共查询到20条相似文献,搜索用时 8 毫秒
1.
Red blood cell (RBC) invasion and parasitophorous vacuole (PV) formation by Plasmodium falciparum are critical for the development and pathogenesis of malaria, a continuing global health problem. Expansion of the PV membrane (PVM) during growth is orchestrated by the parasite. This is particularly important in mature RBCs, which lack internal organelles and no longer actively synthesize membranes. Pfs16, a 16-kDa integral PVM protein expressed by gametocytes, was chosen as a model for studying the trafficking of material from the parasite across the PV space to the PVM. The locations of Pfs16-green fluorescent protein (GFP) reporter proteins containing distinct regions of Pfs16 were tracked from RBC invasion to emergence. Inclusion of the 53 C-terminal amino acids (aa) of Pfs16 to a GFP reporter construct already containing the N-terminal secretory signal sequence was sufficient for targeting to and retention on the PVM. An amino acid motif identified in this region was also found in seven other known PVM proteins. Removal of the 11 C-terminal aa did not affect PVM targeting, but membrane retention was decreased. Additionally, during emergence from the PVM and RBC, native Pfs16 and the full-length Pfs16-GFP reporter protein were found to concentrate on the ends of the gametocyte. Capping was not observed in constructs lacking the amino acids between the N-terminal secretory signal sequence and the transmembrane domain, suggesting that this region, which is not required for PVM targeting, is involved in capping. This is the first report to define the amino acid domains required for targeting to the P. falciparum PVM. 相似文献
2.
Möskes C Burghaus PA Wernli B Sauder U Dürrenberger M Kappes B 《Molecular microbiology》2004,54(3):676-691
Calcium-dependent protein kinases play a pivotal role in calcium signalling in plants and some protozoa, including the malaria parasites. They are found in various subcellular locations, suggesting an involvement in multiple signal transduction pathways. Recently, Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) has been found in the membrane and organelle fraction of the parasite. The kinase contains three motifs for membrane binding at its N-terminus, a consensus sequence for myristoylation, a putative palmitoylation site and a basic motif. Endogenous PfCDPK1 and the in vitro translated kinase were both shown to be myristoylated. The supposed membrane attachment function of the basic cluster was experimentally verified and shown to participate together with N-myristoylation in membrane anchoring of the kinase. Using immunogold electron microscopy, the protein was detected in the parasitophorous vacuole and the tubovesicular system of the parasite. Mutagenesis of the predicted acylated residues and the basic motif confirmed that dual acylation and the basic cluster are required for correct targeting of Aequorea victoria green fluorescent protein to the parasitophorous vacuole, suggesting that PfCDPK1 as the leishmanial hydrophilic acylated surface protein B is a representative of a novel class of proteins whose export is dependent on a 'non-classical' pathway involving N-myristoylation/palmitoylation. 相似文献
3.
The parasitophorous vacuole membrane of Plasmodium falciparum: demonstration of vesicle formation using an immunoprobe 总被引:2,自引:0,他引:2
We have applied several immunolabeling techniques using a monoclonal antibody to a Plasmodium falciparum antigen to differentiate morphologically dissimilar membranous structures present in infected erythrocytes. Evidence is presented that cytoplasmic clefts, multimembranous structures and vesicles within the infected cell originate from the parasitophorous vacuole membrane by a process described as budding off. The parasitophorous vacuole membrane and related structures in infected, parasitized erythrocytes reacted with the cyanine dye Merocyanine 540, demonstrating that they are accessible to molecules from the extracellular environment. Immunogold labeling of freeze-fractured preparations and of thin sections of parasitized cells using pre- and post-embedding techniques revealed that each of the membranous structures carried a common parasite antigen, QF 116, which was identified by monoclonal antibody 8E7/55. 相似文献
4.
The human malaria parasite Plasmodium falciparum resides and multiplies within a membrane-bound vacuole in the cytosol of its host cell, the mature human erythrocyte. To enable the parasite to complete its intraerythrocytic life cycle, a large number of parasite proteins are synthesized and transported from the parasite to the infected cell. To gain access to the erythrocyte, parasite proteins must first cross the membrane of the parasitophorous vacuole (PVM), a process that is not well understood at the mechanistic level. Here, we review past and current literature on this topic, and make tentative predictions about the nature of the transport machinery required for transport of proteins across the PVM, and the molecular factors involved. 相似文献
5.
