共查询到20条相似文献,搜索用时 15 毫秒
1.
Althaf Hussain Shaik Shajidha Ruksar Shaik Abdul Saheer Shaik Ali Daoud Manoharadas Salim Lakshmi Devi Kodidhela 《Saudi Journal of Biological Sciences》2021,28(4):2575-2580
ObjectiveThis research designed to analyze the in vivo and in silico ameliorative action of maslinic acid (MA) and gallic acid (GA) on reactive oxygen species generating enzyme xanthine oxidase (XO) in isoprenaline or isoproterenol (ISO) induced myocardial infarcted rats.MethodsAlbino Wistar rats were categorized into four groups with eight rats in each group. A dose of 15 mg/kg of MA and GA were pretreated to each MA and GA groups for seven days. A dose of 85 mg/kg of ISO administered to the ISO group along with MA and GA groups except normal group on two consecutive days of pretreatment. All animals sacrificed and the heart tissues were collected for the analysis of XO. The in silico molecular docking analysis of the compounds MA and GA with XO was analyzed by using Gold 3.0.1 software.ResultsXO enzyme levels were significantly increased in the heart homogenate of ISO administered rats when compared to normal rats. Pretreatment of MA and GA to ISO treated rats significantly brought XO enzyme to the near normal levels which indicate the protective action of MA and GA against myocardial necrosis. The in vivo results were further supported by the in silico molecular docking study which revealed the inhibition of XO enzyme by the formation of enzyme and ligand complex with the compounds MA and GA.ConclusionMA and GA compounds manifested the ameliorative effect against ISO administrated myocardial necrosis by inhibiting the free radical generating enzyme XO which is evidenced by both in vivo and in silico studies. 相似文献
2.
Molecular modeling of flavonoids that inhibits xanthine oxidase 总被引:8,自引:0,他引:8
Lin CM Chen CS Chen CT Liang YC Lin JK 《Biochemical and biophysical research communications》2002,294(1):167-172
The inhibition of xanthine oxidase activity by various flavonoids was assessed. All of the tested flavonoids were competitive inhibitors, and from the kinetic analysis suggested that flavonoids bind to the reactive site. To further understand the stereochemistry between these flavonoids and xanthine oxidase, structure-based molecular modeling was performed. Apigenin was the most potent inhibitor which showed the most favorable interaction in the reactive site. The bicyclic benzopyranone ring of apigenin stacked with phenyl of Phe 914, and the phenolic group stretched to the space surrounding with several hydrophobic residues. Quercetin and myricetin composed a 3-hydroxyl group on benzopyranone which resulting in reduction of binding affinity. The phenolic group of genistein positioned in opposite orientation comparison with apigenin, and resulted in a weaker interaction with xanthine oxidase. Isovitexin showed the weakest inhibitory effect among the compounds tested. The bulky group of sugar in isovitexin may hamper its interaction with xanthine oxidase. 相似文献
3.
概述了近年来不同细菌黄漂呤脱氢酶的研究概况,因其种类繁多、性质各异,较牛奶黄嘌呤氧化酶相比应当有更广泛的应用前景。 相似文献
4.
Synthesis and evaluation of naphthoflavones as a new class of non purine xanthine oxidase inhibitors
《Bioorganic & medicinal chemistry letters》2014,24(17):4192-4197
In view of reported xanthine oxidase inhibitory potential of naphthopyrans and flavones, naphthoflavones as hybrids of the two were designed, synthesized and evaluated for in vitro xanthine oxidase inhibitory activity in the present study. The results of the assay revealed that the naphthoflavones possess promising inhibitory potential against the enzyme with IC50 values ranging from 0.62 to 41.2 μM. Structure activity relationship indicated that the nature and placement of substituents on the phenyl ring at 2nd position remarkably influences the inhibitory activity. Substitution of halo and nitro groups at ortho and para position of the phenyl ring (2nd position) remarkably favored the activity. NF-4 with p-fluoro phenyl ring was the most potent inhibitor with IC50 value of 0.62 μM. Enzyme kinetics study was also performed to investigate the inhibition mechanism and it was found that the naphthoflavones displayed mixed type inhibition. The basis of significant inhibition of xanthine oxidase by NF-4 was rationalized by molecular modeling studies. 相似文献
5.
