首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thromboxane A2 (TXA2), a major prostanoid formed from prostaglandin H2 by thromboxane synthase, is involved in the pathogenesis of a variety of vascular diseases. In this study, we report that TXA2 mimetic U46619 significantly increases the endothelial permeability both in vitro and in vivo. U46619 enhanced the expression and secretion of interleukin-8 (IL-8), a major inducer of vascular permeability, in endothelial cells. Promoter analysis showed that the U46619-induced expression of IL-8 was mainly regulated by nuclear factor-κB (NF-κB). U46619 induced the activation of NF-κB through IκB kinase (IKK) activation, IκB phosphorylation and NF-κB nuclear translocation. Furthermore, the inhibition of IL-8 or blockade of the IL-8 receptor attenuated the U46619-induced endothelial cell permeability by modulating the cell-cell junctions. Overall, these results suggest that U46619 promotes vascular permeability through the production of IL-8 via NF-κB activation in endothelial cells.  相似文献   

2.
3.
This study was conducted to test the hypothesis that n-3 polyunsaturated fatty acids are able to down-regulate expression of adhesion molecules and nuclear factor-κB (NF-κB) activation in vascular endothelial cells, in addition to reducing atherosclerotic lesions in vivo. We report here that docosahexaenoic acid (DHA) reduces atherosclerotic lesions in the aortic arteries of apolipoprotein E knockout (apoE-/-) mice. Consistent with the observation in animal study, DHA inhibited THP-1 cell adhesion to tumor necrosis factor α (TNF-α)-activated human aortic endothelial cells (HAECs). Expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) on the cell surface of HAECs was determined by cell-surface enzyme-linked immunosorbent assay. DHA and eicosapentaenoic acid decreased VCAM-1 expression in a dose-dependent manner in TNF-α treated HAECs, while cis-linoleic acid and arachidonic acid did not have any significant effect on either VCAM-1 or ICAM-1 expression. Moreover, DHA significantly reduced VCAM-1 protein expression in the cell lysates of TNF-α-treated HAECs, as determined by Western blot analysis. In line with NF-κB signaling pathway, DHA suppressed the TNF-α-activated IκBα phosphorylation and degradation as well as IκB kinase-β phosphorylation. Subsequently, translocation of the NF-κB (p50/p65) and AP-1 (c-Fos/c-Jun) subunits was down-regulated by DHA in the nucleus of HAECs. These results suggest that DHA negatively regulates TNF-α-induced VCAM-1 expression through attenuation of NF-κB signaling pathway and AP-1 activation. This study provides evidence that DHA may contribute to the prevention of atherosclerosis and inflammatory diseases in vivo.  相似文献   

4.
Endoplasmic reticulum (ER) stress is widely implicated in various pathological conditions such as diabetes. Previously, we reported that enhanced ER stress contributes to inflammation and vascular damage in diabetic and ischemia-induced retinopathy. However, the exact role of the signaling pathways activated by ER stress in vascular inflammation remains poorly understood. In the present study, we investigated the role of X-box binding protein 1 (XBP1) in retinal adhesion molecule expression, leukostasis, and vascular leakage. Exposure of human retinal endothelial cells to low dose ER stress inducers resulted in a robust activation of XBP1 but did not affect inflammatory gene expression. However, ER stress preconditioning almost completely abolished TNF-α-elicited NF-κB activation and adhesion molecule ICAM-1 and VCAM-1 expression. Pharmaceutical inhibition of XBP1 activation or knockdown of XBP1 by siRNA markedly attenuated the effects of preconditioning on inflammation. Moreover, loss of XBP1 led to an increase in ICAM-1 and VCAM-1 expression. Conversely, overexpression of spliced XBP1 attenuated TNF-α-induced phosphorylation of IKK, IκBα, and NF-κB p65, accompanied by decreased NF-κB activity and reduced adhesion molecule expression. Finally, in vivo studies show that activation of XBP1 by ER stress preconditioning prevents TNF-α-induced ICAM-1 and VCAM-1 expression, leukostasis, and vascular leakage in mouse retinas. These results collectively indicate a protective effect of ER stress preconditioning against retinal endothelial inflammation, which is likely through activation of XBP1-mediated unfolded protein response (UPR) and inhibition of NF-κB activation.  相似文献   

