首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeTo provide a 3D dosimetric evaluation of a commercial portal dosimetry system using 2D/3D detectors under ideal conditions using VMAT.MethodsA 2D ion chamber array, radiochromic film and gel dosimeter were utilised to provide a dosimetric evaluation of transit phantom and pre-treatment ‘fluence’ EPID back-projected dose distributions for a standard VMAT plan. In-house 2D and 3D gamma methods compared pass statistics relative to each dosimeter and TPS dose distributions.ResultsFluence mode and transit EPID dose distributions back-projected onto phantom geometry produced 2D gamma pass rates in excess of 97% relative to other tested detectors and exported TPS dose planes when a 3%, 3 mm global gamma criterion was applied. Use of a gel dosimeter within a glass vial allowed comparison of measured 3D dose distributions versus EPID 3D dose and TPS calculated distributions. 3D gamma comparisons between modalities at 3%, 3 mm gave pass rates in excess of 92%. Use of fluence mode was indicative of transit results under ideal conditions with slightly reduced dose definition.Conclusions3D EPID back projected dose distributions were validated against detectors in both 2D and 3D. Cross validation of transit dose delivered to a patient is limited due to reasons of practicality and the tests presented are recommended as a guideline for 3D EPID dosimetry commissioning; allowing direct comparison between detector, TPS, fluence and transit modes. The results indicate achievable gamma scores for a complex VMAT plan in a homogenous phantom geometry and contributes to growing experience of 3D EPID dosimetry.  相似文献   

2.
PurposeTo develop and implement an automated Monte Carlo (MC) system for patient specific VMAT quality control in a patient geometry that generates treatment planning system (TPS) compliant DICOM objects and includes a module for 3D analysis of dose deviations. Also, the aims were to recommend diagnose specific tolerance criteria and an evaluation procedure.MethodsThe EGSnrc code package formed the basis for development of the MC system. The workflow consists of a number of modules connected to a TPS by means of manual DICOM exports and imports which were executed sequentially without user interaction. DVH comparison was performed in the TPS. In addition, MC- and TPS dose distributions were analysed by applying the normalized dose difference (NDD) formalism. NDD failure maps and a pass rate for a certain threshold were obtained. 170 clinical plans (prostate, thorax, head-and-neck and gynecological) were selected for analysis.ResultsAgreement within 1.5% was found between clinical- and MC data for the mean dose to the target volumes and within 3% for parameters more sensitive to the shape of the DVH e.g. D98% PTV. Regarding the NDD analysis, tolerance criteria 2%/3 mm were established for prostate plans and 3%/3 mm for the rest of the cases.ConclusionsAn automated MC system was developed and implemented. Evaluation procedure is recommended with NDD-analysis as a first step. For pass rate < 95%, the evaluation continues with comparison of DVH parameters. For deviations larger than 2%, a visual inspection of the clinical- and MC dose distributions is performed.  相似文献   

3.
In this study, we verified volumetric modulated arc therapy (VMAT) plans in an Elekta Synergy system with an integrated Agility 160-leaf multileaf collimator (MLC) by comparing them with Monte Carlo (MC)-calculated dose distributions using the AAPM TG-119 structure sets. The head configuration of the linear accelerator with the integrated MLC was simulated with the EGSnrc/BEAMnrc code. Firstly, the dosimetric properties of the MLC were evaluated with the MC technique and film measurements. Next, VMAT plans were created with the Pinnacle3 treatment planning system (TPS) for four regions in the AAPM TG-119 structures. They were then verified by comparing them with MC-calculated dose distributions using dose volume histograms (DVHs) and three-dimensional (3D) gamma analysis. The MC simulations for the Agility MLC dosimetric properties were in acceptable agreement with measurements. TPS-VMAT plans using TG-119 structure sets agreed with MC dose distributions within 2% in the comparison of D95 in planning target volumes (PTVs) evaluated from DVHs. In contrast, higher dose regions such as D20, D10, and D5 in PTVs for TPS tended to be smaller than MC values. This tendency was particularly noticeable for mock head and neck with complicated structures. In 3D gamma analysis, the passing rates with 3%/3mm criteria in PTVs were ≥99%, except for mock head and neck (89.5%). All passing rates for organs at risk (OARs) were in acceptable agreement of >96%. It is useful to verify dose distributions of PTVs and OARs in TPS-VMAT plans by using MC dose calculations and 3D gamma analysis.  相似文献   

