首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient method for Pichia cell disruption that employs an aminopropyl magnesium phyllosilicate (AMP) clay-assisted glass beads mill is presented. AMP clay is functionalized nanocomposite resembling the talc parent structure Si8Mg6O20(OH)4 that has been proven to permeate the bacterial membrane and cause cell lysis. The recombinant capsid protein of cowpea chlorotic mottle virus (CCMV) expressed in Pichia pastoris GS115 was used as demonstration system for their ability of self-assembly into icosahedral virus-like particles (VLPs). The total protein concentration reached 4.24 mg/ml after 4 min treatment by glass beads mill combined with 0.2 % AMP clay, which was 11.2 % higher compared to glass beads mill only and the time was half shortened. The stability of purified CCMV VLPs illustrated AMP clay had no influence on virus assembly process. Considering the tiny amount added and simple approach of AMP clay, it could be a reliable method for yeast cell disruption.  相似文献   

2.
Inserting foreign epitopes to hepatitis B core (HBc) virus‐like particles (VLPs) could influence the molecular conformation and therefore vary the purification process. In this study, a cost‐effective purification process was developed for two chimeric HBc VLPs displaying Epstein–Barr nuclear antigens 1 (EBNA1), and hepatitis C virus (HCV) core. Both chimeric VLPs were expressed in soluble form with high production yields in Escherichia coli. Molecular dynamic (MD) simulation was employed to predict the stability of chimeric VLPs. HCV core‐HBc was found to be less stable in water environment compared with EBNA1‐HBc, indicating its higher hydrophobicity. Assisting with MD simulation, ammonium sulfate precipitation was optimized to remove host cell proteins with high target protein recovery yields. Moreover, 99% DNA impurities were removed using POROS 50 HQ chromatography. In characterization measurement, we found that inserting HCV core epitope would reduce the ratio of α‐helix of HCV core‐HBc. This could be another reason on the top of its higher hydrophobicity predicted by MD simulation, causing its less stability. Tertiary structure, transmission electron microscopy, and immunogenicity results indicate that two chimeric VLPs maintained correct VLP structure ensuring its bioactivity after being processed by the developed cost‐effective purification approach.  相似文献   

3.
Zhang Y  Song S  Liu C  Wang Y  Xian X  He Y  Wang J  Liu F  Sun S 《Cellular immunology》2007,247(1):18-27
The major aim of the project was to develop the virus-like particles (VLPs) displaying single or multi-epitope of hepatocellular carcinomas (HCC) in Escherichia coli and to evaluate the effect on inducing Ag-specific CD8(+) T cell response and antitumor efficacy as candidate vaccines. To this end, hepatitis B virus core (HBc) particles were used as a carrier of HCC epitopes. Four HCC epitopes MAGE-1(278-286aa), MAGE-3(271-279aa), AFP1 (158-166aa) or AFP2 (542-550aa) were fused to the 3' terminus of the truncated HBV core gene, respectively, or conjunctively. Not all recombinant plasmids led to expression of chimeric proteins in expression strain E. coli BL21 (DE3), but chimeric proteins which are expressed in inclusion bodies resulted in the formation of complete "mature" VLPs. E. coli-derived truncated HBc(1-144) chimeric protein self-assembled into VLPs that both morphologically and physically are similar to the wild-type ones and they still remained activity after purification and refolding from 6M urea solution. We also showed that they could be internalized and presented by DCs in vitro. Additionally, DCs pulsed with the chimeric HBc-VLPs could induce stronger CTL activity and greater IFN-gamma secretion by responding T cells compared with peptid-pulsed DCs. In the B16-pIR-HH tumor therapy model, the growth of established tumors was significantly inhibited by immunization using VLP-pulsed DCs, resulting in significantly higher survival rate of immunized animals. Thus, the results of the current study have demonstrated the principal possibility of using VLP on the basis of HBcAg for creation of a new type of HCC-specific immunogen.  相似文献   

