首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This report describes the fine structure of the erythrocytic stages of Plasmodium malariae. Erythrocytic parasites from a naturally acquired human infection and an experimentally infected chimpanzee were morphologically indistinguishable and structurally similar to other primate malarias. New findings included observations of highly structured arrays of merozoite surface coat proteins in the cytoplasm of early schizonts and on the surface of budding merozoites and the presence of knobs in the membranes of Maurer's clefts. Morphological evidence is presented suggesting that proteins are transported between the erythrocyte surface and intracellular parasites via two routes: one associated with Maurer's clefts for transport of membrane-associated knob material and a second associated with caveolae in the host cell membrane for the import or export of host- or parasite-derived substances through the erythrocyte cytoplasm.  相似文献   

2.
The pathogenicity of the most deadly human malaria parasite, Plasmodium falciparum, relies on the export of virulence factors to the surface of infected erythrocytes. A novel membrane compartment, referred to as Maurer's clefts, is transposed to the host erythrocyte, acting as a marshal platform in the red blood cell cytoplasm, for exported parasite proteins addressed to the host cell plasma membrane. We report here the characterization of three new P. falciparum multigene families organized in 9 highly conserved clusters with the Pfmc‐2tm genes in the subtelomeric regions of parasite's chromosomes and expressed at early trophozoite stages. Like the PfMC‐2TM proteins, the PfEPF1, 3 and 4 proteins encoded by these families are exported to the Maurer's clefts, as peripheral or integral proteins of the Maurer's cleft membrane and largely exposed to the red cell cytosolic face of this membrane. A promoter titration approach was used to question the biological roles of these P. falciparum‐specific exported proteins. Using the Pfepf1 family promoter, we observed the specific downregulation of all four families, correlating with the inefficient release of merozoites while the parasite intra‐erythrocytic maturation and Maurer's clefts morphology were not impacted.  相似文献   

3.

Background

Modulation of infected host cells by intracellular pathogens is a prerequisite for successful establishment of infection. In the human malaria parasite Plasmodium falciparum, potential candidates for erythrocyte remodelling include the apicomplexan-specific FIKK kinase family (20 members), several of which have been demonstrated to be transported into the erythrocyte cytoplasm via Maurer''s clefts.

Methodology

In the current work, we have knocked out two members of this gene family (Pf fikk7.1 and Pf fikk12), whose products are localized at the inner face of the erythrocyte membrane. Both mutant parasite lines were viable and erythrocytes infected with these parasites showed no detectable alteration in their ability to adhere in vitro to endothelial receptors such as chondroitin sulfate A and CD36. However, we observed sizeable decreases in the rigidity of infected erythrocytes in both knockout lines. Mutant parasites were further analyzed using a phospho-proteomic approach, which revealed distinct phosphorylation profiles in ghost preparations of infected erythrocytes. Knockout parasites showed a significant reduction in the level of phosphorylation of a protein of approximately 80 kDa for FIKK12-KO in trophozoite stage and a large protein of about 300 kDa for FIKK7.1-KO in schizont stage.

Conclusions

Our results suggest that FIKK members phosphorylate different membrane skeleton proteins of the infected erythrocyte in a stage-specific manner, inducing alterations in the mechanical properties of the parasite-infected red blood cell. This suggests that these host cell modifications may contribute to the parasites'' survival in the circulation of the human host.  相似文献   

4.
The haemoglobinopathies S and C protect carriers from severe Plasmodium falciparum malaria. We have recently shown that haemoglobin S and C interfere with host‐actin remodelling in parasitized erythrocytes and the generation of an actin network that seems to be required for vesicular protein trafficking from the Maurer's clefts (a parasite‐derived intermediary protein secretory organelle) to the erythrocyte surface. Here we show that the actin network exerts skeletal functions by anchoring the Maurer's clefts within the erythrocyte cytoplasm. Using a customized tracking tool to investigate the motion of single Maurer's clefts, we found that a functional actin network restrains Brownian motion of this organelle. Maurer's clefts moved significantly faster in wild‐type erythrocytes treated with the actin depolymerizing agent cytochalasin D and in erythrocytes containing the haemoglobin variants S and C. Our data support the model of an impaired actin network being an underpinning cause of cellular malfunctioning in parasitized erythrocytes containing haemoglobin S or C, and, possibly, for the protective role of these haemoglobin variants against severe malaria.  相似文献   