4.
With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation.  相似文献   

5.
AimThe aim of this study is to commission and validate Dolphin-Compass dosimetry as a patient-specific Quality Assurance (QA) device.BackgroundThe advancement of radiation therapy in terms of highly conformal delivery techniques demands a novel method of patient-specific QA. Dolphin-Compass system is a dosimetry solution capable of doing different QA in radiation therapy.Materials and methodsDolphin, air-vented ionization detector array mounted on Versa-HD Linear Accelerator (LINAC) was used for measurements. The Compass is a dose computation algorithm which requires modelling of LINAC head similar to other Treatment Planning Systems (TPS). The dosimetry system was commissioned after measuring the required beam data. The validation was performed by comparison of treatment plans generated in Monaco TPS against the measurement data. Different types of simple, complex, static and dynamic radiation fields and highly conformal treatment plans of patients were used in this study.ResultsFor all field sizes, point doses obtained from Dolphin-Compass dosimetry were in good agreement with the corresponding TPS calculated values in most of the regions, except the penumbra, outside field and at build-up depth. The results of gamma passing rates of measurements by using different Multi-leaf Collimator patterns and Intensity Modulated Radiation Therapy fluence were also found to be in good correlation with the corresponding TPS values.ConclusionsThe commissioning and validation of dosimetry was performed with the help of various fields, MLC patterns and complex treatment plans. The present study also evaluated the efficiency of the 3D dosimetry system for the QA of complex treatment plans.  相似文献   

6.
PurposeAdvanced 3D dosimetry is required for verifications of complex dose distributions in modern radiotherapy. Two 3D polymer gel dosimeters, coupled with magnetic resonance (MR) imaging (3 T MRI) readout and data processing with polyGeVero® software, were tested for the verification of calculated 3D dose distributions by a treatment planning system (TPS) and ArcCHECK®–3DVH®, related to eradication of a lung tumour.MethodsN-vinylpyrrolidone-containing 3D polymer gel dosimeters were used: VIC (containing ascorbic acid and copper sulfate pentahydrate) and VIC-T (containing tetrakis(hydroxymethyl)phosphonium chloride). Three remote centers were involved in the dosimeters preparation and irradiation (Poland), and MRI (Austria). Cross beam calibration of the dosimeters and verification of a 3D dose distribution calculated with an Eclipse External Beam TPS and ArcCHECK®–3DVH® were performed. The 3D-to-3D comparisons of the VIC and VIC-T with TPS and ArcCHECK®–3DVH® along with ArcCHECK®–3DVH® versus TPS dose matrixes were performed with the aid of the polyGeVero® by analyzing dose profiles, isodoses lines, gamma index, gamma angle, dose difference, and related histograms.ResultsThe measured MR-relaxation rate (R2 = 1/T2) for the dosimeters relates to the dose, as follows: R2 = 0.0928 ± 0.0008 [Gy−1 s−1] × D [Gy] + 2.985 ± 0.012 [s−1] (VIC) and 0.1839 ± 0.0044 [Gy−1 s−1] × D [Gy] + 2.519 ± 0.053 [s−1] (VIC-T). The 3D-to-3D comparisons revealed a good agreement between the measured and calculated 3D dose distributions.ConclusionsVIC and VIC-T with 3T MRI readout and polyGeVero® showed potential for verifications of calculated irradiation plans. The results obtained suggest the implementation of the irradiation plan for eradication of the lung tumour.  相似文献   

