首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A Pacheco  JL Twiss 《PloS one》2012,7(7):e40788
Transport of neuronal mRNAs into distal nerve terminals and growth cones allows axonal processes to generate proteins autonomous from the cell body. While the mechanisms for targeting mRNAs for transport into axons has received much attention, how specificity is provided to the localized translational apparatus remains largely unknown. In other cellular systems, protein synthesis can be regulated by both cap-dependent and cap-independent mechanisms. The possibility that these mechanisms are used by axons has not been tested. Here, we have used expression constructs encoding axonally targeted bicistronic reporter mRNAs to determine if sensory axons can translate mRNAs through cap-independent mechanisms. Our data show that the well-defined IRES element of encephalomyocarditis virus (EMCV) can drive internal translational initiation of a bicistronic reporter mRNA in distal DRG axons. To test the potential for cap-independent translation of cellular mRNAs, we asked if calreticulin or grp78/BiP mRNA 5'UTRs might have IRES activity in axons. Only grp78/BiP mRNA 5'UTR showed clear IRES activity in axons when placed between the open reading frames of diffusion limited fluorescent reporters. Indeed, calreticulin's 5'UTR provided an excellent control for potential read through by ribosomes, since there was no evidence of internal initiation when this UTR was placed between reporter ORFs in a bicistronic mRNA. This study shows that axons have the capacity to translate through internal ribosome entry sites, but a simple binary choice between cap-dependent and cap-independent translation cannot explain the specificity for translation of individual mRNAs in distal axons.  相似文献   

3.
The cytoskeleton of most cells is complex and spatially diverse. The mRNAs for some cytoskeletal proteins are localized, suggesting that synthesis of these proteins may occur at sites appropriate for function or assembly. mRNA concentrations were first observed for several oocyte and embryonic mRNAs. Some insight has been gained into the mechanisms that help to position these mRNAs. More surprising to some, many cytoskeletal mRNAs are also localized. Among them are mRNAs for actin, tubulin, intermediate filaments, and a variety of associated proteins. Different mRNAs in the same cell can be located in different places; the same mRNA can be located in different places; the same mRNA can be located differently at different times of development. For example, we observed vimentin mRNA in developing chicken muscle cultures by fluorescent in situ hybridization. We found that vimentin mRNA takes on a variety of positions during myogenesis, ending up located with its cognate protein at costameres. This last pattern is significant because it is too finely structured to have a function in the soluble phase and probably reflects contranslational assembly of this particular protein. Analogies can be made between oocyte or embryonic positions (animal/vegetal poles, oocyte cortex, and interior) and somatic cell positions (anterior/posterior and cell cortex/cell center). These analogies may point to conserved mechanisms for moving and retaining mRNA. Localization of cytoskeletal synthesis, through the mRNA or by other means, may prove as important for assembling and maintaining differentiated cytoskeletal structures and somatic cells as mRNA location is for organizing the embryo. Mechanisms that permit mRNA localization are likely to be conserved.  相似文献   

4.
5.
RNA localization serves numerous purposes from controlling development and differentiation to supporting the physiological activities of cells and organisms. After a brief introduction into the history of the study of mRNA localization I will focus on animal systems, describing in which cellular compartments and in which cell types mRNA localization was observed and studied. In recent years numerous novel localization patterns have been described, and countless mRNAs have been documented to accumulate in specific subcellular compartments. These fascinating revelations prompted speculations about the purpose of localizing all these mRNAs. In recent years experimental evidence for an unexpected variety of different functions has started to emerge. Aside from focusing on the functional aspects, I will discuss various ways of localizing mRNAs with a focus on the mechanism of active and directed transport on cytoskeletal tracks. Structural studies combined with imaging of transport and biochemical studies have contributed to the enormous recent progress, particularly in understanding how dynein/dynactin/BicD (DDB) dependent transport on microtubules works. This transport process actively localizes diverse cargo in similar ways to the minus end of microtubules and, at least in flies, also individual mRNA molecules. A sophisticated mechanism ensures that cargo loading licenses processive transport.  相似文献   

6.
Nuclear mRNA export: insights from virology   总被引:13,自引:0,他引:13  
  相似文献   

7.
Summary Anoxia has been shown to induce the expression of one or more stress proteins in mammalian cells and tissues. A less severe form of oxygen depletion, hypoxic hypoxia, occurs in response to hypobaric decompression which simulates high altitude conditions. Under these conditions mouse hearts accumulate mRNAs for at least two polypeptides at substantially elevated levels. The molecular weights of these proteins, 85 kDa and 95 kDa, are similar to those reported for other mammalian stress proteins or glucose-regulated proteins. Time course experiments suggest that mRNAs for these species increase continuously for up to 16 hours of treatment, while mRNA for 71 kDa and 79 kDa polypeptides are elevated early in the treatment, but later decrease to control values. Total heart mRNA template activity is also increased by the hypobaric treatment. These results demonstrate that mouse cardiac tissue is capable of mounting a cellular stress-like response when exposed to moderately stressful conditions. It also provides a model for studying the direct effects of acute hypoxic stress on cellular gene expression, and its relationship to physiological adaptation.  相似文献   