5.
Background:Combination of asthma and coal dust is a chronic and recurring airway disease related to inflammation cell activation. The Rhodomyrtus tomentosa flowering plants native to South Kalimantan exhibit a broad therapeutic potential, like anti-inflammatory and anti-remodelling properties. This study aims to analyze the effect of ethanol extract of R. tomentosa leaves (EERTL) nebulizer on the number of inflammatory cells and histomorphometry of lung tissue in a mice-like model of a combination of asthma and coal dust.Methods:The 24 BALB/c mice were divided into four treatment groups (n= 6 per group), were sensitized with normal saline (K), OVA + coal dust (P1), OVA + coal dust + salbutamol (P2), and OVA + coal dust + EERTL (P3). Eosinophil cells, neutrophils, lymphocytes, epithelial thickness, smooth muscle, fibrosis subepithelial bronchioles, and the number of goblet cells as indicators of anti-inflammatory and anti-remodelling airways.Results:The number of eosinophils, neutrophils, and lymphocytes cells are given salbutamol or EERTL was significantly lower than the OVA-sensitized and coal dust exposure group only. There are meaningful differences in the average thickness of the epithelium, smooth muscle, and subepithelial fibrosis of bronchiolus. The histopathology picture of goblet cells showed an increase in the number and size (hyperplasia) in OVA-sensitized and coal dust exposure compared to another group.Conclusion:It was concluded that the EERTL nebulizer could reduce inflammatory cells and remodelling process from bronchoalveolar lavage in the mice combination of asthma and coal dust models.Key Words: Anti-Inflammatory, Anti-Remodelling, Asthma, Coal Dust, Rhodomyrtus tomentosa  相似文献   

6.
Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-κB p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-α (5 ng/ml, 20 min-6 h). Inhibitor of NF-κB or p38 significantly inhibited the TNF-α-induced VCAM-1 expression. Chemerin also inhibited TNF-α-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-α-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-α-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-α-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-α-induced VCAM-1 expression and monocytes adhesion in vascular endothelial cells. The effect is mediated via inhibiting activation of NF-κB and p38 through stimulation of Akt/eNOS signaling and NO production.  相似文献   

7.
Endothelial activation elicited by inflammatory agents is regarded as a key event in the pathogenesis of several vascular inflammatory diseases. In the present study, the inhibitory effects and underlying mechanism of C-type natriuretic peptide (CNP) on LPS-induced endothelial activation were examined in human umbilical vein endothelial cells (HUVECs). The effect of CNP on adhesion molecule expression was assessed using quantitative real-time RT-PCR and western blotting analyses. The nuclear factor-κB (NF-κB), MAPK, and PI3K/Akt signaling pathways in LPS-stimulated HUVECs were investigated using western blotting analyses, and the production of intracellular reactive oxygen species (ROS) was measured using a fluorescence method. Pretreatment with CNP inhibited LPS-induced expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and P-selectin in a concentration-dependent manner. CNP suppressed the phosphorylation of p65 and NF-κB activation in LPS-stimulated cells. Moreover, CNP reduced ERK1/2 and p38 phosphorylation induced by LPS but not JNK. Furthermore, CNP induced Akt phosphorylation and activation of hemeoxygenase-1 (HO-1) expression. CNP significantly inhibited the production of intracellular ROS. These results suggest that CNP effectively attenuated LPS-induced endothelial activation by inhibiting the NF-κB and p38 signaling pathways, eliminating LPS-induced intracellular ROS production, and activating the PI3K/Akt/HO-1 pathway in HUVECs; thereby, demonstrating that CNP may be a potential therapeutic target for the treatment of sepsis and inflammatory vascular diseases.  相似文献   

8.
Neuroinflammatory disorders such as Alzheimer's and Parkinson's diseases are characterised by chronic inflammation and loss of vascular integrity. Bradykinin 1 receptor (B1R) activation has been implicated in many neuroinflammatory diseases, but the contribution of B1R to inflammation and vascular breakdown is yet to be determined. As a result, the present study evaluated the effect of B1R stimulation using Des‐Arg‐9‐BK on the cytokine profile and junctional properties of human cerebral microvascular endothelial cells (hCMVECs). Results showed that stimulation of B1R receptors increased secretion of pro‐inflammatory cytokines, interleukin‐6 (IL‐6), IL‐8, intracellular adhesion molecule‐1 (ICAM‐1), vascular cell adhesion molecule‐1 (VCAM‐1) and monocyte chemoattractant protein‐1 (MCP‐1), but decreased the expression of vascular endothelial growth factor (VEGF), a cytokine and growth factor required for maintenance of the vasculature. B1R stimulation also resulted in the loss of occludin expression at tight junctions with no change in VE‐cadherin expression. There was also a significant increase in permeability to Evans blue albumin, suggesting an increase of vascular permeability. Taken together, these results suggest that B1R activation that occurs in neuroinflammatory diseases may contribute to both the inflammation and loss of blood‐brain barrier integrity that is characteristic of these diseases.  相似文献   