7.
AimThe aim of this study is to verify the Prowess Panther jaws-only intensity modulated radiation therapy (JO-IMRT) treatment planning (TP) by comparing the TP dose distributions for head-and-neck (H&N) cancer with the ones simulated by Monte Carlo (MC).BackgroundTo date, dose distributions planned using JO-IMRT for H&N patients were found superior to the corresponding three-dimensional conformal radiotherapy (3D-CRT) plans. Dosimetry of the JO-IMRT plans were also experimentally verified using an ionization chamber, MapCHECK 2, and Octavius 4D and good agreements were shown.Materials and methodsDose distributions of 15 JO-IMRT plans of nasopharyngeal patients were recalculated using the EGSnrc Monte Carlo code. The clinical photon beams were simulated using the BEAMnrc. The absorbed dose to patients treated by fixed-field IMRT was computed using the DOSXYZnrc. The simulated dose distributions were then compared with the ones calculated by the Collapsed Cone Convolution (CCC) algorithm on the TPS, using the relative dose error comparison and the gamma index using global methods implemented in PTW-VeriSoft with 3%/3 mm, 2%/2 mm, 1%/1 mm criteria.ResultsThere is a good agreement between the MC and TPS dose. The average gamma passing rates were 93.3 ± 3.1%, 92.8 ± 3.2%, 92.4 ± 3.4% based on the 3%/3 mm, 2%/2 mm, 1%/1 mm criteria, respectively.ConclusionsAccording to the results, it is concluded that the CCC algorithm was adequate for most of the IMRT H&N cases where the target was not immediately adjacent to the critical structures.  相似文献   

8.
AimTo study the dosimetric impact of statistical uncertainty (SU) per plan on Monte Carlo (MC) calculation in Monaco? treatment planning system (TPS) during volumetric modulated arc therapy (VMAT) for three different clinical cases.BackgroundDuring MC calculation SU is an important factor to decide dose calculation accuracy and calculation time. It is necessary to evaluate optimal acceptance of SU for quality plan with reduced calculation time.Materials and methodsThree different clinical cases as the lung, larynx, and prostate treated using VMAT technique were chosen. Plans were generated with Monaco? V5.11 TPS with 2% statistical uncertainty. By keeping all other parameters constant, plans were recalculated by varying SU, 0.5%, 1%, 2%, 3%, 4%, and 5%. For plan evaluation, conformity index (CI), homogeneity index (HI), dose coverage to PTV, organ at risk (OAR) dose, normal tissue receiving dose ≥5 Gy and ≥10 Gy, integral dose (NTID), calculation time, gamma pass rate, calculation reproducibility and energy dependency were analyzed.ResultsCI and HI improve as SU increases from 0.5% to 5%. No significant dose difference was observed in dose coverage to PTV, OAR doses, normal tissue receiving dose ≥5 Gy and ≥10 Gy and NTID. Increase of SU showed decrease in calculation time, gamma pass rate and increase in PTV max dose. No dose difference was seen in calculation reproducibility and dependent on energy.ConclusionFor VMAT plans, SU can be accepted from 1% to 3% per plan with reduced calculation time without compromising plan quality and deliverability by accepting variations in point dose within the target.  相似文献   

9.
BackgroundThis study aimed to verify the dosimetric impact of Acuros XB (AXB) (AXB, Varian Medical Systems Palo Alto CA, USA), a two model-based algorithm, in comparison with Anisotropic Analytical Algorithm (AAA ) calculations for prostate, head and neck and lung cancer treatment by volumetric modulated arc therapy (VMAT ), without primary modification to AA. At present, the well-known and validated AA algorithm is clinically used in our department for VMAT treatments of different pathologies. AXB could replace it without extra measurements. The treatment result and accuracy of the dose delivered depend on the dose calculation algorithm.Materials and methodNinety-five complex VMAT plans for different pathologies were generated using the Eclipse version 15.0.4 treatment planning system (TPS). The dose distributions were calculated using AA and AXB (dose-to-water, AXBw and dose-to-medium, AXBm), with the same plan parameters for all VMAT plans. The dosimetric parameters were calculated for each planning target volume (PTV) and involved organs at risk (OA R). The patient specific quality assurance of all VMAT plans has been verified by Octavius®-4D phantom for different algorithms.ResultsThe relative differences among AA, AXBw and AXBm, with respect to prostate, head and neck were less than 1% for PTV D95%. However, PTV D95% calculated by AA tended to be overestimated, with a relative dose difference of 3.23% in the case of lung treatment. The absolute mean values of the relative differences were 1.1 ± 1.2% and 2.0 ± 1.2%, when comparing between AXBw and AA, AXBm and AA, respectively. The gamma pass rate was observed to exceed 97.4% and 99.4% for the measured and calculated doses in most cases of the volumetric 3D analysis for AA and AXBm, respectively.ConclusionThis study suggests that the dose calculated to medium using AXBm algorithm is better than AAA and it could be used clinically. Switching the dose calculation algorithm from AA to AXB does not require extra measurements.  相似文献   

