首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 915 毫秒
1.
Approximately 1%–2% of cutaneous melanoma (CM) is classified as strongly familial. We sought to investigate unexplained CM predisposition in families negative for the known susceptibility genes using next‐generation sequencing of affected individuals. Segregation of germline variants of interest within families was assessed by Sanger sequencing. Several heterozygous variants in oculocutaneous albinism (OCA) genes: TYR, OCA2, TYRP1 and SLC45A2, were present in our CM cohort. OCA is a group of autosomal recessive genetic disorders, resulting in pigmentation defects of the eyes, hair and skin. Missense variants classified as pathogenic for OCA were present in multiple families and some fully segregated with CM. The functionally compromised TYR p.T373K variant was present in three unrelated families. In OCA2, known pathogenic variants: p.V443I and p.N489D, were present in three families and one family, respectively. We identified a likely pathogenic SLC45A2 frameshift variant that fully segregated with CM in a family of four cases. Another four‐case family harboured cosegregating variants (p.A24T and p.R153C) of uncertain functional significance in TYRP1. We conclude that rare, heterozygous variants in OCA genes confer moderate risk for CM.  相似文献   

2.
Albinism represents a group of genetic disorders with a broad spectrum of hypopigmentary phenotypes dependent on the genetic background of the patients. Oculocutaneous albinism (OCA) patients have little or no pigment in their eyes, skin and hair, whereas ocular albinism (OA) primarily presents the ocular symptoms, and the skin and hair color may vary from near normal to very fair. Mutations in genes directly or indirectly regulating melanin production are responsible for different forms of albinism with overlapping clinical features. In this study, 27 albinistic individuals from 24 families were screened for causal variants by a PCR-sequencing based approach. TYR, OCA2, TYRP1, SLC45A2, SLC24A5, TYRP2 and SILV were selected as candidate genes. We identified 5 TYR and 3 OCA2 mutations, majority in homozygous state, in 8 unrelated patients including a case of autosomal recessive ocular albinism (AROA). A homozygous 4-nucleotide novel insertion in SLC24A5 was detected in a person showing with extreme cutaneous hypopigmentation. A potential causal variant was identified in the TYRP2 gene in a single patient. Haplotype analyses in the patients carrying homozygous mutations in the classical OCA genes suggested founder effect. This is the first report of an Indian AROA patient harboring a mutation in OCA2. Our results also reveal for the first time that mutations in SLC24A5 could contribute to extreme hypopigmentation in humans.  相似文献   

3.
Oculocutaneous albinism with TYRP1 gene mutations in a Caucasian patient   总被引:3,自引:0,他引:3  
Non-syndromic oculocutaneous albinism (OCA) is a clinically and genetically heterogeneous autosomal recessive disorder with mutations identified in several genes: OCA1 (tyrosinase, TYR), OCA2 (OCA2), OCA3 (tyrosinase-related protein 1, TYRP1), and OCA4 (membrane-associated transporter protein, MATP). OCA3 was thought to be restricted to black populations, where it was clinically described as rufous or brown albinism, until the recent report of a homozygous TYRP1 mutation in Caucasian patients from a consanguineous Pakistani family. Here, we describe a German patient of Caucasian origin, with a light-yellow skin, yellow-gold hair with orange highlights, fair eyelashes, several pigmented naevi, and no tendency to tan, only to burn. Eye-colour is blue-green with substance defects of the iris. Molecular analysis did not reveal any mutation in the TYR and OCA2 genes. Two mutations were found in the TYRP1 gene: a missense mutation (c.1066G>A/p.Arg356Glu) that was inherited from the mother, and a de novo single-base deletion (c.106delT/p.Leu36X). This finding suggests that mutation screening should be extended to the TYRP1 gene in patients from all ethnic origins, at least in cases where no mutations have been identified in the other OCA genes.  相似文献   