9.
Fluid shear stresses are potent regulators of vascular homeostasis and powerful determinants of vascular disease progression. The glycocalyx is a layer of glycoaminoglycans, proteoglycans, and glycoproteins that lines the luminal surface of arteries. The glycocalyx interacts directly with hemodynamic forces from blood flow and, consequently, is a prime candidate for the mechanosensing of fluidic shear stresses. Here, we investigated the role of the glycocalyx component syndecan-1 (sdc-1) in controlling the shear stress-induced signaling and flow-mediated phenotypic modulation in endothelial cells. We found that knock-out of sdc-1 abolished several key early signaling events of endothelial cells in response to shear stress including the phosphorylation of Akt, the formation of a spatial gradient in paxillin phosphorylation, and the activation of RhoA. After exposure to atheroprotective flow, we found that sdc-1 knock-out endothelial cells had a phenotypic shift to an inflammatory/pro-atherosclerotic phenotype in contrast to the atheroprotective phenotype of wild type cells. Consistent with these findings, we found increased leukocyte adhesion to sdc-1 knock-out endothelial cells in vitro that was reduced by re-expression of sdc-1. In vivo, we found increased leukocyte recruitment and vascular permeability/inflammation in sdc-1 knock-out mice. Taken together, our studies support a key role for sdc-1 in endothelial mechanosensing and regulation of endothelial phenotype.  相似文献   

10.
Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1β-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-κB, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1β-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1β, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE−/−) mice. VCAM-1 and iNOS expression were higher in ApoE−/− than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE−/− mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells through influencing ERK-NF-κB crosstalk, which may contribute to angiotensin II-induced inflammatory disorders related to cardiovascular diseases.  相似文献   

11.
12.
13.
The maintenance of endothelial barrier function is essential for normal physiology, and increased vascular permeability is a feature of a wide variety of pathological conditions, leading to complications including edema and tissue damage. Use of the pharmacological inhibitor imatinib, which targets the Abl family of non-receptor tyrosine kinases (Abl and Arg), as well as other tyrosine kinases including the platelet-derived growth factor receptor (PDGFR), Kit, colony stimulating factor 1 receptor (CSF1R), and discoidin domain receptors, has shown protective effects in animal models of inflammation, sepsis, and other pathologies characterized by enhanced vascular permeability. However, the imatinib targets involved in modulation of vascular permeability have not been well-characterized, as imatinib inhibits multiple tyrosine kinases not only in endothelial cells and pericytes but also immune cells important for disorders associated with pathological inflammation and abnormal vascular permeability. In this work we employ endothelial Abl knockout mice to show for the first time a direct role for Abl in the regulation of vascular permeability in vivo. Using both Abl/Arg-specific pharmacological inhibition and endothelial Abl knockout mice, we demonstrate a requirement for Abl kinase activity in the induction of endothelial permeability by vascular endothelial growth factor both in vitro and in vivo. Notably, Abl kinase inhibition also impaired endothelial permeability in response to the inflammatory mediators thrombin and histamine. Mechanistically, we show that loss of Abl kinase activity was accompanied by activation of the barrier-stabilizing GTPases Rac1 and Rap1, as well as inhibition of agonist-induced Ca2+ mobilization and generation of acto-myosin contractility. In all, these findings suggest that pharmacological targeting of the Abl kinases may be capable of inhibiting endothelial permeability induced by a broad range of agonists and that use of Abl kinase inhibitors may have potential for the treatment of disorders involving pathological vascular leakage.  相似文献   

14.
Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial–monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT.  相似文献   

15.
Cancer metastasis is a multistep process involving cell-cell interactions, but little is known about the adhesive interactions and signaling events during extravasation of tumor cells (TCs). In this study, cell adhesion molecule (CAM) expression was investigated using an in vitro assay, in which TCs were seeded onto an endothelial cell (ECs) monolayer and cocultured during 5 h. Flow cytometry, confocal microscopy as well as western blot analysis indicated that endothelial ICAM-1 (Inter Cellular Adhesion Molecule-1), VCAM-1 (Vascular Adhesion Molecule-1) and E-selectin were up-regulated after TC-EC coculture, whereas no change was observed for CAMs expression in tumor cells. This increased CAMs expression required tight contact between TCs and ECs. Incubation of ECs with the pyrrolidine-dithiocarbamate NFκB inhibitor prior to coculture, fully prevented coculture-induced expression of endothelial CAMs. Using specific blocking antibodies we showed an implication of ICAM-1 and VCAM-1 for TCs extravasation and VCAM-1 for adhesion. Moreover, fluid flow experiments revealed that high shear stress totally abolished coculture-induced as well as TNFα-induced CAMs over-expression. This study suggests that TCs could act as a potent inflammatory stimulus on ECs by inducing CAMs expression via NFκB activation, and that this action can be modulated by shear stress.  相似文献   

