首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Extracellular Vesicles (EVs) represent a heterogeneous population of particles naturally released from all cells, delimited by a lipid bilayer and able to horizontally transfer their cargos to recipient cells. These features imply the growing interest on EVs in cancer biology as biomarkers and therapeutic targets. In this review, we will highlight the specific process related to biogenesis and release of large EVs (L-EVs) derived from the plasma membrane (PM) compared to the small and well described exosomes, generated through the classical endosome-multivesicular body (MVB) pathway. The control of PM rigidity by cells depends on lipid/protein composition, cytoskeleton dynamics, cytoplasmic viscosity, ions balance, metabolic reprogramming and specific intracellular signaling pathways, all critical determinants of L-EVs biogenesis. We will focus in details on a specific class of L-EVs, named Large Oncosomes (LO), exclusively shed by cancer cells and with a size ranging from 1 μm up to 10 μm. We will examine LO specific cargos, either proteins or nucleic acids (i.e. mRNA, microRNAs, single/double-stranded DNA), as well as their functional role in cancer development and progression, also discussing the mechanisms of L-EVs internalization by recipient cells. Overall we will highlight the potential of LO as specific diagnostic/prognostic cancer biomarkers discussing the associated challenges.  相似文献   

2.

益生菌是对宿主健康有益的活的微生物, 具有广泛的促健康作用。它可以缓解和改善肠道相关炎症性疾病的症状, 降低血清胆固醇, 调节肠道菌群平衡, 对恶性肿瘤的治疗和预防有重要作用。胞外囊泡(extracellular vesicles, EVs)是革兰阴性菌及少数革兰阳性菌释放的含有多种生物活性物质的一种纳米级囊泡结构。EVs通过携带生物信息分子在细菌与细菌或细菌与宿主之间的交流中起着非常重要的作用。虽然近年来研究者们对革兰阳性和阴性病原体来源的EVs的研究越来越多, 但对益生菌产生的EVs的研究却很少。本文综述了近年来益生菌释放的EVs在治疗相关疾病中的研究进展, 并对未来的发展形势进行分析。希望本文能围绕益生菌EVs这一新兴领域的最新进展, 寻找基于EVs的相关疾病的诊断工具和有效治疗方法。

  相似文献   

3.
Mesenchymal stem cells (MSCs) are multipotent progenitor cells with therapeutic potential against autoimmune diseases, inflammation, ischemia, and metabolic disorders. Contrary to the previous conceptions, recent studies have revealed that the tissue repair and immunomodulatory functions of MSCs are largely attributed to their secretome, rather than their potential to differentiate into desired cell types. The composition of MSC secretome encompasses cytokines and growth factors, in addition to the cell-derived structures known as extracellular vesicles (EVs). EVs are membrane-enclosed nanoparticles that are capable of delivering biomolecules, and it is now believed that MSC-derived EVs are the major players that induce biological changes in the target tissues. Based on these EVs’ characteristics, the potential of EVs derived from MSC (MSC-EV) in terms of tissue regeneration and immune modulation has grown during the last decade. However, the use of MSCs for producing sufficient amount of EVs has not been satisfactory due to limitations in the cell growth and large variations among the donor cell types. In this regard, pluripotent stem cells (PSCs)-derived MSC-like cells, which can be robustly induced and expanded in vitro, have emerged as more accessible cell source that can overcome current limitations of using MSCs for EV production. In this review, we have highlighted the methods of generating MSC-like cells from PSCs and their therapeutic outcome in preclinical studies. Finally, we have also discussed future requirements for making this cell-free therapy clinically feasible.  相似文献   

4.
Mesenchymal stem cells (MSCs) have attracted considerable attention for their activity in the treatment of refractory visual disorders. Since MSCs were found to possess the beneficial effects by secreting paracrine factors rather than direct differentiation, MSC-derived extracellular vesicles (EVs) were widely studied in various disease models. MSCs generate abundant EVs, which act as important mediators by exchanging protein and genetic information between MSCs and target cells. It has been confirmed that MSC-derived EVs possess unique anti-inflammatory, anti-apoptotic, tissue repairing, neuroprotective, and immunomodulatory properties, similar to their parent cells. Upon intravitreal injection, MSC-derived EVs rapidly diffuse through the retina to alleviate retinal injury or inflammation. Due to possible risks associated with MSC transplantation, such as vitreous opacity and pathological proliferation, EVs appear to be a better choice for intravitreal injection. Small size EVs can pass through biological barriers easily and their contents can be modified genetically for optimal therapeutic effect. Hence, currently, they are also explored for the possibility of serving as drug delivery vehicles. In the current review, we describe the characteristics of MSC-derived EVs briefly, comprehensively summarize their biological functions in ocular diseases, and discuss their potential applications in clinical settings.  相似文献   