Immune response to a synthetic peptide corresponding to an epitope of a parasitophorous vacuole membrane antigen from Plasmodium falciparum 总被引:2,自引:0,他引:2
U Kara D Pye R Lord C Pam H Gould M Geysen G Jones D Stenzel C Kidson A Saul 《Journal of immunology (Baltimore, Md. : 1950)》1989,143(4):1334-1339
The parasitophorous vacuole membrane antigen QF 116 from Plasmodium falciparum contains a defined epitope, DNNLVSGP, proximal to the carboxyl-terminus which binds to the inhibitory monoclonal antibody 8E7/55. A synthetic peptide containing this epitope was constructed and coupled to diphtheria toxoid as carrier. Mice and rabbits were inoculated with this conjugate using CFA, SAF-1, or aluminum phosphate as adjuvants. The peptide conjugate was highly immunogenic in both animal species, giving rise to polyclonal antibodies with a similar epitope specificity as the original mAb. Antibody titers were dependent on the route of immunization. Rabbit antibodies produced in sufficient quantity for biologic assays inhibited parasite growth in vitro. This synthetic peptide thus shows promise as an immunogen for use in synthetic vaccine design. 相似文献
6.
Protein p126: a parasitophorous vacuole antigen associated with the release of Plasmodium falciparum merozoites 总被引:7,自引:0,他引:7
P Delplace A Bhatia M Cagnard D Camus G Colombet A Debrabant J F Dubremetz N Dubreuil G Prensier B Fortier 《Biology of the cell / under the auspices of the European Cell Biology Organization》1988,64(2):215-221
The p126 protein is synthesized by P. falciparum between the 32nd and the 36th hour of the erythrocytic cycle, and is localized in the parasitophorous vacuole. It is processed when schizonts rupture and the major fragments (50, 47 and 18 kDa), which are released into culture supernatant, have been characterized using monoclonal antibodies. The 47 kDa fragment has been mapped at the N-terminus of the molecule. The portion of the protein p126 gene coding for this fragment contains 3 introns and is characterized by a sequence coding for 6 repeats of 8 aminoacids and by repeats of TCA/T-AGT coding for a polyserine sequence of 37 serines in a row for the FCR-3 strain. The 50 kDa fragment is also found in culture supernatant when merozoites are released from mature schizonts. The incubation of mature schizonts with leupeptin inhibits the release of merozoites and, in this case, a 56 kDa intermediate product is found. In those conditions, merozoites were observed free in the erythrocyte cytoplasm, the membrane of the parasitophorous vacuole being destroyed. The 50 kDa fragment can be obtained from the 56 kDa fragment by treatment with trypsin (a protease inhibited by leupeptin). Our results suggest that the processing of the 56 kDa fragment: 1) is protease-dependent, and could depend on a trypsin-like activity; 2) cannot occur after the release of merozoites because of the protease inhibitors contained in the serum; 3) does not occur before the release of merozoites, since no processed products of the protein p126 are observed in unruptured schizonts.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
Apicomplexans are obligate intracellular parasites that invade host cells by an active process leading to the formation of a non-fusogenic parasitophorous vacuole (PV) where the parasite replicates within the host cell. The rhomboid family of proteases cleaves substrates within their transmembrane domains and has been implicated in the invasion process. Although its exact function is unknown, Plasmodium ROM1 is hypothesized to play a role during invasion based on its microneme localization and its ability to cleave essential invasion adhesins. Using the rodent malaria model, Plasmodium yoelii, we carried out detailed quantitative analysis of pyrom1 deficient parasites during the Plasmodium lifecycle. Pyrom1(-) parasites are attenuated during erythrocytic and hepatic stages but progress normally through the mosquito vector with normal counts of oocyst and salivary gland sporozoites. Pyrom1 steady state mRNA levels are upregulated 20-fold in salivary gland sporozoites compared to blood stages. We show that pyrom1(-) sporozoites are capable of gliding motility and traversing host cells normally. Wildtype and pyrom1(-) sporozoites do not differ in the rate of entry into Hepa1-6 hepatocytes. Within the first twelve hours of hepatic development, however, only 50% pyrom1(-) parasites have developed into exoerythrocytic forms. Immunofluorescence microscopy using the PVM marker UIS4 and transmission electron microscopy reveal that the PV of a significant fraction of pyrom1(-) parasites are morphologically aberrant shortly after invasion. We propose a novel function for PyROM1 as a protease that promotes proper PV modification to allow parasite development and replication in a suitable environment within the mammalian host. 相似文献
8.