8.
9.
10.
Regulation of the synthesis of normal cellular proteins during heat shock   总被引:2,自引:0,他引:2  
Exposure of plant cells to heat shock temperature results in the synthesis of a set of heat shock proteins and, in many cases, the interruption of normal cellular protein synthesis. In some plant secretory cells the interruption of normal cellular protein synthesis is accomplished by the destabilization of otherwise stable mRNAs, perhaps via the dissociation of the endoplasmic reticulum lamellae upon which these mRNAs are translated. Such a mechanism represents a novel means for the regulation of gene expression.  相似文献   

11.
Effect of advanced glycation end products on lens epithelial cells in vitro   总被引:2,自引:0,他引:2  
The extended exposure of proteins to reducing sugars leads to nonenzymatic glycation with the accumulation of advanced glycation end products (AGEs). Long-lived proteins, such as collagen and crystallins, are subjected to this modification, and are implicated as causal factors in several diseases including diabetic complications, cataracts, and arteriosclerosis. One means through which AGEs modulate cellular interactions is via binding to specific receptors. In the current study, the existence of AGEs in human anterior polar lens capsules of cataracts was confirmed using a combination of dot-immunoblot and fluorescent detection. Human lens epithelial cells (LECs) attached to anterior lens capsules expressed mRNA for the receptor for AGEs (RAGE). The interaction of LECs with AGEs using bovine lens epithelial explants demonstrated that AGEs induced mRNAs and proteins of fibronectin, collagen type I, aberrant extracellular matrix proteins, and alpha-SMA, a specific marker for myofibroblastic cells. These findings suggest that AGEs may alter cellular functions which induce mRNAs and proteins associated with fibrosis in LECs.  相似文献   

12.
The fluorogenic properties of quercetin and similar flavonoids common in plants were exploited to analyse their interaction with target proteins. Quercetin produced a strong fluorescent signal upon binding to bovine serum albumin (BSA) and insulin. The fluorescent signal showed saturation kinetics with increasing flavonoid concentrations indicating the presence of defined peptide binding motifs. Other tested proteins showed no fluorescence with the flavonoids. In a comparative study including 22 flavonoids the compounds with fluorogenic properties were identified using our model proteins BSA and insulin and the structural requirements for the fluorogenic property were defined. Only flavones with a high degree of hydroxylation were able to elicit fluorescence. The emitted fluorescence was strongly enhanced at alkaline pH. Finally, an attempt was made to identify intracellular target molecules in live cells. Drosophila follicles showed a distinct staining pattern thus giving evidence that high concentrations of quercetin binding proteins are present in the nuclei and are associated with the ring canals. The presented biochemical and cytological data show that the interaction of the studied flavonoids with target proteins is specific and this finding opens up new experimental possibilities to systematically identify the cellular proteins with specific binding motifs for quercetin or other fluorogenic compounds of medical interest.  相似文献   

13.
Studies of identified neurons have made important contributions to our understanding of cellular neurophysiology. We have developed a technique for modifying gene expression in identified motoneurons of the crayfish Procambarus clarkii in the isolated nervous system as well as in the intact animal through the injection of exogenously synthesized RNAs. mRNA suitable for injection was transcribed in vitro from cDNA templates cloned into a plasmid, pSEM. Initially, mRNAs encoding green fluorescent protein (GFP) and β-galactosidase were injected into the soma of the motor giant neuron (MoG) to determine whether these mRNAs could be successfully translated into protein. Both proteins were expressed. Measurements of GFP fluorescence increase indicated that GFP mRNA was stable and translated into protein for at least 3 days postinjection. We then examined the effects of expression of GFP, AASP-168 (an endogenous crayfish axonal protein), and rat synapsin Ia on MoG synaptic physiology. The mRNA injection procedure did not appear to directly influence synaptic physiology based on the results of the AASP-168 and GFP injections. Injection of mRNA encoding rat synapsin Ia resulted in a significant increase in peak excitatory postsynaptic potential (EPSP) amplitude during repetitive stimulation. These data are consistent with previous studies that have shown that synapsin deficiency reduces synaptic vesicle numbers. The translation of mRNAs with diverse functions and species of origin suggests that this approach will prove useful for studying the function of a wide variety of endogenous and exogenous genes in identified neurons. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 224–236, 1998  相似文献   

