首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundMultidrug resistance (MDR) is a serious impediment to cancer treatment, with overexpression of drug efflux pumps such as P-glycoprotein (P-gp) playing a significant role. In spite of being a major clinical challenge, to date there is no simple, minimally invasive and clinically validated method for diagnosis of the MDR phenotype using non-tumour biological samples. Recently, P-gp has been found in extracellular vesicles (EVs) shed by MDR cancer cells. This study aimed to compare the EVs shed by MDR cells and their drug-sensitive cellular counterparts, in order to identify biomarkers of MDR.MethodsTwo pairs of MDR and drug-sensitive counterpart tumour cell lines were studied as models. EVs were characterized in terms of size and molecular markers and their protein content was investigated by proteomic analysis and Western blot.ResultsWe found that MDR cells produced more microvesicle-like EVs and less exosomes than their drug-sensitive counterpart. EVs from MDR cells contained P-gp and presented a different content of proteins known to be involved in the biogenesis of EVs, particularly in the biogenesis of exosomes.ConclusionsThe determination of the size and of this particular protein content of EVs shed by tumour cells may allow the development of a minimally-invasive simple method of detecting and predicting MDR.General significanceThis work describes for the first time that cancer multidrug resistant cells shed more microvesicle-like EVs and less exosomes than their drug-sensitive counterpart cells, carrying a specific content of proteins involved in EV biogenesis that could be further studied as biomarkers of MDR.  相似文献   

2.
The intercellular communication mediated by extracellular vesicles (EVs) has gained international interest during the last decade. Interfering with the mechanisms regulating this cellular process might find application particularly in oncology where cancer cell‐derived EVs play a role in tumour microenvironment transformation. Although several mechanisms were ascribed to explain the internalization of EVs, little is our knowledge about the fate of their cargos, which are crucial to mediate their function. We recently demonstrated a new intracellular pathway in which a fraction of endocytosed EV‐associated proteins is transported into the nucleoplasm of the host cell via a subpopulation of late endosomes penetrating into the nucleoplasmic reticulum. Silencing tetraspanin CD9 both in EVs and recipient cells strongly decreased the endocytosis of EVs and abolished the nuclear transfer of their cargos. Here, we investigated whether monovalent Fab fragments derived from 5H9 anti‐CD9 monoclonal antibody (referred hereafter as CD9 Fab) interfered with these cellular processes. To monitor the intracellular transport of proteins, we used fluorescent EVs containing CD9‐green fluorescent protein fusion protein and various melanoma cell lines and bone marrow‐derived mesenchymal stromal cells as recipient cells. Interestingly, CD9 Fab considerably reduced EV uptake and the nuclear transfer of their proteins in all examined cells. In contrast, the divalent CD9 antibody stimulated both events. By impeding intercellular communication in the tumour microenvironment, CD9 Fab‐mediated inhibition of EV uptake, combined with direct targeting of cancerous cells could lead to the development of novel anti‐melanoma therapeutic strategies.  相似文献   

3.
Circulating biomarkers have a great potential in diagnosing cancer diseases at early stages, where curative treatment is a realistic possibility. In the recent years, using extracellular vesicles (EVs) derived from blood as biomarkers has gained widespread popularity, mainly because they are thought to be easy to isolate and carry a vast variety of biological cargos that can be analyzed for biomarker purposes. However, our current knowledge on the plasma EV concentration in normophysiological states is sparse. Here, we provide the very first mean estimate of the plasma EV concentration based on values obtained from a thorough literature review. The different estimates obtained from the literature are correlated to the isolation techniques used to obtain them, illustrating how some methodologies may over- or underestimate the plasma EV concentration. We also show that the estimated plasma EV concentration (approximately 1010 EVs per mL) defines EVs as a minority population compared to other colloidal particles of the systemic circulation, namely the lipoproteins, which are known contaminants in EV isolates and carry biomarker molecules themselves. Lastly, we introduce the possibility of regarding EVs and lipoproteins as a continuum of lipid-containing particles to which biomarker molecules can be associated. Using such a holistic approach, increased strength of plasma-derived cancer biomarkers may soon be revealed.  相似文献   

