首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative evaluation of five different cell-disruption methods for the release of recombinant hepatitis B core antigen (HBcAg) from Escherichia coli was investigated. The cell disruption techniques evaluated in this study were high-pressure homogenization, batch-mode bead milling, continuous-recycling bead milling, ultrasonication, and enzymatic lysis. Continuous-recycling bead milling was found to be the most effective method in terms of operating cost and time. However, the highest degree of cell disruption and amounts of HBcAg were obtained from the high-pressure homogenization process. The direct purification of HBcAg from the unclarified cell disruptate derived from high-pressure homogenization and bead milling techniques, using batch anion-exchange adsorption methods, showed that the conditions of cell disruption have a substantial effect on subsequent protein recovery steps.  相似文献   

2.
3.
The oleaginous yeast Yarrowia lipolytica is known to inhabit various lipid-containing environments. One of the most striking features in this yeast is the presence of several multigene families involved in the metabolic pathways of hydrophobic substrate utilization. The complexity and the multiplicity of these genes give Y. lipolytica a wide capability range towards hydrophobic substrate (HS) utilization and storage. The combination of the increasing knowledge of this yeast's metabolism and the development of more efficient genetic tools is offering new perspectives in using Y. lipolytica as a model organism to study the mechanisms involved in lipid metabolism associated to fat uptake, storage, deposition, mobilization and regulation. Nutrient status and culture conditions seem to play a major role in obesity.  相似文献   

4.
5.
Malic enzyme (EC 1.1.1.40) converts l-malate to pyruvate and CO2 providing NADPH for metabolism especially for lipid biosynthesis in oleaginous microorganisms. However, its role in the oleaginous yeast, Yarrowia lipolytica, is unclear. We have cloned the malic enzyme gene (YALI0E18634g) from Y. lipolytica into pET28a, expressed it in Escherichia coli and purified the recombinant protein (YlME). YlME used NAD+ as the primary cofactor. Km values for NAD+ and NADP+ were 0.63 and 3.9 mM, respectively. Citrate, isocitrate and α-ketoglutaric acid (>5 mM) were inhibitory while succinate (5–15 mM) increased NADP+- but not NAD+-dependent activity. To determine if fatty acid biosynthesis could be increased in Y. lipolytica by providing additional NADPH from an NADP+-dependent malic enzyme, the malic enzyme gene (mce2) from an oleaginous fungus, Mortierella alpina, was expressed in Y. lipolytica. No significant changes occurred in lipid content or fatty acid profiles suggesting that malic enzyme is not the main source of NADPH for lipid accumulation in Y. lipolytica.  相似文献   

6.
7.
8.
Cellular fatty acid compositions of Candida tropicalis pK 233 and Candida lipolytica NRRL Y -6795 and the time-course changes during yeast growth were studied using individual n-alkanes of various chain lengths (from C11 to C18) and a mixture of n-alkanes (C11 to C18) as a sole carbon source. Observed relationships of the chain-length of n-alkane substrate to time-course changes and final patterns of the fatty acid compositions of these yeasts, especially those of the cells grown on odd-carbon alkanes, indicated that “intact incorporation mechanism,” that is, accumulation of the fatty acid having the same chain-length as that of the alkane substrate used was predominant in the yeasts cultivated on a longer alkane such as n-heptadecane and n-octadecane. On the other hand, “chain elongation pathway” and “de novo synthesis pathway” following β-oxidation of substrate were simultaneously operative in the cells growing on a relatively shorter alkane such as undecane and dodecane.  相似文献   