5.
The export of numerous proteins to the plasma membrane of its host erythrocyte is essential for the virulence and survival of the malaria parasite Plasmodium falciparum. The Maurer's clefts, membrane structures transposed by the parasite in the cytoplasm of its host erythrocyte, play the role of a marshal platform for such exported parasite proteins. We identify here the export pathway of three resident proteins of the Maurer's clefts membrane: the proteins are exported as soluble forms in the red cell cytoplasm to the Maurer's clefts membrane in association with the parasite group II chaperonin (PfTRIC), a chaperone complex known to bind and address a large spectrum of unfolded proteins to their final location. We have also located the domain of interaction with PfTRiC within the amino‐terminal domain of one of these Maurer's cleft proteins, PfSBP1. Because several Maurer's cleft membrane proteins with different export motifs seem to follow the same route, we propose a general role for PfTRiC in the trafficking of malarial parasite proteins to the host erythrocyte.   相似文献   

6.
The human malaria parasite, Plasmodium falciparum, modifies the red blood cells (RBCs) that it infects by exporting proteins to the host cell. One key virulence protein, P. falciparum Erythrocyte Membrane Protein‐1 (PfEMP1), is trafficked to the surface of the infected RBC, where it mediates adhesion to the vascular endothelium. We have investigated the organization and development of the exomembrane system that is used for PfEMP1 trafficking. Maurer's cleft cisternae are formed early after invasion and proteins are delivered to these (initially mobile) structures in a temporally staggered and spatially segregated manner. Membrane‐Associated Histidine‐Rich Protein‐2(MAHRP2)‐containing tether‐like structures are generated as early as 4 h post invasion and become attached to Maurer's clefts. The tether/Maurer's cleft complex docks onto the RBC membrane at ~ 20 h post invasion via a process that is not affected by cytochalasin D treatment. We have examined the trafficking of a GFP chimera of PfEMP1 expressed in transfected parasites. PfEMP1B‐GFP accumulates near the parasite surface, within membranous structures exhibiting a defined ultrastructure, before being transferred to pre‐formed mobile Maurer's clefts. Endogenous PfEMP1 and PfEMP1B‐GFP are associated with Electron‐Dense Vesicles that may be responsible for trafficking PfEMP1 from the Maurer's clefts to the RBC membrane.  相似文献   

7.
Plasmodium falciparum is predicted to transport over 300 proteins to the cytosol of its chosen host cell, the mature human erythrocyte, including 19 members of the Hsp40 family. Here, we have generated transfectant lines expressing GFP‐ or HA‐Strep‐tagged versions of these proteins, and used these to investigate both localization and other properties of these Hsp40 co‐chaperones. These fusion proteins labelled punctate structures within the infected erythrocyte, initially suggestive of a Maurer's clefts localization. Further experiments demonstrated that these structures were distinct from the Maurer's clefts in protein composition. Transmission electron microscopy verifies a non‐cleft localization for HA‐Strep‐tagged versions of these proteins. We were not able to label these structures with BODIPY–ceramide, suggesting a lower size and/or different lipid composition compared with the Maurer's clefts. Solubility studies revealed that the Hsp40–GFP fusion proteins appear to be tightly associated with membranes, but could be released from the bilayer under conditions affecting membrane cholesterol content or organization, suggesting interaction with a binding partner localized to cholesterol‐rich domains. These novel structures are highly mobile in the infected erythrocyte, but based on velocity calculations, can be distinguished from the ‘highly mobile vesicles’ previously described. Our study identifies a further extra‐parasitic structure in the P. falciparum‐infected erythrocyte, which we name ‘J‐dots’ (as their defining characteristic so far is the content of J‐proteins). We suggest that these J‐dots are involved in trafficking of parasite‐encoded proteins through the cytosol of the infected erythrocyte.  相似文献   

8.
In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1). In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer''s clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer''s clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.  相似文献   

9.
During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer's clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined sub-domains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process.  相似文献   