5.
Cancer disease is a major cause of death in Western societies. Epidemiologically, antioxidant phenols have been associated with diminished incidence of cancer, while experimentally, they have cytotoxic effects on cancer cells. The aim of this study was to clarify whether natural antioxidant phenols render K562 human leukemic cells more susceptible to natural killer (NK) cell apoptosis and/or necrosis. K562 cells were pre-incubated with 7 different phenols (p-hydroxy benzoic acid, syringic acid, ferulic acid, p-coumaric acid, o-coumaric acid, gallic acid, and rutin) individually and afterwards targeted with NK cells at a ratio 1/5. Percentages of apoptotic and necrotic cells were assayed via flow cytometric analysis of annexin V and PI-stained cells. For the morphological assessment, cells were stained with acridine orange and ethidium bromide and were examined under a fluorescence microscope. Pre-treatment with gallic acid significantly rendered K562 cells more susceptible to NK cell-mediated necrosis, while pre-treatment with rutin significantly rendered K562 cells more susceptible to apoptosis. Gallic acid and rutin exert anticarcinogenic activity via the enhancement of K562 cell susceptibility to NK cell-mediated necrosis and apoptosis, respectively.  相似文献   

6.
7.
Extracellular vesicles (EVs) are nanometric particles that enclose cell-derived bioactive molecules in a lipid bilayer and serve as intercellular communication tools. Accordingly, in various biological contexts, EVs are reported to engage in immune modulation, senescence, and cell proliferation and differentiation. Therefore, EVs could be key elements for potential off-the-shelf cell-free therapy. Little has been studied regarding EVs derived from human pluripotent stem cells (hPSC-EVs), even though hPSCs offer good opportunities for induction of tissue regeneration and unlimited proliferative ability. In this review article, we provide an overview of studies using hPSC-EVs, focusing on identifying the conditions in which the cells are cultivated for the isolation of EVs, how they are characterized, and applications already demonstrated. The topics reported in this article highlight the incipient status of the studies in the field and the significance of hPSC-EVs’ prospective applications as PSC-derived cell-free therapy products.  相似文献   

8.
Small extracellular vesicles (sEVs) secreted by most cells carry bioactive macromolecules including proteins, lipids, and nucleic acids for intercellular communication. Given that some immune cell-derived sEVs exhibit anti-cancer properties, these sEVs have received scientific attention for the development of novel anti-cancer immunotherapeutic agents. In this paper, we reviewed the latest advances concerning the biological roles of immune cell-derived sEVs for cancer therapy. sEVs derived from immune cells including dendritic cells (DCs), T cells, natural-killer (NK) cells, and macrophages are good candidates for sEV-based cancer therapy. Besides their role of cancer vaccines, DC-shed sEVs activated cytotoxic lymphocytes and killed tumor cells. sEVs isolated from NK cells and chimeric antigen receptor (CAR) T cells exhibited cytotoxicity against cancer cells. sEVs derived from CD8+ T and CD4+ T cells inhibited cancer-associated cells in tumor microenvironment (TME) and activated B cells, respectively. M1-macrophage-derived sEVs induced M2 to M1 repolarization and also created a pro-inflammatory environment. Hence, these sEVs, via mono or combination therapy, could be considered in the treatment of cancer patients in the future. In addition, sEVs derived from cytokine-stimulated immune cells or sEV engineering could improve their anti-tumor potency.  相似文献   

9.
The release of extracellular vesicles, also known as outer membrane vesicles, membrane vesicles, exosomes, and microvesicles, is an evolutionarily conserved phenomenon from bacteria to eukaryotes. It has been reported that Mycobacterium tuberculosis releases extracellular vesicles harboring immunologically active molecules, and these extracellular vesicles have been suggested to be applicable in vaccine development and biomarker discovery. However, the comprehensive proteomic analysis has not been performed for M. tuberculosis extracellular vesicles. In this study, we identified a total of 287 vesicular proteins by four LC‐MS/MS analyses with high confidence. In addition, we identified several vesicular proteins associated with the virulence of M. tuberculosis. This comprehensive proteome profile will help elucidate the pathogenic mechanism of M. tuberculosis. The data have been deposited to the ProteomeXchange with identifier PXD001160 ( http://proteomecentral.proteomexchange.org/dataset/PXD001160 ).  相似文献   