9.
10.
Yarrowia lipolytica is an important oleaginous yeast currently used in the production of specialty chemicals and has a great potential for further applications in lipid biotechnology. Harnessing the full potential of Y. lipolytica is, however, limited by its inherent recalcitrance to genetic manipulation. In contrast to Saccharomyces cerevisiae, Y. lipolytica is poor in homology-mediated DNA repair and thus in homologous recombination, which limits site-specific gene editing in this yeast. Recently developed CRISPR/Cas9-based methods using tRNA-sgRNA fusions succeeded in editing some genomic loci in Y. lipolytica. Nonetheless, the majority of other tested loci either failed editing or editing was achieved but at very low efficiency using these methods. Using tools of secondary RNA structure prediction, we were able to improve the design of the tRNA-sgRNA fusions used for the expression of single guide RNA (sgRNA) in such methods. This resulted in high efficiency CRISPR/cas9 gene editing at chromosomal loci that failed gene editing or were edited at very low efficiencies with previous methods. In addition, we characterized the gene editing performance of our newly designed tRNA-sgRNA fusions for both chromosomal gene integration and deletion. As such, this study presents an efficient CRISPR/Cas9-mediated gene-editing tool for efficient genetic engineering of Yarrowia lipolytica.  相似文献   

11.
The yeast Yarrowia lipolytica is capable of high-intensity synthesis (overproduction) of citric (CA) and isocitric (ICA) acids under nitrogen limitation. The ratio of the synthesized acids depends on the producing strains used and the expression level of the aconitate hydratase gene (ACO1). Recombinant variants with overexpression of the multicopy ACO1 gene have been obtained based on the natural ICA-producing strain Y. lipolytica 672. A recombinant strain Y. lipolytica 20, which has an isocitrate-citrate ratio shifted towards ICA (2.3: 1) as compared to the parental strain (1.1: 1), has been selected. Culturing of the 20 variant in a 10 L reactor has resulted in the production of 72.6 g/L of ICA and 29.0 g/L of CA with a ratio of 2.5: 1. This makes it possible to regard Y. lipolytica 20 as a promising producer for the development of an industrial process for isocitrate production.  相似文献   

12.
13.
A genomic comparison of Yarrowia lipolytica and Saccharomyces cerevisiae indicates that the metabolism of Y. lipolytica is oriented toward the glycerol pathway. To redirect carbon flux toward lipid synthesis, the GUT2 gene, which codes for the glycerol-3-phosphate dehydrogenase isomer, was deleted in Y. lipolytica in this study. This Δgut2 mutant strain demonstrated a threefold increase in lipid accumulation compared to the wild-type strain. However, mobilization of lipid reserves occurred after the exit from the exponential phase due to β-oxidation. Y. lipolytica contains six acyl-coenzyme A oxidases (Aox), encoded by the POX1 to POX6 genes, that catalyze the limiting step of peroxisomal β-oxidation. Additional deletion of the POX1 to POX6 genes in the Δgut2 strain led to a fourfold increase in lipid content. The lipid composition of all of the strains tested demonstrated high proportions of FFA. The size and number of the lipid bodies in these strains were shown to be dependent on the lipid composition and accumulation ratio.  相似文献   

14.
With the emergence of energy scarcity, the use of renewable energy sources such as biodiesel is becoming increasingly necessary. Recently, many researchers have focused their minds on Yarrowia lipolytica, a model oleaginous yeast, which can be employed to accumulate large amounts of lipids that could be further converted to biodiesel. In order to understand the metabolic characteristics of Y. lipolytica at a systems level and to examine the potential for enhanced lipid production, a genome-scale compartmentalized metabolic network was reconstructed based on a combination of genome annotation and the detailed biochemical knowledge from multiple databases such as KEGG, ENZYME and BIGG. The information about protein and reaction associations of all the organisms in KEGG and Expasy-ENZYME database was arranged into an EXCEL file that can then be regarded as a new useful database to generate other reconstructions. The generated model iYL619_PCP accounts for 619 genes, 843 metabolites and 1,142 reactions including 236 transport reactions, 125 exchange reactions and 13 spontaneous reactions. The in silico model successfully predicted the minimal media and the growing abilities on different substrates. With flux balance analysis, single gene knockouts were also simulated to predict the essential genes and partially essential genes. In addition, flux variability analysis was applied to design new mutant strains that will redirect fluxes through the network and may enhance the production of lipid. This genome-scale metabolic model of Y. lipolytica can facilitate system-level metabolic analysis as well as strain development for improving the production of biodiesels and other valuable products by Y. lipolytica and other closely related oleaginous yeasts.  相似文献   