4.
The aim of this study was to produce gene transfer vectors consisting of plasmid DNA packaged into virus-like particles (VLPs) with different cell tropisms. For this purpose, we have fused the N-terminally truncated VP60 capsid protein of the rabbit hemorrhagic disease virus (RHDV) with sequences which are expected to be sufficient to confer DNA packaging and gene transfer properties to the chimeric VLPs. Each of the two putative DNA-binding sequences of major L1 and minor L2 capsid proteins of human papillomavirus type 16 (HPV-16) were fused at the N terminus of the truncated VP60 protein. The two recombinant chimeric proteins expressed in insect cells self-assembled into VLPs similar in size and appearance to authentic RHDV virions. The chimeric proteins had acquired the ability to bind DNA. The two chimeric VLPs were therefore able to package plasmid DNA. However, only the chimeric VLPs containing the DNA packaging signal of the L1 protein were able efficiently to transfer genes into Cos-7 cells at a rate similar to that observed with papillomavirus L1 VLPs. It was possible to transfect only a very limited number of RK13 rabbit cells with the chimeric RHDV capsids containing the L2-binding sequence. The chimeric RHDV capsids containing the L1-binding sequence transfer genes into rabbit and hare cells at a higher rate than do HPV-16 L1 VLPs. However, no gene transfer was observed in human cell lines. The findings of this study demonstrate that the insertion of a DNA packaging sequence into a VLP which is not able to encapsidate DNA transforms this capsid into an artificial virus that could be used as a gene transfer vector. This possibility opens the way to designing new vectors with different cell tropisms by inserting such DNA packaging sequences into the major capsid proteins of other viruses.  相似文献   

5.
While virus-like particles (VLPs) containing subgenomic replicons, which can transduce replicons into target cells efficiently for studying viral replication and vectors of gene therapy and vaccine, have been established for several flaviviruses, none has been reported for the four serotypes of dengue virus, the causal agent of the most important arboviral diseases in this century. In this study, we successfully established a cell line stably expressing the precursor membrane/envelope (PrM/E) proteins of dengue virus type 2 (DENV2), which can package a DENV2 replicon with deletion of PrM/E genes and produce single-round infectious VLPs. Moreover, it can package a similar replicon of different serotype, dengue virus type 4, and produce infectious chimeric VLPs. To our knowledge, this study reports for the first time replicon-containing VLPs of dengue virus. Moreover, this convenient system has potential as a valuable tool to study encapsidation of dengue virus and to develop novel chimeric VLPs containing dengue virus replicon as vaccine in the future.  相似文献   

6.
We are studying the structural proteins and molecular interactions required for formation and release of influenza virus-like particles (VLPs) from the cell surface. To investigate these events, we generated a quadruple baculovirus recombinant that simultaneously expresses in Sf9 cells the hemagglutinin (HA), neuraminidase (NA), matrix (M1), and M2 proteins of influenza virus A/Udorn/72 (H3N2). Using this quadruple recombinant, we have been able to demonstrate by double-labeling immunofluorescence that matrix protein (M1) localizes in nuclei as well as at discrete areas of the plasma membrane where HA and NA colocalize at the cell surface. Western blot analysis of cell supernatant showed that M1, HA, and NA were secreted into the culture medium. Furthermore, these proteins comigrated in similar fractions when concentrated supernatant was subjected to differential centrifugation. Electron microscopic examination (EM) of these fractions revealed influenza VLPs bearing surface projections that closely resemble those of wild-type influenza virus. Immunogold labeling and EM demonstrated that the HA and NA were present on the surface of the VLPs. We further investigated the minimal number of structural proteins necessary for VLP assembly and release using single-gene baculovirus recombinants. Expression of M1 protein alone led to the release of vesicular particles, which in gradient centrifugation analysis migrated in a similar pattern to that of the VLPs. Immunoprecipitation of M1 protein from purified M1 vesicles, VLPs, or influenza virus showed that the relative amount of M1 protein associated with M1 vesicles or VLPs was higher than that associated with virions, suggesting that particle formation and budding is a very frequent event. Finally, the HA gene within the quadruple recombinant was replaced either by a gene encoding the G protein of vesicular stomatitis virus or by a hybrid gene containing the cytoplasmic tail and transmembrane domain of the HA and the ectodomain of the G protein. Each of these constructs was able to drive the assembly and release of VLPs, although enhanced recruitment of the G glycoprotein onto the surface of the particle was observed with the recombinant carrying a G/HA chimeric gene. The described approach to assembly of wild-type and chimeric influenza VLPs may provide a valuable tool for further investigation of viral morphogenesis and genome packaging as well as for the development of novel vaccines.  相似文献   