Xanthine oxidase is the key enzyme that catalyzes the oxidation of hypoxanthine to xanthine and then to uric acid. In this study, a series of xanthone derivatives were synthesized as effective and a new class of xanthine oxidase inhibitor. Compounds 8a, 8c, 8i, 8g and 8r showed good inhibition against xanthine oxidase. The presence of a cyano group at the para position of benzyl moiety turned out to be the preferred substitution pattern. Molecular modeling studies were performed to gain an insight into its binding mode with xanthine oxidase, and to provide the basis for further structure-guided design of new non-purine xanthine oxidase inhibitors associated with the xanthone framework. 相似文献
6.
Lichao Zhang Sibo Wang Mingzheng Yang Ailong Shi He Wang Qi Guan Kai Bao Weige Zhang 《Bioorganic & medicinal chemistry》2019,27(9):1818-1823
In view of expanding the structure activity relationship of xanthine oxidase inhibitors, a series of 3-oxo-6-aryl-2,3-dihydropyridazine-4-carbohydrazide/carboxylic acid derivatives were designed by molecular docking and synthesized. All the target compounds were evaluated for their in vitro XO inhibition by using febuxostat and allopurinol as the standard controls. Most of the hydrazide derivatives exhibited potency levels in the micromolar range. From the view of docking study, hydrazide derivatives bind to the active site of XO through a novel interaction mode, which is different from that of febuxostat bearing a carboxyl group. The most promising compound 8b was further subjected to kinetic analysis to deduce their modes of inhibition. 相似文献
7.
《Nucleosides, nucleotides & nucleic acids》2013,32(8-9):1111-1116
In order to evaluate the safety, pharmacological properties, and urate‐lowering efficacy of febuxostat, a non‐purine, selective inhibitor of xanthine oxidase, a Phase 1, 2‐week, multiple‐dose, placebo‐controlled, dose‐escalation study was conducted in 154 healthy adults of both sexes. Daily febuxostat doses in the range 10 mg to 120 mg resulted in proportional mean serum urate reductions ranging from 25% to 70% and in proportional increases in maximum febuxostat plasma concentrations and area under plasma concentration versus time curves. Accompanying the hypouricemic effect were increases in serum xanthine concentrations, decreases in urinary uric acid excretion, and increases in urinary xanthine and hypoxanthine excretion, confirming inhibition of xanthine oxidase activity by febuxostat. Hepatic conjugation and oxidative metabolism were the major pathways of elimination of febuxostat from the body, and renal elimination did not appear to play a significant role. Although not uncommon, adverse events were mild and self‐limited, and no deaths or serious adverse events were observed. Febuxostat is a safe and potent hypouricemic agent in healthy humans. 相似文献
8.
Tetsuya Yamamoto Yuji Moriwaki Sumio Takahashi Zennta Tsutsumi Jun-ichi Yamakita Yumiko Nasako Keisai Hiroishi Kazuya Higashino 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1996,681(2):395
An assay for human plasma xanthine oxidase activity was developed with pterin as the substrate and the separation of product (isoxanthopterin) by high-performance liquid chromatography with a fluorescence detector. The reaction mixture consists of 60 μl of plasma and 240 μl of 0.2 M Tris-HCl buffer (pH 9.0) containing 113 μM pterin. With this assay, the activity of plasma xanthine oxidase could be easily determined despite its low activity. As a result, it could be demonstrated that the intravenous administration of heparin or the oral administration of ethanol did not increase plasma xanthine oxidase activity in normal subjects, and also that plasma xanthine oxidase activity was higher in patients with hepatitis C virus infection than in healthy subjects or patients with gout. In addition, a single patient with von Gierke's disease showed a marked increase in the plasma activity of this enzyme, relative to that apparent in normal subjects. 相似文献
9.