10.
Extracellular Vesicles (EVs) are a heterogenous population of particles that play an important role in cell-cell communication in physiological and pathophysiological situations. In this study we reveal that the peptidyl prolyl isomerase Cyclophilin A (CypA) is enriched in cancer-derived EVs from a range of haematopoietic malignancies. CypA-enriched blood cancer EVs were taken up by normal monocytes independent of EV surface trypsin-sensitive proteins and potently stimulated pro-inflammatory MMP9 and IL-6 secretion. Further characterisation revealed that CypA is intravesicular, however, it is not present in all EVs derived from the haematopoietic cells, instead, it is predominantly located in high density EVs with a range of 1.15–1.18 g/ml. Furthermore, loss of CypA expression in haematological cancer cells attenuates high density EV-induced pro-inflammatory MMP9 and IL-6 secretion from monocytes. Mechanistically, we reveal that homozygous loss or siRNA knockdown of CypA expression significantly reduced the secretion of EVs in the range of 100–200 nm from blood cancer cells under normal and hypoxic conditions. Overall, this work reveals a novel role for CypA in cancer cell EV biogenesis.  相似文献   

11.
Fungal extracellular vesicles (EVs) have attracted increased attention in recent years. Originated from a serendipitous discovery, the initial observation of fungal EVs resulted in a set of data repetitively rejected by several scientific journals, which raised questions about their authenticity. However, after the most fundamental experimental issues related to their observation were addressed, fungal EVs were characterized in dozens of species and became an emerging field. In this essay, we will discuss these fundamental findings and the potential of fungal EVs for the development of vaccines and antifungals.  相似文献   

12.
In resected non-small cell lung cancer (NSCLC), postsurgical recurrence is the major factor affecting long-term survival. The identification of biomarkers in extracellular vesicles (EV) obtained from serial blood samples after surgery could enhance early detection of relapse and improve NSCLC outcome. Since EV cargo contains long non-coding RNAs (lncRNAs), we aimed to analyze whether the oncogenic lncRNA HOTTIP, which higher expression in tumor tissue was related to worse outcome in NSCLC, could be detected in EV from NSCLC patients and serve as recurrence biomarker. After purification of EVs by ultracentrifugation in 52 serial samples from 18 NSCLC patients, RNA was isolated and HOTTIP was quantified by Real time PCR. We observed that patients that relapsed after surgery displayed increased postsurgical EV HOTTIP levels in comparison with presurgical levels. In the relapsed patients with several samples available between surgery and relapse, we observed an increment in the EV HOTTIP levels when approaching to relapse, which indicated its potential utility for monitoring disease recurrence. When we focused in EV HOTTIP levels in the first post-surgical sample, we observed that the detection of an increment of the expression levels in comparison to presurgical sample, predicted recurrence with high sensitivity (85.7%) and specificity (90.9%) and that patients had shorter time to relapse and shorter overall survival. In conclusion, our pilot study showed that EV HOTTIP is a potential biomarker for monitoring disease recurrence after surgery in NSCLC.  相似文献   

13.
We have recently shown that adoptively transferred, IL-2-activated natural killer (A-NK) cells are able to eliminate well-established B16-F10.P1 melanoma lung metastases. However, some B16-F10.P1 lung metastases were resistant to infiltration by the A-NK cells and also resistant to the A-NK cell treatment. The infiltration-resistant (I-R) B16-F10.P1 metastases had a unique “compact” morphology compared to the “loose” morphology of the infiltration-permissive (I-P) metastases. Here, we show that I-P loose tumors and I-R compact tumors are also found in lung metastases of mouse Lewis lung carcinoma (3LL), MCA-102 sarcoma, and MC38 colon carcinoma as well as rat MADB106 mammary carcinoma origin. Furthermore, the infiltration resistance of the compact tumors is not restricted to A-NK cells, since PHA and IL-2 stimulated CD8+ T-cells (T-LAK cells) also infiltrated the compact tumors poorly. Analyses of tumors for extracellular matrix (ECM) components and PECAM-1+ vasculature, revealed that the I-R lesions are hypovascularized and contain very little laminin, collagen and fibronectin. In contrast, the I-P loose tumors are well-vascularized and they contain high amounts of ECM components. Interestingly, the distribution pattern of ECM components in the I-P loose tumors is almost identical to that of the normal lung tissue, indicating that these tumors develop around the alveolar walls which provide the loose tumors with both a supporting tissue and a rich blood supply. In conclusion, tumor infiltration by activated NK and T cells correlates with the presence of ECM components and PECAM-1+ vasculature in the malignant tissue. Thus, analysis of the distribution of ECM and vasculature in tumor biopsies may help select patients most likely to benefit from cellular adoptive immunotherapy.  相似文献   