14.
15.
16.
17.
The alternative exon EIIIA of the fibronectin gene is included in mRNAs produced in undifferentiated mesenchymal cells but excluded from differentiated chondrocytes. As members of the SR protein family of splicing factors have been demonstrated to be involved in the alternative splicing of other mRNAs, the role of SR proteins in chondrogenesis-associated EIIIA splicing was investigated. SR proteins interacted with chick exon EIIIA sequences that are required for exon inclusion in a gel mobility shift assay. Addition of SR proteins to in vitro splicing reactions increased the rate and extent of exon EIIIA inclusion. Co-transfection studies employing cDNAs encoding individual SR proteins revealed that SRp20 decreased mRNA accumulation in HeLa cells, which make A+ mRNA, apparently by interfering with pre-mRNA splicing. Co-transfection studies also demonstrated that SRp40 increased exon EIIIA inclusion in chondrocytes, but not in HeLa cells, suggesting the importance of cellular context for SR protein activity. Immunoblot analysis did not reveal a relative depletion of SRp40 in chondrocytic cells. Possible mechanisms for regulation of EIIIA splicing in particular, and chondrogenesis associated splicing in general, are discussed.  相似文献   

18.
Messenger RNAs located in myelin sheath assembly sites   总被引:2,自引:0,他引:2  
The targeting of mRNAs to specific subcellular locations is believed to facilitate the rapid and selective incorporation of their protein products into complexes that may include membrane organelles. In oligodendrocytes, mRNAs that encode myelin basic protein (MBP) and select myelin-associated oligodendrocytic basic proteins (MOBPs) locate in myelin sheath assembly sites (MSAS). To identify additional mRNAs located in MSAS, we used a combination of subcellular fractionation and suppression subtractive hybridization. More than 50% of the 1,080 cDNAs that were analyzed were derived from MBP or MOBP mRNAs, confirming that the method selected mRNAs enriched in MSAS. Of 90 other cDNAs identified, most represent one or more mRNAs enriched in rat brain myelin. Five cDNAs, which encode known proteins, were characterized for mRNA size(s), enrichment in myelin, and tissue and developmental expression patterns. Two of these, peptidylarginine deiminase and ferritin heavy chain, have recognized roles in myelination. The corresponding mRNAs were of different sizes than the previously identified mRNA, and they had tissue and development expression patterns that were indistinguishable from those of MBP mRNA. Three other cDNAs recognize mRNAs whose proteins (SH3p13, KIF1A, and dynein light intermediate chain) are involved in membrane biogenesis. Although enriched in myelin, the tissue and developmental distribution patterns of these mRNAs differed from those of MBP mRNA. Six other cDNAs, which did not share significant sequence homology to known mRNAs, were also examined. The corresponding mRNAs were highly enriched in myelin, and four had tissue and developmental distribution patterns indistinguishable from those of MBP mRNA. These studies demonstrate that MSAS contain a diverse population of mRNAs, whose locally synthesized proteins are placed to contribute to myelin sheath assembly and maintenance. Characterization of these mRNAs and proteins will help provide a comprehensive picture of myelin sheath assembly.  相似文献   

19.
20.
The explosion in genome‐wide sequencing has revealed that noncoding RNAs are ubiquitous and highly conserved in biology. New molecular tools are needed for their study in live cells. Fluorescent RNA–small molecule complexes have emerged as powerful counterparts to fluorescent proteins, which are well established, universal tools in the study of proteins in cell biology. No naturally fluorescent RNAs are known; all current fluorescent RNA tags are in vitro evolved or engineered molecules that bind a conditionally fluorescent small molecule and turn on its fluorescence by up to 5000‐fold. Structural analyses of several such fluorescence turn‐on aptamers show that these compact (30–100 nucleotides) RNAs have diverse molecular architectures that can restrain their photoexcited fluorophores in their maximally fluorescent states, typically by stacking between planar nucleotide arrangements, such as G‐quadruplexes, base triples, or base pairs. The diversity of fluorogenic RNAs as well as fluorophores that are cell permeable and bind weakly to endogenous cellular macromolecules has already produced RNA–fluorophore complexes that span the visual spectrum and are useful for tagging and visualizing RNAs in cells. Because the ligand binding sites of fluorogenic RNAs are not constrained by the need to autocatalytically generate fluorophores as are fluorescent proteins, they may offer more flexibility in molecular engineering to generate photophysical properties that are tailored to experimental needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号