10.
During the asexual stage of malaria infection, the intracellular parasite exports membranes into the erythrocyte cytoplasm and lipids and proteins to the host cell membrane, essentially "transforming" the erythrocyte. To investigate lipid and protein trafficking pathways within Plasmodium falciparum-infected erythrocytes, synchronous cultures are temporally analyzed by confocal fluorescence imaging microscopy for the production, location and morphology of exported membranes (vesicles) and parasite proteins. Highly mobile vesicles are observed as early as 4 h postinvasion in the erythrocyte cytoplasm of infected erythrocytes incubated in vitro with C6-NBD-labeled phospholipids. These vesicles are most prevalent in the trophozoite stage. An immunofluorescence technique is developed to simultaneously determine the morphology and distribution of the fluorescent membranes and a number of parasite proteins within a single parasitized erythrocyte. Parasite proteins are visualized with FITC- or Texas red-labeled monoclonal antibodies. Double-label immunofluorescence reveals that of the five parasite antigens examined, only one was predominantly associated with membranes in the erythrocyte cytoplasm. Two other parasite antigens localized only in part to these vesicles, with the majority of the exported antigens present in lipid-free aggregates in the host cell cytoplasm. Another parasite antigen transported into the erythrocyte cytoplasm is localized exclusively in lipid-free aggregates. A parasite plasma membrane (PPM) and/or parasitophorous vacuolar membrane (PVM) antigen which is not exported always colocalizes with fluorescent lipids in the PPM/PVM. Visualization of two parasite proteins simultaneously using FITC- and Texas red-labeled 2 degrees antibodies reveals that some parasite proteins are constitutively transported in the same vesicles, whereas other are segregated before export. Of the four exported antigens, only one appears to cross the barriers of the PPM and PVM through membrane-mediated events, whereas the others are exported across the PPM/PVM to the host cell cytoplasm and surface membrane through lipid (vesicle)-independent pathways.  相似文献   

11.
Maurer's clefts are single-membrane-limited structures in the cytoplasm of erythrocytes infected with the human malarial parasite Plasmodium falciparum. The currently accepted model suggests that Maurer's clefts act as an intermediate compartment in protein transport processes from the parasite across the cytoplasm of the host cell to the erythrocyte surface, by receiving and delivering protein cargo packed in vesicles. This model is mainly based on two observations. Firstly, single-section electron micrographs have shown, within the cytoplasm of infected erythrocytes, stacks of long slender membranes in close vicinity to round membrane profiles considered to be vesicles. Secondly, proteins that are transported from the parasite to the erythrocyte surface as well as proteins facilitating the budding of vesicles have been found in association with Maurer's clefts. Verification of this model would be greatly assisted by a better understanding of the morphology, dimensions and origin of the Maurer's clefts. Here, we have generated and analyzed three-dimensional reconstructions of serial ultrathin sections covering segments of P. falciparum-infected erythrocytes of more than 1 microm thickness. Our results indicate that Maurer's clefts are heterogeneous in structure and size. We have found Maurer's clefts consisting of a single disk-shaped cisternae localized beneath the plasma membrane. In other examples, Maurer' clefts formed an extended membranous network that bridged most of the distance between the parasite and the plasma membrane of the host erythrocyte. Maurer's cleft membrane networks were composed of both branched membrane tubules and stacked disk-shaped membrane cisternae that eventually formed whorls. Maurer's clefts were visible in other cells as a loose membrane reticulum composed of scattered tubular and disk-shaped membrane profiles. We have not seen clearly discernable isolated vesicles in the analyzed erythrocyte segments suggesting that the current view of how proteins are transported within the Plasmodium-infected erythrocyte may need reconsideration.  相似文献   

12.
The human malaria parasite Plasmodium falciparum exports a large number of proteins into its host erythrocyte to install functions necessary for parasite survival. Important structural components of the export machinery are membrane profiles of parasite origin, termed Maurer's clefts. These profiles span much of the distance between the parasite and the host cell periphery and are believed to deliver P. falciparum-encoded proteins to the erythrocyte plasma membrane. Although discovered more than a century ago, Maurer's clefts remain a mysterious organelle with little information available regarding their origin, their morphology or their precise role in protein trafficking. Here, we evaluated different techniques to prepare samples for electron tomography, including whole cell cryo-preparations, vitreous sections, freeze-substitution and chemical fixation. Our data show that the different approaches tested all have their merits, revealing different aspects of the complex structure of the Maurer's clefts.  相似文献   