7.
The large hepatitis delta antigen (HDAg-L) mediates hepatitis delta virus (HDV) assembly and inhibits HDV RNA replication. Farnesylation of the cysteine residue within the HDAg-L carboxyl terminus is required for both functions. Here, HDAg-L proteins from different HDV genotypes and genotype chimeric proteins were analyzed for their ability to incorporate into virus-like particles (VLPs). Observed differences in efficiency of VLP incorporation could be attributed to genotype-specific differences within the HDAg-L carboxyl terminus. Using a novel assay to quantify the extent of HDAg-L farnesylation, we found that genotype 3 HDAg-L was inefficiently farnesylated when expressed in the absence of the small hepatitis delta antigen (HDAg-S). However, as the intracellular ratio of HDAg-S to HDAg-L was increased, so too was the extent of HDAg-L farnesylation for all three genotypes. Single point mutations within the carboxyl terminus of HDAg-L were screened, and three mutants that severely inhibited assembly without affecting farnesylation were identified. The observed assembly defects persisted under conditions where the mutants were known to have access to the site of VLP assembly. Therefore, the corresponding residues within the wild-type protein are likely required for direct interaction with viral envelope proteins. Finally, it was observed that when HDAg-S was artificially myristoylated, it could efficiently inhibit HDV RNA replication. Hence, a general association with membranes enables HDAg to inhibit replication. In contrast, although myristoylated HDAg-S was incorporated into VLPs far more efficiently than HDAg-S or nonfarnesylated HDAg-L, it was incorporated far less efficiently than wild-type HDAg-L; thus, farnesylation was required for efficient assembly.  相似文献   

8.
Human parvovirus B19 virus-like particles: In vitro assembly and stability   总被引:1,自引:0,他引:1  
Virus-like particles (VLPs) are biological nanoparticles identical to the natural virions, but without genetic material. VLPs are suitable for the analysis of viral infection mechanisms, vaccine production, tissue-specific drug delivery, and as biological nanomaterials. Human parvovirus B19 (B19) infects humans; therefore VLPs derived from this virus have enormous potential in medicine and diagnostics. Current production of self-assembled VLPs derived from B19 is typically carried out in eukaryotic expression systems. However many applications of VLPs require access to its internal core. Consequently, the processes of disassembly and further reassembly of VLPs are critical both for purification of viral proteins, and for encapsulation purposes. Herein we report the in vitro self-assembly of B19 VLPs derived from the recombinant VP2 protein expressed in Escherichia coli and the effects of pH and ionic strength on the assembly process. Our results demonstrate that VP2 is able to form VLPs completely in vitro. At neutral pH, homogeneous VLPs assemble, while at acidic and basic pHs, with low ionic strength, the major assemblies are small intermediates. The in vitro self-assembled VLPs are highly stable at 37 °C, and a significant fraction of particles remain assembled after 30 min at 80 °C.  相似文献   

9.

Background

Nipah virus (NiV) is an emerging paramyxovirus distinguished by its ability to cause fatal disease in both animal and human hosts. Together with Hendra virus (HeV), they comprise the genusHenipavirus in theParamyxoviridae family. NiV and HeV are also restricted to Biosafety Level-4 containment and this has hampered progress towards examining details of their replication and morphogenesis. Here, we have established recombinant expression systems to study NiV particle assembly and budding through the formation of virus-like particles (VLPs).

Results

When expressed by recombinant Modified Vaccinia virus Ankara (rMVA) or plasmid transfection, individual NiV matrix (M), fusion (F) and attachment (G) proteins were all released into culture supernatants in a membrane-associated state as determined by sucrose density gradient flotation and immunoprecipitation. However, co-expression of F and G along with M revealed a shift in their distribution across the gradient, indicating association with M in VLPs. Protein release was also altered depending on the context of viral proteins being expressed, with F, G and nucleocapsid (N) protein reducing M release, and N release dependent on the co-expression of M. Immunoelectron microscopy and density analysis revealed VLPs that were similar to authentic virus. Differences in the budding dynamics of NiV proteins were also noted between rMVA and plasmid based strategies, suggesting that over-expression by poxvirus may not be appropriate for studying the details of recombinant virus particle assembly and release.