4.
Oculocutaneous albinism type 1 (OCA1) is an autosomal recessive disorder caused by mutations in the tyrosinase gene. Two subtypes of OCA1 have been described: severe OCA1A with complete absence of tyrosinase activity and less severe OCA1B with residual tyrosinase activity. Here, we characterize the recombinant human tyrosinase intramelanosomal domain and mutant variants, which mimic genetic changes in both subtypes of OCA1 patients. Proteins were prepared using site‐directed mutagenesis, expressed in insect larvae, purified by chromatography, and characterized by enzymatic activities, tryptophan fluorescence, and Gibbs free energy changes. The OCA1A mutants showed very low protein expression and protein yield and are enzymatically inactive. Mutants mimicking OCA1B were biochemically similar to the wild type, but exhibited lower specific activities and protein stabilities. The results are consistent with clinical data, which indicates that OCA1A mutations inactivate tyrosinase and result in severe phenotype, while OCA1B mutations partially inactivate tyrosinase and result in OCA1B albinism.  相似文献   

5.
Oculocutaneous albinism (OCA) is a genetic disease characterized by the reduction or deficiency of melanin in eyes, skin, and hair. OCA exhibits genetic heterogeneity. Presently, there are four types of OCA named as OCA1, OCA2, OCA3, and OCA4. OCA3 is more common in African born blacks but rarely found in other ethnic populations. Our recent genotyping of patients with OCA of Chinese descent has identified two patients who were not OCA1, OCA2, or OCA4. Examination and analysis of the TYRP1 gene identified them to be having OCA3. PCR and DNA sequencing analysis found that the mutant TYPR1 alleles were present in each of the two patients, c.780-791del/c.1067G>A (p.R356Q) and c.625G>TT (p.G209LfsX1)/c.643C>T (p.H215Y). The c.780-791del and c.1067G>A mutations have been already reported. However, the c.625G>TT and c.643C>T mutations have not been previously reported and were found to be maternal and paternal mutations, respectively. Moreover, population screening and bioinformatic analysis were carried out to determine the effects of these two mutations which revealed that both the mutation were pathogenic. Based on the similar mild phenotype of these two patients, we suggest that OCA3 might be prevalent within the Chinese population.  相似文献   

6.

Background

Oculocutaneous Albinism (OCA) is a heterogeneous group of inherited diseases involving hair, skin and eyes. To date, six forms are recognized on the effects of different melanogenesis genes.OCA4 is caused by mutations in SLC45A2 showing a heterogeneous phenotype ranging from white hair, blue irides and nystagmus to brown/black hair, brown irides and no nystagmus. The high clinic variety often leads to misdiagnosis.Our aim is to contribute to OCA4 diagnosis defining SLC45A2 genetic variants in Italian patients with OCA without any TYR, OCA2 and TYRP1 gene defects.

Materials and methods

After the clinical diagnosis of OCA, all patients received genetic counseling and genetic test. Automatic sequencing of TYR, OCA2, and TYRP1 genes was performed on DNA of 117 albino patients. Multiplex Ligation-dependent Probe Amplification (MLPA) was carried out on TYR and OCA2 genes to increase the mutation rate. SLC45A2 gene sequencing was then executed in the patients with a single mutation in one of the TYR, OCA2, TYRP1 genes and in the patients, which resulted negative at the screening of these genes.

Results

SLC45A2 gene analysis was performed in 41 patients and gene alterations were found in 5 patients. Four previously reported SLC45A2 mutations were found: p.G100S, p.W202C, p.A511E and c.986delC, and three novel variants were identified: p.M265L, p.H94D, and c.1156+1G>A. All the alterations have been detected in the group of patients without mutations in the other OCA genes.

Conclusions

Three new variants were identified in OCA4 gene; the analysis allowed the classification of a patient previously misdiagnosed as OA1 because of skin and hair pigmentation presence. The molecular defects in SLC45A2 gene represent the 3.4% in this cohort of Italian patients, similar to other Caucasian populations; our data differ from those previously published by an Italian researcher group, obtained on a smaller cohort of patients.  相似文献   