Primary structure of a Plasmodium falciparum malaria antigen located at the merozoite surface and within the parasitophorous vacuole 总被引:1,自引:0,他引:1
J L Weber J A Lyon R H Wolff T Hall G H Lowell J D Chulay 《The Journal of biological chemistry》1988,263(23):11421-11425
DNA encoding an antigen of 101,000 apparent molecular weight from the human malaria parasite Plasmodium falciparum was cloned and sequenced. Genomic DNA from the Camp strain covering the complete coding region along with cDNA from the FCR3 strain covering 81% of the coding region were obtained. The cloned DNA specified a full-length protein of 743 amino acids which included two tandemly repeated regions, one near the amino terminus containing eight hexapeptide repeats of sequence TVNDEDED, and the second near the carboxyl terminus containing primarily KE and KEE repeats. The latter repeated region is encoded by a 174-base stretch of mRNA containing only a single pyrimidine. Except for a putative leader sequence located at the amino terminus of the protein, the protein is hydrophilic and highly charged with a calculated isoelectric point of 5.6. Sequences from the Camp and FCR3 strains are very close and are also nearly identical to the partial cDNA sequence of the acidic basic repeated antigen (ABRA) protein from the FC27 strain (Stahl, H.D., Bianco, A.E., Crewther, R.F., Anders, R.F., Kyne, A.P., Coppel, R. L., Mitchell, G.F., Kemp, D.J., and Brown, G.V. (1986) Mol. Biol. Med. 3, 351-368). ABRA was previously shown to be located at the merozoite surface and in the parasitophorous vacuole. Because of its location and because it becomes complexed to merozoites when schizonts rupture in the presence of immune serum, ABRA is a candidate component of a malaria vaccine. 相似文献
9.
Trafficking of PfExp1 to the parasitophorous vacuolar membrane of Plasmodium falciparum is independent of protein folding and the PTEX translocon 下载免费PDF全文
Having entered the mature human erythrocyte, the malaria parasite survives and propagates within a parasitophorous vacuole, a membrane‐bound compartment separating the parasite from the host cell cytosol. The bounding membrane of this vacuole, referred to as the parasitophorous vacuolar membrane (PVM), contains parasite‐encoded proteins, but how these membrane proteins are trafficked to the PVM remains unknown. Here, we have studied the trafficking of PfExp1 to the PVM. We find that trafficking of PfExp1 to the PVM is independent of the folding state of the protein and also continues unabated upon inactivation of the PVM translocon Plasmodium Translocon of Exported proteins (PTEX). Our data strongly suggest that the trafficking of membrane proteins to the PVM occurs by as yet unknown mechanism, potentially unique to Plasmodium. 相似文献
10.
Haemoglobin degradation during the erythrocytic life stages is the major function of the food vacuole (FV) of Plasmodium falciparum and the target of several anti-malarial drugs that interfere with this metabolic pathway, killing the parasite. Two multi-spanning food vacuole membrane proteins are known, the multidrug resistance protein 1 (PfMDR1) and Chloroquine Resistance Transporter (PfCRT). Both modulate resistance to drugs that act in the food vacuole. To investigate the formation and behaviour of the food vacuole membrane we have generated inducible GFP fusions of chloroquine sensitive and resistant forms of the PfCRT protein. The inducible expression system allowed us to follow newly-induced fusion proteins, and corroborated a previous report of a direct trafficking route from the ER/Golgi to the food vacuole membrane. These parasites also allowed the definition of a food vacuole compartment in ring stage parasites well before haemozoin crystals were apparent, as well as the elucidation of secondary PfCRT-labelled compartments adjacent to the food vacuole in late stage parasites. We demonstrated that in addition to previously demonstrated Brefeldin A sensitivity, the trafficking of PfCRT is disrupted by Dynasore, a non competitive inhibitor of dynamin-mediated vesicle formation. Chloroquine sensitivity was not altered in parasites over-expressing chloroquine resistant or sensitive forms of the PfCRT fused to GFP, suggesting that the PfCRT does not mediate chloroquine transport as a GFP fusion protein. 相似文献
11.