Conclusion

Taken together, the results indicate that NiV M, F, and G each possess some ability to bud from expressing cells, and that co-expression of these viral proteins results in a more organized budding process with M playing a central role. These findings will aid our understanding of paramyxovirus particle assembly in general and could help facilitate the development of a novel vaccine approach for henipaviruses.  相似文献   

10.
Biomaterials research for the discovery of new generation nanoparticles is one of the most active areas of nanotechnoloy. In the search of nature-made nanometer-sized objects, plant virus particles appear as symmetrically defined entities that can be formed by protein self-assembly. In particular, in the field of plant virology, there is plenty of literature available describing the exploitation of plant viral cages to produce safe vaccine vehicles and nanoparticles for drug delivery. In this context, we have investigated on the use of the artichoke mottled crinkle virus (AMCV) capsid both as a carrier of immunogenic epitopes and for the delivery of anticancer molecules. A dual approach that combines both in silico tools and experimental virology was applied for the rational design of immunologically active chimeric virus-like particles (VLPs) carrying immunogenic peptides. The atomic structures of wild type (wt) and chimeric VLPs were obtained by homology modeling. The effects of insertion of the HIV-1 2F5 neutralizing epitope on the structural stability of chimeric VLPs were predicted and assessed by detailed inspection of the nanoparticle intersubunit interactions at atomic level. Wt and chimeric VLPs, exposing on their surface the 2F5 epitope, were successfully produced in plants. In addition, we demonstrated that AMCV capsids could also function as drug delivery vehicles able to load the chemotherapeutic drug doxorubicin. To our knowledge, this is the first systematic predictive and empirical research addressing the question of how this icosahedral virus can be used for the production of both VLPs and viral nanoparticles for biomedical applications.  相似文献   

11.
Mortola E  Roy P 《FEBS letters》2004,576(1-2):174-178
Virus-like particles (VLPs) produced by recombinant expression of the major viral structural proteins could be an attractive method for severe acute respiratory syndrome (SARS) control. In this study, using the baculovirus system, we generated recombinant viruses that expressed S, E, M and N structural proteins of SARS-CoV either individually or simultaneously. The expression level, size and authenticity of each recombinant SARS-CoV protein were determined. In addition, immunofluorescence and FACS analysis confirmed the cell surface expression of the S protein. Co-infections of insect cells with two recombinant viruses demonstrated that M and E could assemble readily to form smooth surfaced VLPs. On the other hand, simultaneous high level expression of S, E and M by a single recombinant virus allowed the very efficient assembly and release of VLPs. These data demonstrate that the VLPs are morphological mimics of virion particles. The high level expression of VLPs with correct S protein conformation by a single recombinant baculovirus offers a potential candidate vaccine for SARS.  相似文献   

12.
Aims: To display a liver‐specific ligand on the hepatitis B virus core particles for cell‐targeting delivery. Methods and Results: A liver cell–binding ligand (preS1) was fused at the N‐terminal end of the hepatitis B core antigen (HBcAg), but the fusion protein (preS1His6HBcAg) was insoluble in Escherichia coli and did not form virus‐like particles (VLPs). A method to display the preS1 on the HBcAg particle was established by incorporating an appropriate molar ratio of the truncated HBcAg (tHBcAg) to the preS1His6HBcAg. Gold immunomicroscopy showed that the subunit mixture reassembled into icosahedral particles, displaying the preS1 ligand on the surface of VLPs. Fluorescence microscopy revealed that the preS1 ligand delivered the fluorescein‐labelled VLPs into the HepG2 cells efficiently. Conclusions: Chimeric VLPs containing the insoluble preS1His6HBcAg and highly soluble tHBcAg were produced by a novel incorporation method. The preS1 ligand was exposed on the surface of the VLPs and was shown to deliver fluorescein molecules into liver cells. Significance and Impact of Study: The newly established incorporation method can be used in the development of chimeric VLPs that could serve as potential nanovehicles to target various cells specifically by substituting the preS1 ligand with different cell‐specific ligands.  相似文献   

13.
The major capsid protein L1 of human papillomavirus type 16 (HPV16) was transiently expressed in tobacco (Nicotiana benthamiana and Nicotiana tabacum) and tomato (Lycopersicon esculentum) leaves using Agrobacterium tumefaciens. The expression vector pTV00 was derived from tobacco rattle virus (TRV). The highest L1 expression 15 μg g−1(f.m.) was achieved when the coding sequence of L1 was optimized for expression in humans that caused an increase of the guanine and cytosine (GC) content from 38.2 % in wild type HPV16 to 64.1 % in optimized sequence. L1 monomers readily self-assembled into capsomeres and further into virus like particles (VLPs). Immunological characterization and electron microscopy showed that 89 % of L1 retained VLP structure also in extracts prepared from freeze-dried leaves. Plant expressed L1 in crude extracts was highly immunogenic without any additional adjuvant as vaccinated mice developed strong humoral and cellular immune response, comparable to that elicited by purified VLPs derived from insect cells. Further, the induced antibodies effectively neutralized infection of 293TT cells with pseudovirions. This finding demonstrates that the TRV expression system is comparable to other plant expression systems and due to the broad host range of TRV is particularly attractive when expression in plants with low content of toxic alkaloids is desired. Moreover, a monoclonal anti-L1 antibody E2 raised in the course of immunization with crude extract from freeze-dried leaves expressing L1 is specific preferentially against HPV VLPs and could be used in direct ELISA for monitoring of VLPs assembly and VLP purification protocols.  相似文献   