Corpas FJ Palma JM Sandalio LM Valderrama R Barroso JB Del Río LA 《Journal of plant physiology》2008,165(13):1319-1330
The presence and properties of the enzyme xanthine oxidoreductase (XOR) in peroxisomes from pea (Pisum sativum L.) leaves were studied using biochemical and immunological methods. The activity analysis showed that, in leaf peroxisomes, the superoxide-generating XOR form, xanthine oxidase (XOD), was predominant over the xanthine dehydrogenase form (XDH), with a XDH/XOD ratio of 0.5. However, in crude extracts of pea leaves, the XDH form was more abundant, with a XDH/XOD ratio of 1.6. The native molecular mass of the peroxisomal XOR determined by polyacrylamide gel electrophoresis was 290kDa. Using western blot assays, we identified an immunoreactive band of 59kDa that was not affected by the reducing reagent DTT or endogenous proteases. The analysis of pea leaves by electron microscopy immunogold labeling with affinity-purified antibodies against rat XOD confirmed that this enzyme was localized in the matrix of peroxisomes, as well as in chloroplasts and cytosol. In pea plants subjected to abiotic stress by cadmium, the activity of the peroxisomal XOR was reduced, whereas its protein level expression increased. The results confirmed that leaf peroxisomes contain XOR, and suggest that this peroxisomal metalloflavoprotein enzyme is involved in the mechanism of response of pea plants to abiotic stress by heavy metals. 相似文献
10.
《Bioorganic & medicinal chemistry》2016,24(21):5197-5205
A series of arylidene N-alkoxydiketopiperazines was designed and stereoselectively synthesized via oxime-ether formation and intramolecular acylation. Possible cyclization and acid-catalyzed rearrangement-fragmentation mechanisms were discussed. The crystal structure of the novel diketopiperazine further confirmed the rearrangement mechanism. Most compounds exhibited antitumor activity. Several compounds were more potent against caspase-3. Specifically, compounds 6e, 6g, and 6f inhibited caspase-3 at IC50 values lying within the low micromolar range and demonstrated good selectivity. The binding modes of alkoxydiketopiperazines in the active center of caspase-3 were also discussed based on the molecular docking results. 相似文献
11.
Eighteen secondary metabolites were isolated from the fermentation broth of the endophytic fungus Xylaria sp. SYPF 8246, including four new compounds, xylarianins A-D (1–4), three new natural products, 6-methoxycarbonyl-2′-methyl-3,5,4′,6′-tetramethoxy-diphenyl ether (5), 2-chlor-6-methoxycarbonyl-2′-rnethyl-3,5,4′,6′-tetramethoxy-diphenyl ether (6), and 2-chlor-4′-hydroxy-6-methoxy carbonyl-2′-methyl-3,5,6′-trimethoxy-diphenyl ether (7), and eleven known compounds (8–18). Their structural elucidations were conducted by using 1D and 2D NMR, HRESIMS, and Rh2(OCOCF3)4-induced electronic circular dichroism (ECD) spectra analyses. The integrated 1H and 13C NMR data of three new natural products 5–7 were reported for the first time. All the isolated compounds were assayed for their inhibitory activities against human carboxylesterase 2 (hCE 2). Compounds 1, 5–9, and 18 displayed significant inhibitory activities against hCE 2 with IC50 values of 10.43 ± 0.51, 6.69 ± 0.85, 12.36 ± 1.27, 18.25 ± 1.78, 29.78 ± 0.48, 18.86 ± 1.87, and 20.72 ± 1.51 µM, respectively. The interactions between compounds 1 and 5 with hCE 2 were anaylzed by molecular docking. 相似文献
12.
Sathisha KR Khanum SA Chandra JN Ayisha F Balaji S Marathe GK Gopal S Rangappa KS 《Bioorganic & medicinal chemistry》2011,19(1):211-220
An elevated level of blood uric acid (hyperuricemia) is the underlying cause of gout. Xanthine oxidase is the key enzyme that catalyzes the oxidation of hypoxanthine to xanthine and then to uric acid. Allopurinol, a widely used xanthine oxidase inhibitor is the most commonly used drug to treat gout. However, a small but significant portion of the population suffers from adverse effects of allopurinol that includes gastrointestinal upset, skin rashes and hypersensitivity reactions. Moreover, an elevated level of uric acid is considered as an independent risk factor for cardiovascular diseases. Therefore use of allopurinol-like drugs with minimum side effects is the ideal drug of choice against gout. In this study, we report the synthesis of a series of pyrimidin-5-one analogues as effective and a new class of xanthine oxidase inhibitors. All the synthesized pyrimidin-5-one analogues are characterized by spectroscopic techniques and elemental analysis. Four (6a, 6b, 6d and 6f) out of 20 synthesized molecules in this class showed good inhibition against three different sources of xanthine oxidase, which were more potent than allopurinol based on their respective IC50 values. Molecular modeling and docking studies revealed that the molecule 6a has very good interactions with the Molybdenum-Oxygen-Sulfur (MOS) complex a key component in xanthine oxidase. These results highlight the identification of a new class of xanthine oxidase inhibitors that have potential to be more efficacious, than allopurinol, to treat gout and possibly against cardiovascular diseases. 相似文献
13.
