creating a more hospitable niche for NK cell trafficking. Such strategies have promoted the infiltration and activity of infused NK cells into multiple solid tumors. In this review, we discuss how chemokine receptors and their ligands coordinate and how they can be manipulated to regulate the trafficking, distribution, and residence of NK cells in solid tumors.  相似文献   

11.
To clarify the response of leptomeningeal cells to immune stimulation, the effect of lipopolysaccharide (LPS) on expression of IL-6 receptors in the cultured leptomeningeal cells was investigated. The results showed that the expression of IL-6Rα was invisible in the purified leptomeningeal cells while it was seen in the cells when they were co-cultured with astrocytes. On the other hand, GP130 was moderately expressed in both conditions. Following incubation with different doses of LPS, IL-6Rα expression in purified leptomeningeal cells was increased in a time- and dose-dependent manner, while GP130 level remained unchanged. Concomitantly, phosphorylated ERK1/2 level was increased following LPS stimulation and its inhibition by PD98059 attenuated the LPS-induced increase of IL-6Rα expression. These data indicate that leptomeningeal cells can respond to immunogenic stimuli as manifested by expression of cytokine receptors. Moreover, ERK1/2 pathway seems to be involved in the process of LPS-induced IL-6Rα up-regulation in leptomeningeal cells.  相似文献   

12.
Integrins play an important role in cell adhesion to the extracellular matrix and other cells. Upon ligand binding, signaling is initiated and several intracellular pathways are activated. This leads to a wide variety of effects, depending on cell type. Integrin activation has been linked to proliferation, secretion of matrix-degrading enzymes, cytokine production, migration, and invasion. Dysregulated integrin expression is often found in malignant disease. Tumors use integrins to evade apoptosis or metastasize, indicating that integrin signaling has to be tightly controlled. During the course of rheumatoid arthritis, the synovial tissue is infiltrated by immune cells that secrete large amounts of cytokines. This pro-inflammatory milieu leads to an upregulation of integrin receptors and their ligands in the synovial tissue. As a consequence, integrin signaling is enhanced, leading to enhanced production of matrix-degrading enzymes and cytokines. Furthermore, in analogy to invading tumors, synovial fibroblasts start invading and degrading cartilage, thereby generating extracellular matrix debris that can further activate integrins.  相似文献   

13.
How Location Governs Toll-Like Receptor Signaling   总被引:2,自引:0,他引:2  
Toll-like receptors (TLRs) are a family of innate immune system receptors responsible for recognizing conserved pathogen-associated molecular patterns (PAMPs). PAMP binding to TLRs initiates intracellular signaling pathways that lead to the upregulation of a variety of costimulatory molecules and the synthesis and secretion of various cytokines and interferons by cells of the innate immune system. TLR-induced innate immune responses are a prerequisite for the generation of most adaptive immune responses, and in the case of B cells, TLRs directly regulate signaling from the antigen-specific B-cell receptor. The outcome of TLR signaling is determined, in part, by the cells in which they are expressed and by the selective use of signaling adaptors. Recent studies suggest that, in addition, both the ligand recognition by TLRs and the functional outcome of ligand binding are governed by the subcellular location of the TLRs and their signaling adaptors. In this review we describe what is known about the intracellular trafficking and compartmentalization of TLRs in innate system's dendritic cells and macrophages and in adaptive system's B cells, highlighting how location regulates TLR function.  相似文献   

14.
Low amounts of high-affinity autoantibodies to various cytokines have been detected in sera from healthy donors. Their levels, although highly variable, are increased in the circulation of patients subjected to cytokine therapy or suffering from a variety of immunoinflammatory diseases. It has been suggested that these autoantibodies play a regulatory role in the intensity and duration of an immune response. The antibodies may prevent the binding of a cytokine to its specific cell surface receptor thereby neutralizing its biological activityin vivo. They may also act as carrier proteins preventing the rapid elimination of a cytokine from the circulation and thus increase its bioactivity. Additionally or alternatively, autoantibodies may modulate cytokine-induced intracellular signal transduction pathways or trigger complement-mediated cytotoxicity towards cells carrying membrane-bound cytokines. The autoantibodies may exert their regulatory role in compliance with other factors that control cytokine activity, including soluble cytokine receptors, cell surface decoy receptors, and receptor antagonists. Although not favored by many investigators, a less sophisticated role for naturally occurring anti-cytokine autoantibodies should be considered as well. Recent evidence has shown that autoantibodies are generated at a high frequency as part of a response to foreign antigens. These antibodies are produced by B cells arising from the process of somatic mutation. Thus anti-cytokine autoantibodies may be the result of a “leaky” B cell response triggered by immunoinflammatory processes. High-titered autoantibodies induced by cytokine therapy are of clinical concern since their occurrence is often associated with the loss of response to treatment. Moreover, they may also neutralize endogenously produced cytokines with possible pathological consequences. In this paper we have reviewed the available information on the biological and clinical significance of both naturally occurring and therapeutically induced anti-cytokine autoantibodies in animals and man with the emphasis on antibodies directed to interferons.  相似文献   