4.
In recent years there has been tremendous interest in both the basic biology and applications of extracellular vesicles (EVs) in translational cancer research. This includes a better understanding of their biogenesis and mechanisms of selective cargo packaging, their precise roles in horizontal communication, and their application as non-invasive biomarkers. The rapid advances in next-generation omics technologies are the driving forces for these discoveries. In this review, the authors focus on recent results of EV research in ovarian cancer. A deeper understanding of ovarian cancer-derived EVs, the types of cargo molecules and their biological roles in cancer growth, metastases and drug resistance, could have significant impact on the discovery of novel biomarkers and innovative therapeutics. Insights into the role of EVs in immune regulation could lead to novel approaches built on EV-based immunotherapy.  相似文献   

5.
Iron homeostasis is crucial for maintaining proper cellular function, and its disruption is considered one of the pathogenic mechanisms underlying musculoskeletal diseases. Under conditions of oxidative stress, the accumulation of cellular iron overload and lipid peroxidation can lead to ferroptosis. Extracellular vesicles (EVs), serving as mediators in the cell-to-cell communication, play an important role in regulating the outcome of cell ferroptosis. Growing evidence has proven that EV biogenesis and secretion are tightly associated with cellular iron export. Furthermore, different sources of EVs deliver diverse cargoes to bring about phenotypic changes in the recipient cells, either activating or inhibiting ferroptosis. Thus, delivering therapies targeting ferroptosis through EVs may hold significant potential for treating musculoskeletal diseases. This review aims to summarize current knowledge on the role of EVs in iron homeostasis and ferroptosis, as well as their therapeutic applications in musculoskeletal diseases, and thereby provide valuable insights for both research and clinical practice.  相似文献   

6.
Cells can communicate in a variety of ways, such as by contacting each other or by secreting certain factors. Recently, extracellular vesicles (EVs) have been proposed to be mediators of cell communication. EVs are small vesicles with a lipid bilayer membrane that are secreted by cells and contain DNA, RNAs, lipids, and proteins. These EVs are secreted from various cell types and can migrate and be internalized by recipient cells that are the same or different than those that secrete them. EVs harboring various components are involved in regulating gene expression in recipient cells. These EVs may also play important roles in the senescence of cells and the accumulation of senescent cells in the body. Studies on the function of EVs in senescent cells and the mechanisms through which nonsenescent and senescent cells communicate through EVs are being actively conducted. Here, we summarize studies suggesting that EVs secreted from senescent cells can promote the senescence of other cells and that EVs secreted from nonsenescent cells can rejuvenate senescent cells. In addition, we discuss the functional components (proteins, RNAs, and other molecules) enclosed in EVs that enter recipient cells.  相似文献   

7.
Extracellular vesicles (EVs) are released by cells into the extracellular milieu to facilitate intercellular communication in both physiological and pathological condition. EVs contain selective repertoires of proteins, RNAs, lipids and metabolites that moderate signalling pathways in the recipient cells. The enrichment of a particular set of proteins or RNAs within the EVs highlights the existence of specific sorting mechanisms that orchestrate the selective packaging of the cargo. The molecular machinery of cargo sorting has remained obscure over the years and functional studies are required to understand this complex mechanism. In this article, we offer a brief overview of the molecular mechanisms that are known to regulate sorting of various molecules into EVs. We also discuss how different pathways of biogenesis alter the exosomal cargo as well and the implications of the cellular state on the content of the EVs. Understanding the sorting of exosomal cargo could further be exploited in clinical settings for targeted drug delivery and to block disease progression.  相似文献   

8.
The field of extracellular vesicles (EVs) has expanded tremendously over the last decade. The role of cell-to-cell communication in neighboring or distant cells has been increasingly ascribed to EVs generated by various cells. Initially, EVs were thought to a means of cellular debris or disposal system of unwanted cellular materials that provided an alternative to autolysis in lysosomes. Intercellular exchange of information has been considered to be achieved by well-known systems such as hormones, cytokines, and nervous networks. However, most research in this field has searched for and found evidence to support paracrine or endocrine roles of EV, which inevitably leads to a new concept that EVs are synthesized to achieve their paracrine or endocrine purposes. Here, we attempted to verify the endocrine role of EV production and their contents, such as RNAs and bioactive proteins, from the regulation of biogenesis, secretion, and action mechanisms while discussing the current technical limitations. It will also be important to discuss how blood EV concentrations are regulated as if EVs are humoral endocrine machinery.  相似文献   