Mariana A. Soares Mariana A. Almeida Carla Marins-Goulart Otávio A. Chaves Aurea Echevarria Márcia C.C. de Oliveira 《Bioorganic & medicinal chemistry letters》2017,27(15):3546-3550
In the search for compounds which may inhibit the development of melanomas, a series of thiosemicarbazones has been investigated as possible inhibitors of the tyrosinase enzyme. The results showed that all the thiosemicarbazones tested exhibited significant inhibitory effects on the enzyme. Thiosemicarbazones Thio-1, Thio-2, Thio-3 and Thio-4 substituted with oxygenate moieties, were better inhibitors (IC50 0.42, 0.35, 0.36 and 0.44 mM, respectively) than Thio-5, Thio-6, Thio-7 and Thio-8. For the better inhibitors, molecular docking results suggested that the oxygen present in the para position of the aromatic ring is essential for the tyrosinase inhibition, due its high ability for complexation with Cu2+ ions. Inside the active protein pocket, Thio-2 – the best studied inhibitor – is able to interact with the amino acid residues His-155, Gly-170 and Val-172 via hydrogen bonding and hydrophobic force. Thio-2, containing a substituent on the aromatic ring similar to the substrate l-DOPA, showed a competitive inhibition mechanism as viewed in a Lineweaver–Burk plot. The same results were observed in the UV–Vis curves. 相似文献
14.
Seung Cheol Baek Hyung Won Ryu Myung-Gyun Kang Hanna Lee Daeui Park Myoung-Lae Cho Sei-Ryang Oh Hoon Kim 《Bioorganic & medicinal chemistry letters》2018,28(14):2403-2407
Chelerythrine, an isoquinoline alkaloid isolated from the herbaceous perennial Chelidonium majus, was found to potently and selectively inhibit an isoform of recombinant human monoamine oxidase-A (MAO-A) with an IC50 value of 0.55?µM. Chelerythrine was a reversible competitive MAO-A inhibitor (Ki?=?0.22?µM) with a potency much greater than toloxatone (IC50?=?1.10?µM), a marketed drug. Other isoquinoline alkaloids tested did not effectively inhibit MAO-A or MAO-B. A structural comparison with corynoline suggested the 1- and/or 2-methoxy groups of chelerythrine increase its inhibitory activity against MAO-A. Molecular docking simulations revealed that the binding affinity of chelerythrine for MAO-A (?9.7?kcal/mol) was greater than that for MAO-B (?4.6?kcal/mol). Docking simulation implied that Cys323 and Tyr444 of MAO-A are key residues for hydrogen-bond interaction with chelerythrine. Our findings suggest chelerythrine is one of the most reversible selective and potent natural inhibitor of MAO-A, and that it be regarded a potential lead compound for the design of novel reversible MAO-A inhibitors. 相似文献
15.
Seung Cheol Baek Hyun Woo Lee Hyung Won Ryu Myung-Gyun Kang Daeui Park Soo Hyun Kim Myoung-Lae Cho Sei-Ryang Oh Hoon Kim 《Bioorganic & medicinal chemistry letters》2018,28(4):584-588
Hispidol, an aurone, isolated from Glycine max Merrill, was found to potently and selectively inhibit an isoform of recombinant human monoamine oxidase-A (MAO-A), with an IC50 value of 0.26?µM, and to inhibit MAO-B, but with lower potency (IC50?=?2.45?µM). Hispidol reversibly and competitively inhibited MAO-A with a Ki value of 0.10?µM with a potency much greater than toloxatone (IC50?=?1.10?µM), a marketed drug. It also reversibly and competitively inhibited MAO-B (Ki?= 0.51?µM). Sulfuretin, an analog of hispidol, effectively inhibited MAO-A (IC50?=?4.16?µM) but not MAO-B (IC50?>?80?µM). A comparison of their chemical structures showed that the 3′-hydroxyl group of sulfuretin might reduce its inhibitory activities against MAO-A and MAO-B. Flexible docking simulation revealed that the binding affinity of hispidol for MAO-A (?9.1?kcal/mol) was greater than its affinity for MAO-B (?8.7?kcal/mol). The docking simulation showed hispidol binds to the major pocket of MAO-A or MAO-B. The findings suggest hispidol is a potent, selective, reversible inhibitor of MAO-A, and that it be considered a novel lead compound for development of novel reversible inhibitors of MAO-A. 相似文献
16.