7.
Sturm RA  Teasdale RD  Box NF 《Gene》2001,277(1-2):49-62
The synthesis of the visible pigment melanin by the melanocyte cell is the basis of the human pigmentary system, those genes directing the formation, transport and distribution of the specialised melanosome organelle in which melanin accumulates can legitimately be called pigmentation genes. The genes involved in this process have been identified through comparative genomic studies of mouse coat colour mutations and by the molecular characterisation of human hypopigmentary genetic diseases such as OCA1 and OCA2. The melanocyte responds to the peptide hormones alpha-MSH or ACTH through the MC1R G-protein coupled receptor to stimulate melanin production through induced maturation or switching of melanin type. The pheomelanosome, containing the key enzyme of the pathway tyrosinase, produces light red/yellowish melanin, whereas the eumelanosome produces darker melanins via induction of additional TYRP1, TYRP2, SILV enzymes, and the P-protein. Intramelanosomal pH governed by the P-protein may act as a critical determinant of tyrosinase enzyme activity to control the initial step in melanin synthesis or TYRP complex formation to facilitate melanogenesis and melanosomal maturation. The search for genetic variation in these candidate human pigmentation genes in various human populations has revealed high levels of polymorphism in the MC1R locus, with over 30 variant alleles so far identified. Functional correlation of MC1R alleles with skin and hair colour provides evidence that this receptor molecule is a principle component underlying normal human pigment variation.  相似文献   

8.
Non‐syndromic oculocutaneous albinism (nsOCA) is a group of genetically heterogeneous autosomal recessive disorders with complete lack or decrease pigmentation in skin, hair, and eyes. TYR, OCA2, TYRP1, SLC45A2, SLC24A5, and LRMDA were reported to cause OCA1‐4 and OCA6‐7, respectively. By sequencing all the known nsOCA genes in 114 unrelated Chinese nsOCA patients combined with In silico analyses, splicing assay, and classification of variants according to the standards and guidelines of American College of Medical Genetics and Genomics, we detected seventy‐one different OCA‐causing variants separately in TYR, OCA2, SLC45A2, and SLC24A5, including thirty‐one novel variants (13 in TYR, 11 in OCA2, and 7 in SLC45A2). This study shows that OCA1 is the most common (75/114) and OCA2 ranks the second most common (16/114) in Chinese. 99 patients of our cohort were caused by variants of all the known nsOCA genes. Cutaneous phenotypes of OCA1, OCA2, and OCA4 patients were shown in this study. The second OCA6 case in China was identified here. These data expand the spectrum of OCA variants as well phenotype and facilitate clinical implement of Chinese OCA patients.  相似文献   

9.
We have examined melanocortin‐1 receptor (MC1R) variant allele frequencies in the general population and in a collection of adolescent dizygotic and monozygotic twins to determine statistical associations of pigmentation phenotypes with increased skin cancer risk. This included hair and skin color, freckling, mole count and sun exposed skin reflectance. Nine variants were studied and designated as either strong R (OR = 63; 95% CI 32–140) or weak r (OR = 5; 95% CI 3–11) red hair alleles. Penetrance of each MC1R variant allele was consistent with an allelic model where effects were multiplicative for red hair but additive for skin reflectance. To assess the interaction of the brown eye color gene BEY2/OCA2 on the phenotypic effects of variant MC1R alleles we imputed OCA2 genotype in the twin collection. A modifying effect of OCA2 on MC1R variant alleles was seen on constitutive skin color, freckling and mole count. In order to study the individual effects of these variants on pigmentation phenotype we have established a series of human primary melanocyte strains genotyped for the MC1R receptor. These include strains which are MC1R wild‐type consensus, variant heterozygotes, and homozygotes for strong R alleles Arg151Cys and Arg160Trp. Ultrastructural analysis demonstrated that only consensus strains contained stage III and IV melanosomes in their terminal dendrites whereas Arg151Cys and Arg160Trp homozygous strains contained only immature stage I and II melanosomes. Such genetic association studies combined with the functional analysis of MC1R variant alleles in melanocytic cells should provide a link in understanding the association between pigmentary phototypes and skin cancer risk.  相似文献   

10.
Oculocutaneous albinism (OCA) is caused by mutations in six different genes, and their molecular diagnosis encompasses the search for point mutations and intragenic rearrangements. Here, we used high‐resolution array‐comparative genome hybridization (CGH) to search for rearrangements across exons, introns and regulatory sequences of four OCA genes: TYR, OCA2, TYRP1, and SLC45A2. We identified a total of ten new deletions in TYR, OCA2, and SLC45A2. A complex rearrangement of OCA2 was found in two unrelated patients. Whole‐genome sequencing showed deletion of a 184‐kb fragment (identical to a deletion previously found in Polish patients), whereby a large portion of the deleted sequence was re‐inserted after severe reshuffling into intron 1 of OCA2. The high‐resolution array‐CGH presented here is a powerful tool to detect gene rearrangements. Finally, we review all known deletions of the OCA1–4 genes reported so far in the literature and show that deletions or duplications account for 5.6% of all mutations identified in the OCA1–4 genes.  相似文献   