10.
AimTo study the sensitivity of three commercial dosimetric systems, Delta4, Multicube and Octavius4D, in detecting Volumetric Modulated Arc Therapy (VMAT) delivery errors.MethodsFourteen prostate and head and neck (H&N) VMAT plans were considered for this study. Three types of errors were introduced into the original plans: gantry angle independent and dependent MLC errors, and gantry angle dependent dose errors. The dose matrix measured by each detector system for the no-error and error introduced delivery were compared with the reference Treatment Planning System (TPS) calculated dose matrix for no-error plans using gamma (γ) analysis with 2%/2 mm tolerance criteria. The ability of the detector system in identifying the minimum error in each scenario was assessed by analysing the gamma pass rates of no error delivery and error delivery using a Wilcoxon signed-rank test. The relative sensitivity of the system was assessed by determining the slope of the gamma pass line for studied error magnitude in each error scenario.ResultsIn the gantry angle independent and dependent MLC error scenario the Delta4, Multicube and Octavius4D systems detected a minimum 2 mm error. In the gantry angle dependent dose error scenario all studied systems detected a minimum 3% and 2% error in prostate and H&N plans respectively. In the studied detector systems Multicube showed relatively less sensitivity to the errors in the majority of error scenarios.ConclusionThe studied systems identified the same magnitude of minimum errors in all considered error scenarios.  相似文献   

11.
PurposeAt our institute, a transit back-projection algorithm is used clinically to reconstruct in vivo patient and in phantom 3D dose distributions using EPID measurements behind a patient or a polystyrene slab phantom, respectively. In this study, an extension to this algorithm is presented whereby in air EPID measurements are used in combination with CT data to reconstruct ‘virtual’ 3D dose distributions. By combining virtual and in vivo patient verification data for the same treatment, patient-related errors can be separated from machine, planning and model errors.Methods and materialsThe virtual back-projection algorithm is described and verified against the transit algorithm with measurements made behind a slab phantom, against dose measurements made with an ionization chamber and with the OCTAVIUS 4D system, as well as against TPS patient data. Virtual and in vivo patient dose verification results are also compared.ResultsVirtual dose reconstructions agree within 1% with ionization chamber measurements. The average γ-pass rate values (3% global dose/3 mm) in the 3D dose comparison with the OCTAVIUS 4D system and the TPS patient data are 98.5 ± 1.9%(1SD) and 97.1 ± 2.9%(1SD), respectively. For virtual patient dose reconstructions, the differences with the TPS in median dose to the PTV remain within 4%.ConclusionsVirtual patient dose reconstruction makes pre-treatment verification based on deviations of DVH parameters feasible and eliminates the need for phantom positioning and re-planning. Virtual patient dose reconstructions have additional value in the inspection of in vivo deviations, particularly in situations where CBCT data is not available (or not conclusive).  相似文献   