Dan Shan Yan-Na Wang Huai-Guo Xue Serge Cosnier Shou-Nian Ding 《Biosensors & bioelectronics》2009,24(12):3556-3561
In this work, colloidal laponite nanoparticles were further expanded into the design of the third-generation biosensor. Direct electrochemistry of the complex molybdoenzyme xanthine oxidase (XnOx) immobilized on glassy carbon electrode (GCE) by laponite nanoparticles was investigated for the first time. XnOx/laponite thin film modified electrode showed only one pair of well defined and reversible cyclic voltammetric peaks attributed to XnOx–FAD cofactor at about −0.370 V vs. SCE (pH 5). The formal potential of XnOx–FAD/FADH2 couple varied linearly with the increase of pH in the range of 4.0–8.0 with a slope of −54.3 mV pH−1, which indicated that two-proton transfer was accompanied with two-electron transfer in the electrochemical reaction. More interestingly, the immobilized XnOx retained its biological activity well and displayed an excellent electrocatalytic performance to both the oxidation of xanthine and the reduction of nitrate. The electrocatalytic response showed a linear dependence on the xanthine concentration ranging from 3.9 × 10−8 to 2.1 × 10−5 M with a detection limit of 1.0 × 10−8 M based on S/N = 3. 相似文献
17.
Luisa Maia Rui O. Duarte Ana Ponces-Freire José J. G. Moura Lurdes Mira 《Journal of biological inorganic chemistry》2007,12(6):777-787
To characterise the NADH oxidase activity of both xanthine dehydrogenase (XD) and xanthine oxidase (XO) forms of rat liver
xanthine oxidoreductase (XOR) and to evaluate the potential role of this mammalian enzyme as an O2
•− source, kinetics and electron paramagnetic resonance (EPR) spectroscopic studies were performed. A steady-state kinetics
study of XD showed that it catalyses NADH oxidation, leading to the formation of one O2
•− molecule and half a H2O2 molecule per NADH molecule, at rates 3 times those observed for XO (29.2 ± 1.6 and 9.38 ± 0.31 min−1, respectively). EPR spectra of NADH-reduced XD and XO were qualitatively similar, but they were quantitatively quite different.
While NADH efficiently reduced XD, only a great excess of NADH reduced XO. In agreement with reductive titration data, the
XD specificity constant for NADH (8.73 ± 1.36 μM−1 min−1) was found to be higher than that of the XO specificity constant (1.07 ± 0.09 μM−1 min−1). It was confirmed that, for the reducing substrate xanthine, rat liver XD is also a better O2
•− source than XO. These data show that the dehydrogenase form of liver XOR is, thus, intrinsically more efficient at generating
O2
•− than the oxidase form, independently of the reducing substrate. Most importantly, for comparative purposes, human liver XO
activity towards NADH oxidation was also studied, and the kinetics parameters obtained were found to be very similar to those
of the XO form of rat liver XOR, foreseeing potential applications of rat liver XOR as a model of the human liver enzyme. 相似文献
18.