16.
Endothelial activation contributes to the development of vascular inflammation and subsequent vascular diseases, particularly atherosclerosis. AGGF1, a new member of angiogenic factors with a FHA and a G-patch domain, has been shown critical for the regulation of vascular differentiation and angiogenesis. In this study, we found that various inflammatory cytokines strongly induced the expression of AGGF1 in endothelial cells (ECs) and identified AGGF1 as a novel anti-inflammatory factor both in vivo and in vitro. Overexpression of AGGF1 significantly repressed the expression of pro-inflammatory molecules such as E-Selectin, ICAM-1, and IL-8 and the adhesion of monocytes onto ECs activated by TNF-α. Conversely, the knockdown of AGGF1 resulted in the increased expressions of these pro-inflammatory molecules and the enhanced monocyte-EC interaction. We further demonstrated that AGGF1 potently attenuated TNF-α triggered NF-κB pathway, as indicated by the decreased promoter activity, nuclear distribution and phosphorylation of NF-κB p65 subunit as well as the increased protein level of IκBα. This inhibitory effect of AGGF1 was further proved through blocking the phosphorylation of ERK induced by TNF-α. Finally, we showed that the FHA domain of AGGF1 was required for its anti-inflammatory effect. Thus, our findings for the first time demonstrate that AGGF1 suppresses endothelial activation responses to TNF-α by antagonizing the ERK/NF-κB pathway, which makes AGGF1 a promising therapeutic candidate for the prevention and treatment of inflammatory diseases.  相似文献   

17.
Viscolin, a major active component in a chloroform extract of Viscum coloratum, has antioxidative and anti-inflammatory properties. We focused on its effects on the expression of vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α)-treated human umbilical vein endothelial cells (HUVECs). The TNF-α-induced expression of VCAM-1 was significantly reduced by respectively 38 ± 7 or 34 ± 16% when HUVECs were pretreated with 10 or 30 μM viscolin, as shown by Western blotting, and was also significantly reduced by pretreatment with the antioxidants N-acetylcysteine, diphenylene iodonium chloride, and apocynin. Viscolin also reduced TNF-α-induced VCAM-1 mRNA expression and promoter activity, decreased reactive oxygen species (ROS) production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and significantly reduced the binding of monocytes to TNF-α-stimulated HUVECs. The attenuation of TNF-α-induced VCAM-1 expression and cell adhesion was partly mediated by a decrease in JNK phosphorylation. Furthermore, viscolin reduced VCAM-1 expression in the aorta of TNF-α-treated mice in vivo. Taken together, these data show that viscolin inhibits TNF-α-induced JNK phosphorylation, nuclear translocation of NF-κB p65, and ROS generation and thereby suppresses VCAM-1 expression, resulting in reduced adhesion of leukocytes. These results also suggest that viscolin may prevent the development of atherosclerosis and inflammatory responses.  相似文献   

18.
The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.  相似文献   

19.
20.
Epidemiological studies have shown that arsenic exposure increases atherosclerosis, but the mechanisms underlying this relationship are unknown. Monocytes, macrophages and platelets play an important role in the initiation of atherosclerosis. Circulating monocytes and macrophages bind to the activated vascular endothelium and migrate into the sub-endothelium, where they become lipid-laden foam cells. This process can be facilitated by platelets, which favour monocyte recruitment to the lesion. Thus, we assessed the effects of low-to-moderate arsenic exposure on monocyte adhesion to endothelial cells, platelet activation and platelet-monocyte interactions. We observed that arsenic induces human monocyte adhesion to endothelial cells in vitro. These findings were confirmed ex vivo using a murine organ culture system at concentrations as low as 10 ppb. We found that both cell types need to be exposed to arsenic to maximize monocyte adhesion to the endothelium. This adhesion process is specific to monocyte/endothelium interactions. Hence, no effect of arsenic on platelet activation or platelet/leukocyte interaction was observed. We found that arsenic increases adhesion of mononuclear cells via increased CD29 binding to VCAM-1, an adhesion molecule found on activated endothelial cells. Similar results were observed in vivo, where arsenic-exposed mice exhibit increased VCAM-1 expression on endothelial cells and increased CD29 on circulating monocytes. Interestingly, expression of adhesion molecules and increased binding can be inhibited by antioxidants in vitro and in vivo. Together, these data suggest that arsenic might enhance atherosclerosis by increasing monocyte adhesion to endothelial cells, a process that is inhibited by antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号