14.
Minor capsid protein L2 of papillomaviruses plays an essential role in virus assembly by recruiting viral components to PML bodies, the proposed sites of virus morphogenesis. We demonstrate here that the function of L2 in virus assembly requires the chaperone Hsc70. Hsc70 was found dispersed in naturally infected keratinocytes and cultured cells. A dramatic relocation of Hsc70 from the cytoplasm to PML bodies was induced in these cells by L2 expression. Hsc70-L2 complex formation was confirmed by coimmunoprecipitation. The complex was modulated by the cochaperones Hip and Bag-1, which stabilize and destabilize Hsc70-substrate complexes, respectively. Cytoplasmic depletion of Hsc70 caused retention of wild-type and N-terminally truncated L2, but not of C-terminally truncated L2, in the cytoplasm. This retention was partially reversed by overexpression of Hsc70 fused to green fluorescent protein but not by ATPase-negative Hsc70. Hsc70 associated with L1-L2 virus-like particles (VLPs) but not with VLPs composed either of L1 alone or of L1 and C-terminally truncated L2. Moreover, displacement of Hsc70 from L1-L2 VLPs by encapsidation of DNA, generating pseudovirions, was found. These data indicate that Hsc70 transiently associates with viral capsids during the integration of L2, possibly via the L2 C terminus. Completion of virus assembly results in displacement of Hsc70 from virions.  相似文献   

15.
瞬时表达是目前利用哺乳动物细胞表达口蹄疫病毒(foot-and-mouth disease virus, FMDV)衣壳蛋白的主流方法。为实现染色体稳定表达FMDV衣壳蛋白并高效组装出病毒样颗粒(virus like particles, VLPs),本研究构建了piggyBac (PB)转座-组成型表达、PB转座-四环素(tetracycline, Tet)诱导型表达两套质粒。利用荧光蛋白标记技术,验证了质粒的功能。通过抗生素筛选得到了组成型表达P12A3C (WT/L127P)基因的BHK-21细胞池(C-WT、C-L127P)和诱导型表达P12A3C (WT/L127P)基因的BHK-21细胞池(I-WT、I-L127P)。荧光观察和PCR检测证明了绿色荧光蛋白、3C蛋白酶、反向四环素转录激活因子等基因的稳定整合。Western blotting、酶联免疫吸附法(enzyme linked immunosorbent assay, ELISA)实验证明了细胞池I-L127P具有更强的衣壳蛋白和VLPs生产能力。本研究首次实现了哺乳动物细胞染色体诱导表达FMDV衣壳蛋白,有助于推动哺乳动物生产FMDV VLPs疫苗的技术工艺,也为构建其他蛋白的哺乳动物细胞诱导型表达系统提供了参考。  相似文献   

16.
The type I glycoprotein S of coronavirus, trimers of which constitute the typical viral spikes, is assembled into virions through noncovalent interactions with the M protein. Here we demonstrate that incorporation is mediated by the short carboxy-terminal segment comprising the transmembrane and endodomain. To this aim, we used the virus-like particle (VLP) system that we developed earlier for the mouse hepatitis virus strain A59 (MHV-A59) and which we describe now also for the unrelated coronavirus feline infectious peritonitis virus (FIPV; strain 79-1146). Two chimeric MHV-FIPV S proteins were constructed, consisting of the ectodomain of the one virus and the transmembrane and endodomain of the other. These proteins were tested for their incorporation into VLPs of either species. They were found to assemble only into viral particles of the species from which their carboxy-terminal domain originated. Thus, the 64-terminal-residue sequence suffices to draw the 1308 (MHV)- or 1433 (FIPV)-amino-acid-long mature S protein into VLPs. Both chimeric S proteins appeared to cause cell fusion when expressed individually, suggesting that they were biologically fully active. This was indeed confirmed by incorporating one of the proteins into virions which thereby acquired a new host cell tropism, as will be reported elsewhere.  相似文献   

17.
为从随机肽库中寻找具有基质金属蛋白酶 2 (MMP 2 )抑制活性的新型小肽抑制剂 ,应用PCR法从含有人MMP 2基因的质粒中扩增了人MMP 2的催化区 .序列分析结果表明无氨基酸突变 .然后构建人MMP 2催化区的表达载体pET MCD ,转化大肠杆菌BL2 1(DE3 ) ,经IPTG诱导表达人MMP 2催化区 .经包涵体分离、变性、金属螯合层析纯化和复性等过程 ,复性后的人MMP 2催化区具有较好的明胶水解活性 .  相似文献   

18.