Xanthine oxidase (XOD) catalyses the oxidation of hypoxanthine into xanthine and xanthine into uric acid. The enzyme plays a key role in the purine metabolic pathway. Despite the presence of different XODs in prokaryotes, the functional and structural knowledge of prokaryotic XODs remain limited (compared with their well-known eukaryotic counterparts), thereby hindering their biochemical analysis and industrial application. Using genetic and biochemical analyses, we identified and characterised recombinant XOD (CcXODAB) from Cellulosimicrobium cellulans ATCC21606. Bioinformatics analysis suggests that CcXODAB shares low amino acid sequence identities with other XODs. The purified enzyme exhibits the maximum activity at 55 °C and pH 8.0. In addition, CcXODAB exhibits moderate thermostability and retains 80.65 % of the original activity after 30 min of incubation at 60 °C. Ca2 + has a slight inhibitory effect, whereas Co2 + and Mn2 + have a strong inhibitory effect on XODAB activity. In particular, low Ba2+ and Mg2 + concentrations have no effect, whereas high Mg2 + (≥10 mM) and Ba2+ (≥2 mM) concentrations show an inhibitory effect on enzyme activity. The Km and Vmax values for xanthine are 131.29 ± 11.09 μmol•L−1 and 15.23 ± 0.65 μmol•L-1 min−1, respectively. Results indicate that CcXODAB is a novel enzyme with potential industrial application. 相似文献
19.
《Biochemical and biophysical research communications》2020,521(4):861-867
Hyperuricemia is caused by hepatic overproduction of uric acid and/or underexcretion of urate from the kidneys and small intestine. Although increased intake of citrus fruits, a fructose-rich food, is associated with increased risk of gout in humans, hesperidin, a flavonoid naturally present in citrus fruits, reportedly reduces serum uric acid (SUA) levels by inhibiting xanthine oxidase (XOD) activity in rats. However, the effects of hesperidin on renal and intestinal urate excretion were previously unknown. In this study, we used glucosyl hesperidin (GH), which has greater bioavailability than hesperidin, to clarify comprehensive mechanisms underlying the hypouricemic effects of hesperidin in vivo. GH dose-dependently decreased SUA levels in mice with hyperuricemia induced by potassium oxonate and a fructose-rich diet, and inhibited XOD activity in the liver. GH decreased renal urate excretion without changes in kidney URAT1, ABCG2 or GLUT9 expressions, suggesting that reducing uric acid pool size by inhibiting XOD decreased renal urate excretion. We also found that GH had no effect on intestinal urate excretion or protein expression of ABCG2. Therefore, we concluded that GH exhibits a hypouricemic effect by inhibiting XOD activity in the liver without increasing renal or intestinal urate excretion. Of note, this is the first study to elucidate the effect of a flavonoid on intestinal urate excretion using a mice model, whose findings should prove useful in future food science research in the area of urate metabolism. Taking these findings together, GH may be useful for preventing hyperuricemia, especially in people with the overproduction type. 相似文献
20.
Seung Cheol Baek Myung-Gyun Kang Ji-Eun Park Jae Pil Lee Hanna Lee Hyung Won Ryu Chul Min Park Daeui Park Myoung-Lae Cho Sei-Ryang Oh Hoon Kim 《Bioorganic & medicinal chemistry letters》2019,29(6):839-843
Osthenol (6), a prenylated coumarin isolated from the dried roots of Angelica pubescens, potently and selectively inhibited recombinant human monoamine oxidase-A (hMAO-A) with an IC50 value of 0.74?µM and showed a high selectivity index (SI?>?81.1) for hMAO-A versus hMAO-B. Compound 6 was a reversible competitive hMAO-A inhibitor (Ki?=?0.26?µM) with a potency greater than toloxatone (IC50?=?0.93?µM), a marketed drug. Isopsoralen (3) and bakuchicin (1), furanocoumarin derivatives isolated from Psoralea corylifolia L., showed slightly higher IC50 values (0.88 and 1.78?µM, respectively) for hMAO-A than 6, but had low SI values (3.1 for both). Other coumarins tested did not effectively inhibit hMAO-A or hMAO-B. A structural comparison suggested that the 8-(3,3-dimethylallyl) group of 6 increased its inhibitory activity against hMAO-A compared with the 6-methoxy group of scopoletin (4). Molecular docking simulations revealed that the binding affinity of 6 for hMAO-A (?8.5?kcal/mol) was greater than that for hMAO-B (?5.6?kcal/mol) and that of 4 for hMAO-A (?7.3?kcal/mol). Docking simulations also implied that 6 interacted with hMAO-A at Phe208 and with hMAO-B at Ile199 by carbon hydrogen bondings. Our findings suggest that osthenol, derived from natural products, is a selective and potent reversible inhibitor of MAO-A, and can be regarded a potential lead compound for the design of novel reversible MAO-A inhibitors. 相似文献