14.
Fibrosis is a physiological process of tissue repair that turns into pathological when becomes chronic, damaging the functional structure of the tissue. In this review we outline the current status of extracellular vesicles as modulators of the fibrotic process at different levels. In adipose tissue, extracellular vesicles mediate the intercellular communication not only between adipocytes, but also between adipocytes and other cells of the stromal vascular fraction. Thus, they could be altering essential processes for the functionality of adipose tissue, such as adipocyte hypertrophy/hyperplasia, tissue plasticity, adipogenesis and/or inflammation, and ultimately trigger fibrosis. This process is particularly important in obesity, and may eventually, influence the development of obesity-associated alterations. In this regard, obesity is now recognized as an independent risk factor for the development of chronic kidney disease, although the role of extracellular vesicles in this connection has not been explored so far. Nonetheless, the role of extracellular vesicles in the onset and progression of renal fibrosis has been highlighted due to the critical role of fibrosis as a common feature of kidney diseases. In fact, the content of extracellular vesicles disturbs cellular signaling cascades involved in fibrosis in virtually all types of renal cells. What is certain is that the study of extracellular vesicles is complex, as their isolation and manipulation is still difficult to reproduce, which complicates the overview of their physiopathological effects. Nevertheless, new strategies have been developed to exploit the potential of extracellular vesicles and their cargo, both as biomarkers and as therapeutic tools to prevent the progression of fibrosis towards an irreversible event.  相似文献   

15.
Toxoplasma gondii infects a wide range of hosts worldwide, including humans and domesticated animals causing toxoplasmosis disease. Recently, exosomes, small extracellular vesicles (EV) that contain nucleic acids, proteins, and lipids derived from their original cells were linked with disease protection. The effect of EVs derived from T. gondii on the immune response and its relevance in a physiological context is unknown. Here we disclose the first proteomic profiling of T. gondii EVs compared to EVs isolated from a human foreskin fibroblast infected cell line cultured in a vesicle‐free medium. Our results reveal a broad range of canonical exosomes proteins. Data are available via ProteomeXchange with the identifier PXD004895.  相似文献   

16.
Cell transplantation therapy has certain limitations including immune rejection and limited cell viability, which seriously hinder the transformation of stem cell-based tissue regeneration into clinical practice. Extracellular vesicles (EVs) not only possess the advantages of its derived cells, but also can avoid the risks of cell transplantation. EVs are intelligent and controllable biomaterials that can participate in a variety of physiological and pathological activities, tissue repair and regeneration by transmitting a variety of biological signals, showing great potential in cell-free tissue regeneration. In this review, we summarized the origins and characteristics of EVs, introduced the pivotal role of EVs in diverse tissues regeneration, discussed the underlying mechanisms, prospects, and challenges of EVs. We also pointed out the problems that need to be solved, application directions, and prospects of EVs in the future and shed new light on the novel cell-free strategy for using EVs in the field of regenerative medicine.  相似文献   

17.
18.
19.
A small group of mucosal Human Papillomaviruses are the causative agents of cervical cancer and are also associated with other types of cancers. Certain cutaneous Human Papillomaviruses seem to have a role as co-factors in the UV-induced carcinogenesis of the skin. The main mechanism of the tumorigenesis induced by Human Papillomaviruses is linked to the transforming activity of the viral E6 and E7 oncoproteins. However, other mechanisms, such as the gene expression control by specific microRNAs expression and deregulation of immune inflammatory mediators, may be important in the process of transformation. In this context, the release of Extracellular Vesicles with a specific cargo (microRNAs involved in tumorigenesis, mRNAs of viral oncoproteins, cytokines, chemokines) appears to play a key role.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号