11.
Oculocutaneous albinism (OCA) is the most common autosomal recessive disorder among southern African Blacks. There are three forms that account for almost all OCA types in this region. Tyrosinase-positive OCA (OCA2), which is the most common, affects approximately 1/3,900 newborns and has a carrier frequency of approximately 1/33. It is caused by mutations in the P gene on chromosome 15. Brown OCA (BOCA) and rufous OCA (ROCA) account for the majority of the remaining phenotypes. The prevalence of BOCA is unknown, but for ROCA it is approximately 1/8,500. Linkage analysis performed on nine ROCA families showed that ROCA was linked to an intragenic marker at the TYRP1 locus (maximum LOD score = 3.80 at straight theta=.00). Mutation analysis of 19 unrelated ROCA individuals revealed a nonsense mutation at codon 166 (S166X) in 17 (45%) of 38 ROCA chromosomes, and a second mutation (368delA) was found in an additional 19 (50%) of 38 chromosomes; mutations were not identified in the remaining 2 ROCA chromosomes. In one family, two siblings with a phenotypically unclassified form of albinism were found to be compound heterozygotes for mutations (S166X/368delA) at the TYRP1 locus and were heterozygous for a common 2.7-kb deletion in the P gene. These findings have highlighted the influence of genetic background on phenotype, in which the genotype at one locus can be influenced by the genotype at a second locus, leading to a modified phenotype. ROCA, which in southern African Blacks is caused by mutations in the TYRP1 gene, therefore should be referred to as "OCA3," since this is the third locus that has been shown to cause an OCA phenotype in humans.  相似文献   

12.
Oculocutaneous albinism (OCA) affects approximately 1/20,000 people worldwide. All forms of OCA exhibit generalized hypopigmentation. Reduced pigmentation during eye development results in misrouting of the optic nerves, nystagmus, alternating strabismus, and reduced visual acuity. Loss of pigmentation in the skin leads to an increased risk for skin cancer. Two common forms and one infrequent form of OCA have been described. OCA1 (MIM 203100) is associated with mutations of the TYR gene encoding tyrosinase (the rate-limiting enzyme in the production of melanin pigment) and accounts for approximately 40% of OCA worldwide. OCA2 (MIM 203200), the most common form of OCA, is associated with mutations of the P gene and accounts for approximately 50% of OCA worldwide. OCA3 (MIM 203290), a rare form of OCA and also known as "rufous/red albinism," is associated with mutations in TYRP1 (encoding tyrosinase-related protein 1). Analysis of the TYR and P genes in patients with OCA suggests that other genes may be associated with OCA. We have identified the mouse underwhite gene (uw) and its human orthologue, which underlies a new form of human OCA, termed "OCA4." The encoded protein, MATP (for "membrane-associated transporter protein") is predicted to span the membrane 12 times and likely functions as a transporter.  相似文献   

13.
TYRP1 and MC1R genotypes and their effects on coat color in dogs   总被引:8,自引:0,他引:8  
We used PCR amplification of cDNA prepared from skin biopsies to determine the nearly full-length, protein-coding sequence of dog TYRP1, and to define sequence variants potentially responsible for the B locus. One common variant contained a premature stop codon in exon 5 (Q331ter), and the other deleted a proline residue in exon 5 (345delP). A third variant in exon 2 (S41C) occurred less frequently. We genotyped 43 brown (including brown and white) and 34 black (including tricolor, black-and-tan, and black and white) dogs. All 43 of the brown group carried two or more of these sequence variants likely to interfere with TYRP1 function, whereas 0 of 34 in the black group carried two or more of these variants (10 carried one variant). We also genotyped 13 black-nosed and 10 brown-nosed dogs whose coat color was described as red, yellow, gold, apricot, or orange (including various degrees of white). All these dogs were homozygous for a R306X MC1R variant shown to be associated with these coat color phenotypes. The black or brown nose correlated perfectly with the absence or presence of the same three TYRP1 variants described above. TYRP1 was linkage mapped to dog chromosome 11, with a SNP in exon 7.  相似文献   