12.
PurposeTo evaluate a commercially available Ferrous-Xylenol Orange-Gel (FXG) dosimeter (TrueView™) coupled with Optical-Computed Tomography (OCT) read out, for 3D dose verification in an Ir-192 superficial brachytherapy application.MethodsTwo identical polyethylene containers filled with gel from the same batch were used. One was irradiated with an 18 MeV electron field to examine the dose-response linearity and obtain a calibration curve. A flap surface applicator was attached to the other to simulate treatment of a skin lesion. The dose distribution in the experimental set up was calculated with the TG-43 and the model based dose calculation (MBCA) algorithms of a commercial treatment planning system (TPS), as well as Monte Carlo (MC) simulation using the MCNP code. Measured and calculated dose distributions were spatially registered and compared.ResultsApart from a region close to the container’s neck, where gel measurements exhibited an over-response relative to MC calculations (probably due to stray light perturbation), an excellent agreement was observed between measurements and simulations. More than 97% of points within the 10% isodose line (80 cGy) met the gamma index criteria established from uncertainty analysis (5%/2 mm). The corresponding passing rates for the comparison of experiment to calculations using the TG-43 and MBDCA options of the TPS were 57% and 92%, respectively.ConclusionTrueView™ is suitable for the quality assurance of demanding radiotherapy applications. Experimental results of this work confirm the advantage of the studied MBDCA over TG-43, expected from the improved account of scatter radiation in the treatment geometry.  相似文献   

13.
PurposeThis work aims to validate new 6D couch features and their implementation for seated radiotherapy in RayStation (RS) treatment planning system (TPS).Materials and methodsIn RS TPS, new 6D couch features are (i) chair support device, (ii) patient treatment option of “Sitting: face towards the front of the chair”, and (iii) patient support pitch and roll capabilities. The validation of pitch and roll was performed by comparing TPS generated DRRs with planar x-rays. Dosimetric tests through measurement by 2D ion chamber array were performed for beams created with varied scanning and treatment orientation and 6D couch rotations. For the implementation of 6D couch features for treatments in a seated position, the TPS and oncology information system (Mosaiq) settings are described for a commercial chair. An end-to-end test using an anthropomorphic phantom was performed to test the complete workflow from simulation to treatment delivery.ResultsThe 6D couch features were found to have a consistent implementation that met IEC 61712 standard. The DRRs were found to have an acceptable agreement with planar x-rays based on visual inspection. For dose map comparison between measured and calculated, the gamma index analysis for all the beams was >95% at a 3% dose-difference and 3 mm distance-to-agreement tolerances. For an end-to end-testing, the phantom was successfully set up at isocenter in the seated position and treatment was delivered.ConclusionsChair-based treatments in a seated position can be implemented in RayStation through the use of newly released 6D couch features.  相似文献   

14.
ObjectivesThe purpose of this study was to dosimetrically benchmark gel dosimetry measurements in a dynamically deformable abdominal phantom for intrafraction image guidance through a multi-dosimeter comparison. Once benchmarked, the study aimed to perform a proof-of-principle study for validation measurements of an ultrasound image-guided radiotherapy delivery system.MethodsThe phantom was dosimetrically benchmarked by delivering a liver VMAT plan and measuring the 3D dose distribution with DEFGEL dosimeters. Measured doses were compared to the treatment planning system and measurements acquired with radiochromic film and an ion chamber. The ultrasound image guidance validation was performed for a hands-free ultrasound transducer for the tracking of liver motion during treatment.ResultsGel dosimeters were compared to the TPS and film measurements, showing good qualitative dose distribution matches, low γ values through most of the high dose region, and average 3%/5 mm γ-analysis pass rates of 99.2%(0.8%) and 90.1%(0.8%), respectively. Gel dosimeter measurements matched ion chamber measurements within 3%. The image guidance validation study showed the measurement of the treatment delivery improvements due to the inclusion of the ultrasound image guidance system. Good qualitative matching of dose distributions and improvements of the γ-analysis results were observed for the ultrasound-gated dosimeter compared to the ungated dosimeter.ConclusionsDEFGEL dosimeters in phantom showed good agreement with the planned dose and other dosimeters for dosimetric benchmarking. Ultrasound image guidance validation measurements showed good proof-of-principle of the utility of the phantom system as a method of validating ultrasound-based image guidance systems and potentially other image guidance methods.  相似文献   