K L Waller B M Cooke W Nunomura N Mohandas R L Coppel 《The Journal of biological chemistry》1999,274(34):23808-23813
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) clusters at electron-dense knob-like structures on the surface of malaria-infected red blood cells and mediates their adhesion to the vascular endothelium. In parasites lacking knobs, vascular adhesion is less efficient, and infected red cells are not able to immobilize successfully under hemodynamic flow conditions even though PfEMP1 is still present on the exterior of the infected red cell. We examined the interaction between the knob-associated histidine-rich protein (KAHRP), the parasite protein upon which knob formation is dependent, and PfEMP1, and we show evidence of a direct interaction between KAHRP and the cytoplasmic region of PfEMP1 (VARC). We have identified three fragments of KAHRP which bind VARC. Two of these KAHRP fragments (K1A and K2A) interact with VARC with binding affinities (K(D(kin))) of 1 x 10(-7) M and 3.3 x 10(-6) M respectively, values comparable to those reported previously for protein-protein interactions in normal and infected red cells. Further experiments localized the high affinity binding regions of KAHRP to the 63-residue histidine-rich and 70-residue 5' repeats. Deletion of these two regions from the KAHRP fragments abolished their ability to bind to VARC. Identification of the critical domains involved in interaction between KAHRP and PfEMP1 may aid development of new therapies to prevent serious complications of P. falciparum malaria. 相似文献
12.
Valbuena JJ Vera R García J Puentes A Curtidor H Ocampo M Urquiza M Rivera Z Guzmán F Torres E Patarroyo ME 《Peptides》2003,24(7):1007-1014
Plasmodium falciparum normocyte binding protein-1 (PfNBP-1), a Plasmodium vivax RBP-1 orthologue is expressed in the apical merozoite area. PfNBP-1 binds directly to human erythrocyte membrane in a sialic acid-dependent but trypsin-resistant way. Erythrocyte binding assays were done with synthetic peptides covering the sequence reported as PfNBP-1. Two specific erythrocyte high activity binding peptides were found: 101VFINDLDTYQYEYFYEWNQ(120), peptide 26332, and 181NTKETYLKELNKKKMLQNKK(200), peptide 26336. These two peptides' binding was saturable and presenting nanomolar affinity constants. The critical binding residues (those residues underlined and highlighted in bold) were determined by competition assays with glycine-scan analogue peptides. These peptides were able to block merozoite in vitro invasion of erythrocytes. 相似文献
13.
Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) is a parasite-derived protein that appears on the cytoplasmic surface of the host cell membrane in the later stages of the parasite's development where it associates with membrane skeleton. We have recently demonstrated that a 60-residue fragment (FIa1, residues 38-97) of PfEMP3 bound to spectrin. Here we show that this polypeptide binds specifically to a site near the C terminus of alpha-spectrin at the point that spectrin attaches to actin and protein 4.1R in forming the junctions of the membrane skeletal network. We further show that this polypeptide disrupts formation of the ternary spectrin-actin-4.1R complex in solution. Importantly, when incorporated into the cell, the PfEMP3 fragment causes extensive reduction in shear resistance of the cell. We conjecture that the loss of mechanical cohesion of the membrane may facilitate the exit of the mature merozoites from the cell. 相似文献
14.
Nina Gehde Corinna Hinrichs Irine Montilla Stefan Charpian Klaus Lingelbach Jude M. Przyborski 《Molecular microbiology》2009,71(3):613-628
Plasmodium falciparum traffics a large number of proteins to its host cell, the mature human erythrocyte. How exactly these proteins gain access to the red blood cell is poorly understood. Here we have investigated the effect of protein folding on the transport of model substrate proteins to the host cell. We find that proteins must pass into the erythrocyte cytoplasm in an unfolded state. Our data strongly support the presence of a protein-conducing channel in the parasitophorous vacoular membrane, and additionally imply an important role for molecular chaperones in keeping parasite proteins in a 'translocation competent' state prior to membrane passage. 相似文献
15.