15.
The codon-optimized genes crtB and crtI of Pantoea ananatis were expressed in Yarrowia lipolytica under the control of the TEF1 promoter of Y. lipolytica. Additionally, the rate-limiting genes for isoprenoid biosynthesis in Y. lipolytica, GGS1 and HMG1, were overexpressed to increase the production of lycopene. All of the genes were also expressed in a Y. lipolytica strain with POX1 to POX6 and GUT2 deleted, which led to an increase in the size of lipid bodies and a further increase in lycopene production. Lycopene is located mainly within lipid bodies, and increased lipid body formation leads to an increase in the lycopene storage capacity of Y. lipolytica. Growth-limiting conditions increase the specific lycopene content. Finally, a yield of 16 mg g−1 (dry cell weight) was reached in fed-batch cultures, which is the highest value reported so far for a eukaryotic host.  相似文献   

16.
17.
18.
In Drosophila melanogaster there is one nucleolar organizer (NO) on each X and Y chromosome. Experiments were carried out to compare the ribosomal RNAs derived from the two nucleolar organizers. 32PO4-labelled ribosomal RNA was isolated from two strains of D. melanogaster, one containing only the X chromosome NO, the other containing only the Y chromosome NO. 28 S and 18 S RNA from the two strains were subjected to a variety of “fingerprinting” and sequencing procedures. Fingerprints of 28 S RNA were very different from those of 18 S RNA. Fingerprints of “X” and “Y” 28 S RNA were indistinguishable from each other, as also were fingerprints of “X” and “Y” 18 S RNA. In combined “T1 plus pancreatic” RNAase fingerprints several distinctive products were characterized and quantitated. Identical products were obtained from X and Y RNA, and the molar yields of the products were indistinguishable. Together these findings imply that the rRNA sequences encoded by the X and Y NOs are closely similar and probably identical to each other.Two further findings were of interest in “T1 plus pancreatic” RNAase fingerprints: (1) in 28 S (as well as in 18 S) fingerprints several distinctive products were recovered in approximately unimolar yields. This indicates that 28 S RNA does not consist of two identical half molecules, though it does consist of two non-identical half molecules together with a “5.8 S” fragment. (2) Several methylated components in Drosophila rRNA also occur in rRNA from HeLa cells and yeast. This suggests that certain features of rRNA structure involving methylated nucleotides may be highly conserved in eukaryotic evolution.  相似文献   

19.
The morphology of dried Candida lipolytica yeast suspended in aqueous solutions (H2O, 0.4% NaOH, 2N HCl, and 6N HCl) and organic solvents (95% alcohol and acetone) was studied using a scanning electron microscope (SEM) and an optical microscope. The effect of high-pressure homogenization on cell-wall structure and cell clumps was also determined. The protein extractability, sedimentation property, and viscosity of cells subjected to different mechanical and chemical treatments were also investigaged. The dried yeast cells were in a spherical agglomeration consisting of 100s of closely bound cells. The clump was resistant to water, aqueous 2N HCl solution at 25°C, 95% alcohol and acetone, but vulnerable to 6N HCl, aqueous 0.4% NaOH solution, and homogenization. The homogenization of the cell suspension not only broke the clump but also cracked the cell-wall structure. The aqueous alkaline solution could have weakened the cell wall and increased the solubility of the protein released through the cracks in the cell wall. The destruction of the agglomeration and the cell-wall structure increased the hydration of the cell and thereby increased the stability of the suspension. The sedimentation and the viscosity of the cell suspension corresponded to the morphological changes and the extractability of protein in the cell suspensions with different treatments.  相似文献   

20.
Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shift in amino acid metabolism. We also report that exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号