15.
This study compares Treatment Planning System (TPS) out of field dose calculation on a pacemaker (PMK) during external beam radiotherapy treatment. We consider four TPSs (Elekta-Monaco, Oncentra- Masterplan and two Philips-Pinnacle3) commissioned for two linacs (Elekta Sinergy and Varian Clinac) delivering two test beams (a highly modulated one and a square field) and two clinical breast plans. To calculate and measure dose to a PMK we built a Real Water3 phantom with a PMK embedded in it. Measures are performed with thermo-luminescent dosimeters and Mosfet dosimeters. We evaluate differences between TPS calculated values for the dose to the PMK (both point dose and dose-volume histogram parameters) when the PMK is positioned in the first 10 cm outside the radiation fields. TPS calculation accuracy is evaluated comparing such values with measures. Differences in TPS calculations are on average 3.5 cGy Gy-1 for the modulated beam, and always lower than 2 cGy Gy-1 for the square beam. TPS dose calculation depends mostly on the TPS algorithm and model rather than the linac commissioned. TPSs considered show different degrees of calculation accuracy. In the first 4 cm to the field edge three out of four TPSs are in good agreement with measurements in the square beam, but only one keeps the agreement in the modulated beam: the others show over and underestimations up to +20% −40%. The same accuracy is found considering a homogeneous phantom. Our results confirm what reported in previous studies and highlight the impact of TPS commissioning.  相似文献   

16.

Aim

Stepping source in brachytherapy systems is used to treat a target lesion longer than the effective treatment length of the source. Cancerous lesions in the cervix, esophagus and rectum are examples of such a target lesion.

Background

In this study, the stepping source of a GZP6 afterloading intracavitary brachytherapy unit was simulated using Monte Carlo (MC) simulation and the results were used for the validation of the GZP6 treatment planning system (TPS).

Materials and methods

The stepping source was simulated using MCNPX Monte Carlo code. Dose distributions in the longitudinal plane were obtained by using a matrix shift method for esophageal tumor lengths of 8 and 10 cm. A mesh tally has been employed for the absorbed dose calculation in a cylindrical water phantom. A total of 5 × 108 photon histories were scored and the MC statistical error obtained was at the range of 0.008–3.5%, an average of 0.2%.

Results

The acquired MC and TPS isodose curves were compared and it was shown that the dose distributions in the longitudinal plane were relatively coincidental. In the transverse direction, a maximum dose difference of 7% and 5% was observed for tumor lengths of 8 and 10 cm, respectively.

Conclusion

Considering that the certified source activity is given with ±10% uncertainty, the obtained difference is reasonable. It can be concluded that the accuracy of the dose distributions produced by GZP6 TPS for the stepping source is acceptable for its clinical applications.  相似文献   

17.
PurposeTo perform a detailed evaluation of dose calculation accuracy and clinical feasibility of Mobius3D. Of particular importance, multileaf collimator (MLC) modeling accuracy in the Mobius3D dose calculation algorithm was investigated.MethodsMobius3D was fully commissioned by following the vendor-suggested procedures, including dosimetric leaf gap (DLG) optimization. The DLG optimization determined an optimal DLG correction factor which minimized the average difference between calculated and measured doses for 13 patient volumetric-modulated arc therapy (VMAT) plans. Two sets of step-and-shoot plans were created to examine MLC and off-axis open fields modeling accuracy of the Mobius3D dose calculation algorithm: MLC test set and off-axis open field test set. The test plans were delivered to MapCHECK for the MLC tests and an ionization chamber for the off-axis open field test, and these measured doses were compared to Mobius3D-calculated doses.ResultsThe mean difference between the calculated and measured doses across the 13 VMAT plans was 0.6% with an optimal DLG correction factor of 1.0. The mean percentage of pixels passing gamma from a 3%/1 mm gamma analysis for the MLC test set was 43.5% across the MLC tests. For the off-axis open field tests, the Mobius3D-calculated dose for 1.5 cm square field was −4.6% lower than the chamber-measured dose.ConclusionsIt was demonstrated that Mobius3D has dose calculation uncertainties for small fields and MLC tongue-and-groove design is not adequately taken into consideration in Mobius3D. Careful consideration of DLG correction factor, which affects the resulting dose distributions, is required when commissioning Mobius3D for patient-specific QA.  相似文献   