14.
Some neurodegenerative diseases such as Alzheimer disease (AD) and Parkinson disease are caused by protein misfolding. In AD, amyloid β‐peptide (Aβ) is thought to be a toxic agent by self‐assembling into a variety of aggregates involving soluble oligomeric intermediates and amyloid fibrils. Here, we have designed several green fluorescent protein (GFP) variants that contain pseudo‐Aβ β‐sheet surfaces and evaluated their abilities to bind to Aβ and inhibit Aβ oligomerization. Two GFP variants P13H and AP93Q bound tightly to Aβ, Kd = 260 nM and Kd = 420 nM, respectively. Moreover, P13H and AP93Q were capable of efficiently suppressing the generation of toxic Aβ oligomers as shown by a cell viability assay. By combining the P13H and AP93Q mutations, a super variant SFAB4 comprising four strands of Aβ‐derived sequences was designed and bound more tightly to Aβ (Kd = 100 nM) than those having only two pseudo‐Aβ strands. The SFAB4 protein preferentially recognized the soluble oligomeric intermediates of Aβ more than both unstructured monomer and mature amyloid fibrils. Thus, the design strategy for embedding pseudo‐Aβ β‐sheet structures onto a protein surface arranged in the β‐barrel structure is useful to construct molecules capable of binding tightly to Aβ and inhibiting its aggregation. This strategy may provide implication for the diagnostic and therapeutic development in the treatment of AD. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The function of the N-terminal domain ( approximately 350 residues) of the Pta (phosphotransacetylase) enzyme of Salmonella enterica is unclear. Results from in vivo genetic and in vitro studies suggest that the N-terminal domain of Pta is a sensor for NADH and pyruvate. We isolated 10 single-amino acid variants of Pta that, unlike the wild-type protein, supported growth of a strain of S. enterica devoid of Acs (acetyl-CoA synthetase; AMP-forming) activity on 10 mm acetate. All mutations were mapped within the N-terminal domain of the protein. Kinetic analyses of the wild type and three variant Pta proteins showed that two of the variant proteins were faster enzymes (k(cat) 2.5-3-fold > k(cat) Pta(WT). Results from sedimentation equilibrium experiments are consistent with Pta(WT) being a trimer. Pta variants formed more hexamer than the Pta(WT) protein. NADH inhibited Pta(WT) activity by inducing a conformational change detectable by limited trypsin proteolysis; NADH did not inhibit variant protein Pta(R252H). Pyruvate stimulated Pta(WT) activity, and its effect was potentiated in the variants, being most pronounced on Pta(R252H).  相似文献   

16.
Oculocutaneous albinism (OCA) is a heterogeneous group of autosomal recessive disorders resulting from mutations of the tyrosinase (TYR) gene and presents with either complete or partial absence of pigment in the skin, hair and eyes due to a defect in an enzyme involved in the production of melanin. In this study, mutations in the TYR gene of 30 unrelated Iranian OCA1 patients and 100 healthy individuals were examined using PCR-sequencing. Additionally, in order to predict the possible effects of new mutations on the structure and function of tyrosinase, these mutations were analyzed by SIFT, PolyPhen and I-Mutant 2 software. Here, two new pathogenic p.C89S and p.H180R mutations were detected in two OCA1 patients. Moreover, the R402Q and S192Y variants, which are common non-pathogenic polymorphisms, were detected in 17.5% and 35% of the patients, respectively. The outcome of this study has extended the genotypic spectrum of OCA1 patients, which paves the way for more efficient carrier detection and genetic counseling.  相似文献   

17.
The Valais Red sheep breed is a local breed of the Swiss canton Valais. Although the breed is characterised by its brown colour, black animals occasionally occur and the objective of this study was to identify the causative genetic variants responsible for the obvious difference. A GWAS using high‐density SNP data to compare 51 brown and 38 black sheep showed a strong signal on chromosome 2 at the TYRP1 locus. Haplotype analyses revealed three different brown‐associated alleles. The WGS of three sheep revealed four protein‐changing variants within the TYRP1 gene. Three of these variants were associated with the recessively inherited brown coat colour. This includes the known missense variant TYRP1:c.869G>T designated as bSoay and two novel loss‐of‐function variants. We propose to designate the frame‐shift variant TYRP1:c.86_87delGA as bVS1 and the nonsense variant TYRP1:c.1066C>T as bVS2. Interestingly, the bVS1 allele occurs only in local breeds of Switzerland whereas the bVS2 allele seems to be more widespread across Europe.  相似文献   