9.
PurposeExtracellular vesicles (EVs) can mediate long-distance communication in polarized RPE monolayers. Specifically, EVs from oxidatively stressed donor cells (stress EVs) rapidly reduced barrier function (transepithelial resistance, TER) in naïve recipient monolayers, when compared to control EVs. This effect on TER was dependent on dynamin-mediated EV uptake, which occurred rapidly with EVs from oxidatively stressed donor cells. Here, we further determined molecular mechanisms involved in uptake of EVs by naïve RPE cells.MethodsRPE cells were grown as monolayers in media supplemented with 1% FBS followed by transfer to FBS-free media. Cultures were used to collect control or stress EVs upon treatment with H2O2, others served as naïve recipient cells. In recipient monolayers, TER was used to monitor EV-uptake-based activity, live-cell imaging confirmed uptake. EV surface proteins were quantified by protein chemistry.ResultsClathrin-independent, lipid raft-mediated internalization was excluded as an uptake mechanism. Known ligand-receptor interactions involved in clathrin-dependent endocytosis include integrins and proteoglycans. Desialylated glycans and integrin-receptors on recipient cells were necessary for EV uptake and subsequent reduction of TER in recipient cells. Protein quantifications confirmed elevated levels of ligands and neuraminidase on stress EVs. However, control EVs could confer activity in the TER assay if exogenous neuraminidase or additional ligand was provided.ConclusionsIn summary, while EVs from both stressed cells and control contain cargo to communicate stress messages to naive RPE cells, stress EVs contain surface ligands that confer rapid uptake by recipient cells. We propose that EVs potentially contribute to RPE dysfunction in aging and disease.  相似文献   

10.
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanoparticles released by cells. They range from 30?nm to several micrometers in diameter, and ferry biological cargos such as proteins, lipids, RNAs and DNAs for local and distant intercellular communications. EVs have since been found to play a role in development, as well as in diseases including cancers. To elucidate the roles of EVs, researchers have established different methods to visualize and study their spatiotemporal properties. However, since EV are nanometer-sized, imaging them demands a full understanding of each labeling strategy to ensure accurate monitoring. This review covers current and emerging strategies for EV imaging for prospective studies.  相似文献   

11.
Doxorubicin (DOX) is a kind of representative anthracyclines. It has greatly prolonged lifespan of cancer patients. However, a long course of DOX chemotherapy could induce various forms of deaths of cardiomyocytes, such as apoptosis, pyroptosis and ferroptosis, contributing to varieties of cardiac complications called cardiotoxicity. It has become a major concern considering the large number of cancer patients'' worldwide and increased survival rates after chemotherapy. Exosomes, a subgroup of extracellular vesicles (EVs), are secreted by nearly all cells and consist of lipid bilayers, nucleic acids and proteins. They can serve as mediators between intercellular communication via the transfer of bioactive molecules from secretory to recipient cells, modulating multiple pathophysiological processes. It has been proven that exosomes in body fluids can serve as biomarkers for doxorubicin-induced cardiotoxicity (DIC). Moreover, exosomes have attracted considerable attention because of their capacity as carriers of certain proteins, genetic materials (miRNA and lncRNA), and chemotherapeutic drugs to decrease the dosage of DOX and alleviate cardiotoxicity. This review briefly describes the characteristics of exosomes and highlights their clinical application potential as diagnostic biomarkers and drug delivery vehicles for DIC, thus providing a strategy for addressing it based on exosomes.  相似文献   

12.
Extracellular vesicles (EVs) are key contributors to cancer where they play an integral role in cell-cell communication and transfer pro-oncogenic molecules to recipient cells thereby conferring a cancerous phenotype. Here, we purified EVs using straightforward biochemical approaches from multiple cancer cell lines and subsequently characterized these EVs via multiple biochemical and biophysical methods. In addition, we used fluorescence microscopy to directly show internalization of EVs into the recipient cells within a few minutes upon addition of EVs to recipient cells. We confirmed that the transmembrane protein EMMPRIN, postulated to be a marker of EVs, was indeed secreted from all cell lines studied here. We evaluated the response to EV stimulation in several different types of recipient cells lines and measured the ability of these purified EVs to induce secretion of several factors highly upregulated in human cancers. Our data indicate that purified EVs preferentially stimulate secretion of several proteins implicated in driving cancer in monocytic cells but only harbor limited activity in epithelial cells. Specifically, we show that EVs are potent stimulators of MMP-9, IL-6, TGF-β1 and induce the secretion of extracellular EMMPRIN, which all play a role in driving immune evasion, invasion and inflammation in the tumor microenvironment. Thus, by using a comprehensive approach that includes biochemical, biological, and spectroscopic methods, we have begun to elucidate the stimulatory roles.  相似文献   