Background

Human papillomavirus 16 (HPV-16) L1 protein has the capacity to self-assemble into capsomers or virus-like particles (VLPs) that are highly immunogenic, allowing their use in vaccine production. Successful expression of HPV-16 L1 protein has been reported in plants, and plant-produced VLPs have been shown to be immunogenic after administration to animals.

Results

We investigated the potential of HPV-16 L1 to act as a carrier of two foreign epitopes from Influenza A virus: (i) M2e2-24, ectodomain of the M2 protein (M2e), that is highly conserved among all influenza A isolates, or (ii) M2e2-9, a shorter version of M2e containing the N-terminal highly conserved epitope, that is common for both M1 and M2 influenza proteins. A synthetic HPV-16 L1 gene optimized with human codon usage was used as a backbone gene to design four chimeric sequences containing either the M2e2-24 or the M2e2-9 epitope in two predicted surface-exposed L1 positions. All chimeric constructs were transiently expressed in plants using the Cowpea mosaic virus-derived expression vector, pEAQ-HT. Chimeras were recognized by a panel of linear and conformation-specific anti HPV-16 L1 MAbs, and two of them also reacted with the anti-influenza MAb. Electron microscopy showed that chimeric proteins made in plants spontaneously assembled in higher order structures, such as VLPs of T = 1 or T = 7 symmetry, or capsomers.

Conclusions

In this study, we report for the first time the transient expression and the self-assembly of a chimeric HPV-16 L1 bearing the M2e influenza epitope in plants, representing also the first record of a successful expression of chimeric HPV-16 L1 carrying an epitope of a heterologous virus in plants. This study further confirms the usefulness of human papillomavirus particles as carriers of exogenous epitopes and their potential relevance for the production in plants of monovalent or multivalent vaccines.  相似文献   

19.
Kar AK  Iwatani N  Roy P 《Journal of virology》2005,79(17):11487-11495
The bluetongue virus (BTV) core protein VP3 plays a crucial role in the virion assembly and replication process. Although the structure of the protein is well characterized, much less is known about the intracellular processing and localization of the protein in the infected host cell. In BTV-infected cells, newly synthesized viral core particles accumulate in specific locations within the host cell in structures known as virus inclusion bodies (VIBs), which are composed predominantly of the nonstructural protein NS2. However, core protein location in the absence of VIBs remains unclear. In this study, we examined VP3 location and degradation both in the absence of any other viral protein and in the presence of NS2 or the VP3 natural associate protein, VP7. To enable real-time tracking and processing of VP3 within the host cell, a fully functional enhanced green fluorescent protein (EGFP)-VP3 chimera was synthesized, and distribution of the fusion protein was monitored in different cell types using specific markers and inhibitors. In the absence of other BTV proteins, EGFP-VP3 exhibited distinct cytoplasmic focus formation. Further evidence suggested that EGFP-VP3 was targeted to the proteasome of the host cells but was dispersed throughout the cytoplasm when MG132, a specific proteasome inhibitor, was added. However, the distribution of the chimeric EGFP-VP3 protein was altered dramatically when the protein was expressed in the presence of the BTV core protein VP7, a normal partner of VP3 during BTV assembly. Interaction of EGFP-VP3 and VP7 and subsequent assembly of core-like particles was further examined by visualizing fluorescent particles and was confirmed by biochemical analysis and by electron microscopy. These data indicated the correct assembly of EGFP-VP3 subcores, suggesting that core formation could be monitored in real time. When EGFP-VP3 was expressed in BTV-infected BSR cells, the protein was not associated with proteasomes but instead was distributed within the BTV inclusion bodies, where it colocalized with NS2. These findings expand our knowledge about VP3 localization and its fate within the host cell and illustrate the assembly capability of a VP3 molecule with a large amino-terminal extension. This also opens up the possibility of application as a delivery system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号