18.
Classical genetic studies in European rabbits (Oryctolagus cuniculus) suggested the presence of two alleles at the brown coat colour locus: a wild‐type B allele that gives dense black pigment throughout the coat and a recessive b allele that in the homozygous condition (b/b genotype) produces brown rabbits that are unable to develop black pigmentation. In several other species, this locus is determined by mutations in the tyrosinase‐related protein 1 (TYRP1) gene, encoding a melanocyte enzyme needed for the production of dark eumelanin. In this study, we investigated the rabbit TYRP1 gene as a strong candidate for the rabbit brown coat colour locus. A total of 3846 bp of the TYRP1 gene were sequenced in eight rabbits of different breeds and identified 23 single nucleotide polymorphisms (SNPs; 12 in intronic regions, five in exons and six in the 3′‐untranslated region) and an insertion/deletion of 13 bp, in the 3′‐untranslated region, organised in a few haplotypes. A mutation in exon 2 (g.41360196G>A) leads to a premature stop codon at position 190 of the deduced amino acid sequence (p.Trp190ter). Therefore, translation predicts a truncated TYRP1 protein lacking almost completely the tyrosinase domain. Genotyping 203 rabbits of 32 different breeds identified this mutation only in brown Havana rabbits. Its potential functional relevance in disrupting the TYRP1 protein and its presence only in brown animals strongly argue for this non‐sense mutation being a causative mutation for the recessive b allele at the brown locus in Oryctolagus cuniculus.  相似文献   

19.
Oculocutaneous albinism (OCA) is a genetically heterogeneous disease and is most inherited in an autosomal recessive manner. The characteristic manifestation of OCA is due to disfunction of melanin synthesis. OCA1 is the most severe subtype of OCA and is caused by homozygous or compound heterozygous variants in tyrosinase (TYR) gene, which is the key gene for melanin synthesis. This study aimed to identify the genetic variants of a northern Chinese family with OCA1. Clinical information and peripheral blood samples were collected. PCR amplification and Sanger sequencing were used to detect the entire exons and adjacent flanking sequences of TYR gene. Functional prediction of variants was performed by various bioinformatic analyses, while the pathogenicity classification of variants was evaluated according to ACMG standards and guidelines. A missense variant NM_000372.5:c.107G > C;NP_000363.1:p.C36S was discovered in TYR gene which converted cysteine to serine. Another variant in intron, NM_000372.5:c.1037–7 T > A, also affected the function of TYR gene. We verified the pathogenicity of the intron variant with a pCAS2 mini-gene based splicing assay and found that c.1037–7 T > A led to an insertion of 5 bp upstream from the common acceptor site of exon 3, which caused a frameshift TYR:c.1037–7 T > A:p.G346Efs*11. The results showed that the compound heterozygous variants c.107G > C:p.C36S and c.1037–7 T > A:p.G346Efs*11 of TYR gene were the pathogenic variants for this OCA1 family.  相似文献   

20.
A number of amyloidogenic variants of apoA-I have been discovered but most have not been analyzed. Previously, we showed that the G26R mutation of apoA-I leads to increased β-strand structure, increased N-terminal protease susceptibility, and increased fibril formation after several days of incubation. In vivo, this and other variants mutated in the N-terminal domain (residues 26 to ~90) lead to renal and hepatic accumulation. In contrast, several mutations identified within residues 170 to 178 lead to cardiac, laryngeal, and cutaneous protein deposition. Here, we describe the structural changes in the fibrillogenic variant L178H. Like G26R, the initial structure of the protein exhibits altered tertiary conformation relative to wild-type protein along with decreased stability and an altered lipid binding profile. However, in contrast to G26R, L178H undergoes an increase in helical structure upon incubation at 37°C with a half time (t(1/2)) of about 12 days. Upon prolonged incubation, the L178H mutant forms fibrils of a diameter of 10 nm that ranges in length from 30 to 120 nm. These results show that apoA-I, known for its dynamic properties, has the ability to form multiple fibrillar conformations, which may play a role in the tissue-specific deposition of the individual variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号