13.
The malaria parasite Plasmodium falciparum dramatically remodels its host red blood cell to enhance its own survival, using a secretory membrane system that it establishes outside its own cell. Cisternal organelles, called Maurer's clefts, act as a staging point for the forward trafficking of virulence proteins to the red blood cell (RBC) membrane. The Ring‐EXported Protein‐1 (REX1) is a Maurer's cleft resident protein. We show that inducible knockdown of REX1 causes stacking of Maurer's cleft cisternae without disrupting the organization of the knob‐associated histidine‐rich protein at the RBC membrane. Genetic dissection of the REX1 sequence shows that loss of a repeat sequence domain results in the formation of giant Maurer's cleft stacks. The stacked Maurer's clefts are decorated with tether‐like structures and retain the ability to dock onto the RBC membrane skeleton. The REX1 mutant parasites show deficient export of the major virulence protein, PfEMP1, to the red blood cell surface and markedly reduced binding to the endothelial cell receptor, CD36. REX1 is predicted to form a largely α‐helical structure, with a repetitive charge pattern in the repeat sequence domain, providing potential insights into the role of REX1 in Maurer's cleft sculpting.  相似文献   

14.
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family of antigenically diverse proteins is expressed on the surface of human erythrocytes infected with the malaria parasite P. falciparum, and mediates cytoadherence to the host vascular endothelium. In this report, we show that export of PfEMP1 is slow and inefficient as it takes several hours to traffic newly synthesized proteins to the erythrocyte membrane. Upon removal by trypsin treatment, the surface-exposed population of PfEMP1 is not replenished during subsequent culture indicating that there is no cycling of PfEMP1 between the erythrocyte surface and an intracellular compartment. The role of Maurer's clefts as an intermediate sorting compartment in trafficking of PfEMP1 was investigated using immunoelectron microscopy and proteolytic digestion of streptolysin O-permeabilized parasitized erythrocytes. We show that PfEMP1 is inserted into the Maurer's cleft membrane with the C-terminal domain exposed to the erythrocyte cytoplasm, whereas the N-terminal domain is buried inside the cleft. Transfer of PfEMP1 to the erythrocyte surface appears to involve electron-lucent extensions of the Maurer's clefts. Thus, we have delineated some important aspects of the unusual trafficking mechanism for delivery of this critical parasite virulence factor to the erythrocyte surface.  相似文献   

15.
The high mortality of Plasmodium falciparum malaria is the result of a parasite ligand, PfEMP1 (P. falciparum) erythrocyte membrane protein 1), on the surface of infected red blood cells (IRBCs), which adheres to the vascular endothelium and causes the sequestration of IRBCs in the microvasculature. PfEMP1 transport to the IRBC surface involves Maurer's clefts, which are parasite-derived membranous structures in the IRBC cytoplasm. Targeted gene disruption of a Maurer's cleft protein, SBP1 (skeleton-binding protein 1), prevented IRBC adhesion because of the loss of PfEMP1 expression on the IRBC surface. PfEMP1 was still present in Maurer's clefts, and the transport and localization of several other Maurer's cleft proteins were unchanged. Maurer's clefts were altered in appearance and were no longer found as close to the periphery of the IRBC. Complementation of mutant parasites with sbp1 led to the reappearance of PfEMP1 on the IRBC surface and the restoration of adhesion. Our results demonstrate that SBP1 is essential for the translocation of PfEMP1 onto the surface of IRBCs and is likely to play a pivotal role in the pathogenesis of P. falciparum malaria.  相似文献   

16.
The distributions of ankyrin, spectrin, band 3, and glycophorin A were examined in Plasmodium falciparum-infected erythrocytes by immunoelectron microscopy to determine whether movement of parasite proteins and membrane vesicles between the parasitophorous vacuole membrane and erythrocyte surface membrane involves internalization of host membrane skeleton proteins. Monospecific rabbit antisera to spectrin, band 3 and ankyrin and a mouse monoclonal antibody to glycophorin A reacted with these erythrocyte proteins in infected and uninfected human erythrocytes by immunoblotting. Cross-reacting malarial proteins were not detected. The rabbit sera also failed to immunoprecipitate [3H]isoleucine labeled malarial proteins from Triton X-100 and sodium dodecyl sulfate (SDS) extracts of infected erythrocytes. These three antibodies as well as the monoclonal antibody to glycophorin A bound to the membrane skeleton of infected and uninfected erythrocytes. The parasitophorous vacuole membrane was devoid of bound antibody, a result indicating that this membrane contains little, if any, of these host membrane proteins. With ring-, trophozoite- and schizont-infected erythrocytes, spectrin, band 3 and glycophorin A were absent from intracellular membranes including Maurer's clefts and other vesicles in the erythrocyte cytoplasm. In contrast, Maurer's clefts were specifically labeled by anti-ankyrin antibody. There was a slight, corresponding decrease in labeling of the membrane skeleton of infected erythrocytes. A second, morphologically distinct population of circular, vesicle-like membranes in the erythrocyte cytoplasm was not labeled with anti-ankyrin antibody. We conclude that membrane movement between the host erythrocyte surface membrane and parasitophorous vacuole membrane involves preferential sorting of ankyrin into a subpopulation of cytoplasmic membranes.  相似文献   