18.
AimTo compare the measured and calculated individual and composite field planar dose distribution of Intensity Modulated Radiotherapy plans.Materials and methodsThe measurements were performed in Clinac DHX linear accelerator with 6 MV photons using Matrixx device and a solid water phantom. The 20 brain tumor patients were selected for this study. The IMRT plan was carried out for all the patients using Eclipse treatment planning system. The verification plan was produced for every original plan using CT scan of Matrixx embedded in the phantom. Every verification field was measured by the Matrixx. The TPS calculated and measured dose distributions were compared for individual and composite fields.Results and discussionThe percentage of gamma pixel match for the dose distribution patterns were evaluated using gamma histogram. The gamma pixel match was 95–98% for 41 fields (39%) and 98% for 59 fields (61%) with individual fields. The percentage of gamma pixel match was 95–98% for 5 patients and 98% for other 12 patients with composite fields. Three patients showed a gamma pixel match of less than 95%. The comparison of percentage gamma pixel match for individual and composite fields showed more than 2.5% variation for 6 patients, more than 1% variation for 4 patients, while the remaining 10 patients showed less than 1% variation.ConclusionThe individual and composite field measurements showed good agreement with TPS calculated dose distribution for the studied patients. The measurement and data analysis for individual fields is a time consuming process, the composite field analysis may be sufficient enough for smaller field dose distribution analysis with array detectors.  相似文献   

19.
PurposeTo validate the feasibility and accuracy of commonly used collapsed cone (CC) dose engine for Elekta Unity 1.5T MR-LINAC online independent dose verification.Materials and MethodsThe Unity beam model was built and commissioned in RayStation treatment planning system with CC dose engine. Four AAPM TG-119 test plans were created and measured with ArcCHECK phantom for comparison, another thirty patient plans from six tumor sites were also included. The dosimetric criteria for various ROIs and 3D gamma passing rates were quantitatively evaluated, and the effects of magnetic field and dose deposition type on the dose difference between two systems were further analyzed.ResultsArcCHECK based measurement showed a clear magnetic field induced profile shift between CC with both measurement and GPUMCD. For clinical plans, gamma passing rates with criteria (3%, 3 mm) between GPUMCD and CC large than 90% can be achieved for most tumor sites except esophagus and lung cases, the mean dose difference of 3% can be satisfied for most ROIs from all tumor sites. The magnetic field caused a large dose impact on low density areas, the average gamma passing rates were improved from 85.54% to 96.43% and 87.40% to 99.54% for esophagus and lung cases when the magnetic field effect was excluded.ConclusionsIt is feasible to use CC dose engine as a secondary dose calculation tool for Elekta Unity system for most tumor sites, while the accuracy is limited and should be used carefully for low density areas, such as esophagus and lung cases.  相似文献   

20.
PurposeTo investigate the performances of two commercial treatment planning systems (TPS) for Volumetric Modulated Arc Therapy (VMAT) optimization regarding prostate cancer. The TPS were compared in terms of dose distributions, treatment delivery parameters and quality control results.Materials and methodsFor ten patients, two VMAT plans were generated: one with Monaco TPS (Elekta) and one with Pinnacle TPS (Philips Medical Systems). The total prescribed dose was 78 Gy delivered in one 360° arc with a Synergy® linear accelerator equipped with a MLCi2®.ResultsVMAT with Monaco provided better homogeneity and conformity indexes but lower mean dose to PTVs than Pinnacle. For the bladder wall (p = 0.019), the femoral heads (p = 0.017), and healthy tissues (p = 0.005), significantly lower mean doses were found using Monaco. For the rectal wall, VMAT with Pinnacle provided a significantly (p = 0.047) lower mean dose, and lower dose into 50% of the volume (p = 0.047) compared to Monaco. Despite a greater number of monitor units (factor 1.5) for Monaco TPS, the total treatment time was equivalent to that of Pinnacle. The treatment delivery parameter analysis showed larger mean MLC area for Pinnacle and lower mean dose rate compared to Monaco. The quality control results gave a high passing rate (>97.4%) for the gamma index for both TPS but Monaco provided slightly better results.ConclusionFor prostate cancer patients, VMAT treatment plans obtained with Monaco and Pinnacle offered clinically acceptable dose distributions. Further investigations are in progress to confirm the performances of the two TPS for irradiating more complex volumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号