13.
BackgroundTo date, EVs characterization techniques are extremely diverse. The contribution of AFM, in particular, is often confined to size distribution. While AFM provides a unique possibility to carry out measurements in situ, nanomechanical characterization of EVs is still missing.MethodsBlood plasma EVs were isolated by ultracentrifugation, analyzed by flow cytometry and NTA. Followed by cryo-EM, we applied PeakForce AFM to assess morphological and nanomechanical properties of EVs in liquid.ResultsNanoparticles were subdivided by their size estimated for their suspended state into sub-sets of small S1-EVs (< 30 nm), S2-EVs (30–50 nm), and sub-set of large ones L-EVs (50–170 nm). Non-membranous S1-EVs were distinguished by higher Young's modulus (10.33(7.36;15.25) MPa) and were less deformed by AFM tip (3.6(2.8;4.4) nm) compared to membrane exosomes S2-EVs (6.25(4.52;8.24) MPa and 4.8(4.3;5.9) nm). L-EVs were identified as large membrane exosomes, heterogeneous by their nanomechanical properties (22.43(8.26;53.11) MPa and 3.57(2.07;7.89) nm). Nanomechanical mapping revealed a few non-deformed L-EVs, of which Young's modulus rose up to 300 MPa. Taken together with cryo-EM, these results lead us to the suggestion that two or more vesicles could be contained inside a large one being a multilayer vesicle.ConclusionsWe identified particles similar in morphology and showed differences in nanomechanical properties that could be attributed to the features of their inner structure.General significanceOur results further elucidate the identification of EVs and concomitant nanoparticles based on their nanomechanical properties.  相似文献   

14.
Heat shock proteins (HSPs) are a large family of molecular chaperones aberrantly expressed in cancer. The expression of HSPs in tumor cells has been shown to be implicated in the regulation of apoptosis, immune responses, angiogenesis and metastasis. Given that extracellular vesicles (EVs) can serve as potential source for the discovery of clinically useful biomarkers and therapeutic targets, it is of particular interest to study proteomic profiling of HSPs in EVs derived from various biological fluids of cancer patients. Furthermore, a divergent expression of circulating microRNAs (miRNAs) in patient samples has opened new opportunities in exploiting miRNAs as diagnostic tools. Herein, we address the current literature on the expression of extracellular HSPs with particular interest in HSPs in EVs derived from various biological fluids of cancer patients and different types of immune cells as promising targets for identification of clinical biomarkers of cancer. We also discuss the emerging role of miRNAs in HSP regulation for the discovery of blood-based biomarkers of cancer. We outline the importance of understanding relationships between various HSP networks and co-chaperones and propose the model for identification of HSP signatures in cancer. Elucidating the role of HSPs in EVs from the proteomic and miRNAs perspectives may provide new opportunities for the discovery of novel biomarkers of cancer.  相似文献   

15.
Various mammalian cells including tumor cells secrete extracellular vesicles (EVs), otherwise known as exosomes and microvesicles. EVs are nanosized bilayered proteolipids and play multiple roles in intercellular communication. Although many vesicular proteins have been identified, their functional interrelationships and the mechanisms of EV biogenesis remain unknown. By interrogating proteomic data using systems approaches, we have created a protein interaction network of human colorectal cancer cell-derived EVs which comprises 1491 interactions between 957 vesicular proteins. We discovered that EVs have well-connected clusters with several hub proteins similar to other subcellular networks. We also experimentally validated that direct protein interactions between cellular proteins may be involved in protein sorting during EV formation. Moreover, physically and functionally interconnected protein complexes form functional modules involved in EV biogenesis and functions. Specifically, we discovered that SRC signaling plays a major role in EV biogenesis, and confirmed that inhibition of SRC kinase decreased the intracellular biogenesis and cell surface release of EVs. Our study provides global insights into the cargo-sorting, biogenesis, and pathophysiological roles of these complex extracellular organelles.  相似文献   