17.
Ultrastructure of the erythrocytic stages of Plasmodium malariae   总被引:2,自引:0,他引:2  
This report describes the fine structure of the erythrocytic stages of Plasmodium malariae. Erythrocytic parasites from a naturally acquired human infection and an experimentally infected chimpanzee were morphologically indistinguishable and structurally similar to other primate malarias. New findings included observations of highly structured arrays of merozoite surface coat proteins in the cytoplasm of early schizonts and on the surface of budding merozoites and the presence of knobs in the membranes of Maurer's clefts. Morphological evidence is presented suggesting that proteins are transported between the erythrocyte surface and intracellular parasites via two routes: one associated with Maurer's clefts for transport of membrane-associated knob material and a second associated with caveolae in the host cell membrane for the import or export of host- or parasite-derived substances through the erythrocyte cytoplasm.  相似文献   

18.
19.
Genes encoding Plasmodium falciparum proteins Pfs16 and Pfpeg3/mdv1, specifically appearing in the parasitophorous vacuole of the early gametocytes, are upregulated at the onset of sexual differentiation. Analysis of asexual development in gametocyte producing and non-producing clones of P. falciparum indicated that these genes are also transcribed at a low level in asexual parasites, although their protein products are not detectable in these stages by immunofluorescence. Immunoelectron microscopic analysis of stage II gametocytes indicated that Pfs16 and Pfpeg3/mdv1 proteins co-localise in the parasitophorous vacuole membrane and in all derived membranous structures (such as the multi-laminate membrane whorls of the circular clefts in the infected erythrocyte cytoplasm and the membranes of the gametocyte food vacuoles). In this analysis both proteins were also observed for the first time in the membrane and in the lumen of distinct cleft-like structures in the erythrocyte cytoplasm.  相似文献   

20.
Malaria parasites replicating inside red blood cells (RBCs) export a large subset of proteins into the erythrocyte cytoplasm to facilitate parasite growth and survival. PTEX, the parasite-encoded translocon, mediates protein transport across the parasitophorous vacuolar membrane (PVM) in Plasmodium falciparum-infected erythrocytes. Proteins exported into the erythrocyte cytoplasm have been localized to membranous structures, such as Maurer''s clefts, small vesicles, and a tubovesicular network. Comparable studies of protein trafficking in Plasmodium vivax-infected reticulocytes are limited. With Plasmodium yoelii-infected reticulocytes, we identified exported protein 2 (Exp2) in a proteomic screen of proteins putatively transported across the PVM. Immunofluorescence studies showed that P. yoelii Exp2 (PyExp2) was primarily localized to the PVM. Unexpectedly, PyExp2 was also associated with distinct, membrane-bound vesicles in the reticulocyte cytoplasm. This is in contrast to P. falciparum in mature RBCs, where P. falciparum Exp2 (PfExp2) is exclusively localized to the PVM. Two P. yoelii-exported proteins, PY04481 (encoded by a pyst-a gene) and PY06203 (PypAg-1), partially colocalized with these PyExp2-positive vesicles. Further analysis revealed that with P. yoelii, Plasmodium berghei, and P. falciparum, cytoplasmic Exp2-positive vesicles were primarily observed in CD71+ reticulocytes versus mature RBCs. In transgenic P. yoelii 17X parasites, the association of hemagglutinin-tagged PyExp2 with the PVM and cytoplasmic vesicles was retained, but the pyexp2 gene was refractory to deletion. These data suggest that the localization of Exp2 in mouse and human RBCs can be influenced by the host cell environment. Exp2 may function at multiple points in the pathway by which parasites traffic proteins into and through the reticulocyte cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号