16.
Plasmodium falciparum histidine-rich protein 1 associates with the band 3 binding domain of ankyrin in the infected red cell membrane 总被引:2,自引:0,他引:2
Magowan C Nunomura W Waller KL Yeung J Liang J Van Dort H Low PS Coppel RL Mohandas N 《Biochimica et biophysica acta》2000,1502(3):461-470
Infection of erythrocytes by the malaria parasite Plasmodium falciparum results in the export of several parasite proteins into the erythrocyte cytoplasm. Changes occur in the infected erythrocyte due to altered phosphorylation of proteins and to novel interactions between host and parasite proteins, particularly at the membrane skeleton. In erythrocytes, the spectrin based red cell membrane skeleton is linked to the erythrocyte plasma membrane through interactions of ankyrin with spectrin and band 3. Here we report an association between the P. falciparum histidine-rich protein (PfHRP1) and phosphorylated proteolytic fragments of red cell ankyrin. Immunochemical, biochemical and biophysical studies indicate that the 89 kDa band 3 binding domain and the 62 kDa spectrin-binding domain of ankyrin are co-precipitated by mAb 89 against PfHRP1, and that native and recombinant ankyrin fragments bind to the 5' repeat region of PfHRP1. PfHRP1 is responsible for anchoring the parasite cytoadherence ligand to the erythrocyte membrane skeleton, and this additional interaction with ankyrin would strengthen the ability of PfEMP1 to resist shear stress. 相似文献
17.
18.
BACKGROUND: Removal of exhaled air from total body emanations or artificially standardising carbon dioxide (CO2) outputs has previously been shown to eliminate differential attractiveness of humans to certain blackfly (Simuliidae) and mosquito (Culicidae) species. Whether or not breath contributes to between-person differences in relative attractiveness to the highly anthropophilic malaria vector Anopheles gambiae sensu stricto remains unknown and was the focus of the present study. METHODS: The contribution to and possible interaction of breath (BR) and body odours (BO) in the attraction of An. gambiae s.s. to humans was investigated by conducting dual choice tests using a recently developed olfactometer. Either one or two human subjects were used as bait. The single person experiments compared the attractiveness of a person's BR versus that person's BO or a control (empty tent with no odour). His BO and total emanations (TE = BR+BO) were also compared with a control. The two-person experiments compared the relative attractiveness of their TE, BO or BR, and the TE of each person against the BO of the other. RESULTS: Experiments with one human subject (P1) as bait found that his BO and TE collected more mosquitoes than the control (P = 0.005 and P < 0.001, respectively), as did his BO and the control versus his BR (P < 0.001 and P = 0.034, respectively). The TE of P1 attracted more mosquitoes than that of another person designated P8 (P < 0.021), whereas the BR of P8 attracted more mosquitoes than the BR of P1 (P = 0.001). The attractiveness of the BO of P1 versus the BO of P8 did not differ (P = 0.346). The BO from either individual was consistently more attractive than the TE from the other (P < 0.001). CONCLUSIONS: We demonstrated for the first time that human breath, although known to contain semiochemicals that elicit behavioural and/or electrophysiological responses (CO2, ammonia, fatty acids) in An. gambiae also contains one or more constituents with allomonal (~repellent) properties, which inhibit attraction and may serve as an important contributor to between-person differences in the relative attractiveness of humans to this important malaria vector. 相似文献
19.
20.
After invasion of erythrocytes, the human malaria parasite Plasmodium falciparum resides within a parasitophorous vacuole (PV) which forms an interface between the host cell cytosol and the parasite surface. This vacuole protects the parasite from potentially harmful substances, but allows access of essential nutrients to the parasite. Furthermore, the vacuole acts as a transit compartment for parasite proteins en route to the host cell cytoplasm. Recently we developed a strategy to biotin label soluble proteins of the PV. Here, we have paired this strategy with a high-throughput MALDI-TOF-MS analysis to identify 27 vacuolar proteins. These proteins fall into the following main classes: chaperones, proteases, and metabolic enzymes, consistent with the expected functions of the vacuole. These proteins are likely to be involved in several processes including nutrient acquisition from the host cytosol, protein sorting within the vacuole, and release of parasites at the end of the intraerythrocytic cycle. 相似文献