16.
17.
The study of extracellular vesicles (EVs) is a rapidly evolving field, owing in large part to recent advances in the realization of their significant contributions to normal physiology and disease. Once discredited as cell debris, these membrane vesicles have now emerged as mediators of intercellular communication by interaction with target cells, drug and gene delivery, and as potentially versatile platforms of clinical biomarkers as a result of their distinctive protein, nucleic acid and lipid cargoes. While there are multiple classes of EVs released from almost all cell types, here we focus primarily on the biogenesis, fate and functional cargoes of microvesicles (MVs). MVs regulate many important cellular processes including facilitating cell invasion, cell growth, evasion of immune response, stimulating angiogenesis, drug resistance and many others.   相似文献   

18.
Cancer stem cells (CSCs) are a small subset of heterogeneous cells existed in tumour tissues or cancer cell lines with self‐renewal and differentiation potentials. CSCs were considered to be responsible for the failure of conventional therapy and tumour recurrence. However, CSCs are not a static cell population, CSCs and non‐CSCs are maintained in dynamic interconversion state by their self‐differentiation and dedifferentiation. Therefore, targeting CSCs for cancer therapy is still not enough,exploring the mechanism of dynamic interconversion between CSCs and non‐CSCs and blocking the interconversion seems to be imperative. Exosomes are 30‐100 nm size in diameter extracellular vesicles (EVs) secreted by multiple living cells into the extracellular space. They contain cell‐state‐specific bioactive materials, including DNA, mRNA, ncRNA, proteins, lipids, etc. with their specific surface markers, such as, CD63, CD81, Alix, Tsg101, etc. Exosomes have been considered as information carriers in cell communication between cancer cells and non‐cancer cells, which affect gene expressions and cellular signalling pathways of recipient cells by delivering their contents. Now that exosomes acted as information carriers, whether they played role in maintaining dynamic equilibrium state between CSCs and non‐CSCs and their mechanism of activity are unknown. This review summarized the current research advance of exosomes’ role in maintaining CSC dynamic interconversion state and their possible mechanism of action, which will provide a better understanding the contribution of exosomes to dedifferentiation and stemness acquisition of non‐CSCs, and highlight that exosomes might be taken as the attractive target approaches for cancer therapeutics.  相似文献   

19.
Extracellular vesicles (EVs) are lipid membrane vesicles released by live cells that carry a variety of biomolecules, including nucleic acids, lipids, and proteins. Recently, proteins in plasma-derived EVs have emerged as novel biomarkers with essential functions in the diagnosis and prognosis of human diseases. However, the current methods of isolating EVs from plasma often lead to coisolated impurities in biological fluids. Therefore, before performing any research protocol, the process of extracting EVs from plasma for proteomic analysis must be optimized. In this study, two EV isolation strategies, size exclusion chromatography (SEC) and SEC combined with ion exchange adsorption (SEC + IEA), were compared in terms of the purity and quantity of protein in EVs. Our results demonstrated that, compared to single-step SEC, SEC combined with IEA could produce plasma-derived EVs with a higher purity by decreasing the abundance of lipoprotein. Additionally, with MS analysis, we demonstrated that the combination approach maintained the stability and improved the purity of EVs in many plasma samples. Furthermore, by combining SEC with IEA, more cancer-associated proteins were detected in the plasma of various cancer samples.  相似文献   

20.
Urological malignancies, including prostate cancer, bladder cancer and kidney cancer, are major causes of morbidity and mortality worldwide. Because of the high incidence, diversity in biology, and especially direct interaction with urine, urological cancers are an important resource for both scientists and clinicians for novel diagnostic and therapeutic discovery. Extracellular vesicles (EVs) are lipid bilayer encapsulated particles released by cells into the extracellular space. Since EVs work as a safe way to transport important biological information through the whole body, they are now recognized as an important mechanism of cell–cell communication and have opened a new window for us to gain a better understanding of cancer biology, novel diagnostics, and therapeutic options. In recent years, numerous evolutions in EV technologies and novel biological and clinical findings continue to be reported in the research field of urological cancers. This comprehensive review aims to give an update of recent advances in EV technologies and summarize the state-of-the-art knowledge of EVs related to prostate cancer, bladder cancer and kidney cancer, particularly focusing on the potential of EV as biomarkers and their biological roles in promoting cancer and metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号