15.
Dendritic cells (DCs) are the professional APCs of the immune system, enabling T cells to perceive and respond appropriately to potentially dangerous microbes, while also being able to maintain T cell tolerance toward self. In part, such tolerance can be determined by IL-10 released from certain types of regulatory T cells. IL-10 has previously been shown to render DCs unable to activate T cells and it has been assumed that this process represents a general block in maturation. Using serial analysis of gene expression, we show that IL-10 pretreatment of murine bone marrow-derived DCs alone causes significant changes in gene expression. Furthermore, these cells retain the ability to respond to Toll-like receptor agonists, but in a manner skewed toward the selective induction of mediators known to enhance local inflammation and innate immunity, among which we highlight a novel CXCR2 ligand, DC inflammatory protein-1. These data suggest that, while the presence of a protolerogenic and purportedly anti-inflammatory agent such as IL-10 precludes DCs from acquiring their potential as initiators of adaptive immunity, their ability to act as initiators of innate immunity in response to Toll-like receptor signaling is enhanced.  相似文献   

16.
Dendritic cells (DC) can produce Th-polarizing cytokines and direct the class of the adaptive immune response. Microbial stimuli, cytokines, chemokines, and T cell-derived signals all have been shown to trigger cytokine synthesis by DC, but it remains unclear whether these signals are functionally equivalent and whether they determine the nature of the cytokine produced or simply initiate a preprogrammed pattern of cytokine production, which may be DC subtype specific. Here, we demonstrate that microbial and T cell-derived stimuli can synergize to induce production of high levels of IL-12 p70 or IL-10 by individual murine DC subsets but that the choice of cytokine is dictated by the microbial pattern recognition receptor engaged. We show that bacterial components such as CpG-containing DNA or extracts from Mycobacterium tuberculosis predispose CD8alpha(+) and CD8alpha(-)CD4(-) DC to make IL-12 p70. In contrast, exposure of CD8alpha(+), CD4(+) and CD8alpha(-)CD4(-) DC to heat-killed yeasts leads to production of IL-10. In both cases, secretion of high levels of cytokine requires a second signal from T cells, which can be replaced by CD40 ligand. Consistent with their differential effects on cytokine production, extracts from M. tuberculosis promote IL-12 production primarily via Toll-like receptor 2 and an MyD88-dependent pathway, whereas heat-killed yeasts activate DC via a Toll-like receptor 2-, MyD88-, and Toll/IL-1R domain containing protein-independent pathway. These results show that T cell feedback amplifies innate signals for cytokine production by DC and suggest that pattern recognition rather than ontogeny determines the production of cytokines by individual DC subsets.  相似文献   

17.
Interleukin 31 receptor α (IL-31RA) is a novel Type I cytokine receptor that pairs with oncostatin M receptor to mediate IL-31 signaling. Binding of IL-31 to its receptor results in the phosphorylation and activation of STATs, MAPK, and JNK signaling pathways. IL-31 plays a pathogenic role in tissue inflammation, particularly in allergic diseases. Recent studies demonstrate IL-31RA expression and signaling in non-hematopoietic cells, but this receptor is poorly studied in immune cells. Macrophages are key immune-effector cells that play a critical role in Th2-cytokine-mediated allergic diseases. Here, we demonstrate that Th2 cytokines IL-4 and IL-13 are capable of up-regulating IL-31RA expression on both peritoneal and bone marrow-derived macrophages from mice. Our data also demonstrate that IL-4Rα-driven IL-31RA expression is STAT6 dependent in macrophages. Notably, the inflammation-associated genes Fizz1 and serum amyloid A (SAA) are significantly up-regulated in M2 macrophages stimulated with IL-31, but not in IL-4 receptor-deficient macrophages. Furthermore, the absence of Type II IL-4 receptor signaling is sufficient to attenuate the expression of IL-31RA in vivo during allergic asthma induced by soluble egg antigen, which may suggest a role for IL-31 signaling in Th2 cytokine-driven inflammation and allergic responses. Our study reveals an important counter-regulatory role between Th2 cytokine and IL-31 signaling involved in allergic diseases.  相似文献   

18.
Although NK cells are well known for their cytotoxic functions, they also produce an array of immunoregulatory cytokines and chemokines. During an immune response, NK cells are exposed to complex combinations of cytokines that influence their differentiation and function. In this study, we have examined the phenotypic and functional consequences of exposing mouse NK cells to IL-4, IL-12, IL-15, IL-18, and IL-21 and found that although all factors induced signs of maturation, characterized by decreased proliferation and IFN-γ secretion, distinct combinations induced unique cytokine secretion profiles. In contrast, the immunosuppressive factors IL-10 and TGF-β had little direct effect on NK cell effector functions. Sustained IL-18 signals resulted in IL-13 and GM-CSF production, whereas IL-12 and IL-21 induced IL-10 and TNF-α. Surprisingly, with the exception of IL-21, all cytokines suppressed cytotoxic function of NK cells at the expense of endogenous cytokine production suggesting that "helper-type" NK cells were generated. The cytokine signals also profoundly altered the cell surface phenotype of the NK cells-a striking example being the downregulation of the activating receptor NKG2D by IL-4 that resulted in decreased NKG2D-dependent killing. IL-4 exposure also modulated NKG2D expression in vivo suggesting it is functionally important during immune responses. This study highlights the plasticity of NK cell differentiation and suggests that the relative abundance of cytokines at sites of inflammation will lead to diverse outcomes in terms of NK cell phenotype and interaction with the immune system.  相似文献   

19.
In a previous report, we observed that the phytol-derived immunostimulant, PHIS-01 (phytanol), is a nontoxic oil-in-water adjuvant which is superior to most commercial adjuvants. In contrast, the parent diterpene alcohol phytol, though highly effective as an adjuvant, is relatively toxic. To assess the importance of the polar functional group in PHIS-01, we prepared two new compounds PHIS-02 (phytanyl amine) and PHIS-03 (phytanyl mannose). All three phytol derivatives proved to be excellent adjuvants, but differed in solubility and mode of action. To delineate their molecular signatures in the local microenvironment, we performed inflammasome and cytokine microarray analyses with the peritoneal fluid of mice treated with alum or the phytol compounds above, in the presence or absence of soluble protein antigens. We report here that the phytol derivatives had a significant time-dependent impact on the host chemokine–cytokine microenvironment and subsequently on specific humoral responses. Moreover, the inclusion of protein immunogens induced further changes in host microenvironments, including rapid (<2 h) expression of cytokines and chemotactic factors (IL-6, MCP-1, KC, MIP-1, and LIX), implying mobilization and activation of neutrophils, and monocytes. PHIS-01 proved to be the most effective in this regard. Inflammatory cytokine cascades were dominant even after 24 h possibly to facilitate involvement of the acquired immune system with the release of B-lymphocyte chemo-attractant BLC, T-cell activation-3 chemokines TCA, IL-4, IL-12, and TIMP-1. We also noted enhanced expression of NLRP genes including NLRP3 with both alum and phytol derivatives (particularly PHIS-01).  相似文献   

20.
IL-17A and IL-17F, produced by the Th17 CD4(+) T cell lineage, have been linked to a variety of inflammatory and autoimmune conditions. We recently reported that activated human CD4(+) T cells produce not only IL-17A and IL-17F homodimers but also an IL-17F/IL-17A heterodimeric cytokine. All three cytokines can induce chemokine secretion from bronchial epithelial cells, albeit with different potencies. In this study, we used small interfering RNA and Abs to IL-17RA and IL-17RC to demonstrate that heterodimeric IL-17F/IL-17A cytokine activity is dependent on the IL-17RA/IL-17RC receptor complex. Interestingly, surface plasmon resonance studies indicate that the three cytokines bind to IL-17RC with comparable affinities, whereas they bind to IL-17RA with different affinities. Thus, we evaluated the effect of the soluble receptors on cytokine activity and we find that soluble receptors exhibit preferential cytokine blockade. IL-17A activity is inhibited by IL-17RA, IL-17F is inhibited by IL-17RC, and a combination of soluble IL-17RA/IL-17RC receptors is required for inhibition of the IL-17F/IL-17A activity. Altogether, these results indicate that human IL-17F/IL-17A cytokine can bind and signal through the same receptor complex as human IL-17F and IL-17A. However, the distinct affinities of the receptor components for IL-17A, IL-17F, and IL-17F/IL-17A heterodimer can be exploited to differentially affect the activity of these cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号