首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with severe COVID-19 exhibit hyper-inflammatory responses characterized by excessive activation of myeloid cells, including monocytes, macrophages, and neutrophils, and a plethora of pro-inflammatory cytokines and chemokines. Accumulating evidence also indicates that hyper-inflammation is a driving factor for severe progression of the disease, which has prompted the development of anti-inflammatory therapies for the treatment of patients with COVID-19. Corticosteroids, IL-6R inhibitors, and JAK inhibitors have demonstrated promising results in treating patients with severe disease. In addition, diverse forms of exosomes that exert anti-inflammatory functions have been tested experimentally for the treatment of COVID-19. Here, we briefly describe the immunological mechanisms of the hyper-inflammatory responses in patients with severe COVID-19. We also summarize current anti-inflammatory therapies for the treatment of severe COVID-19 and novel exosome-based therapeutics that are in experimental stages.  相似文献   

2.
Clinical intervention in patients with corona virus disease 2019 (COVID-19) has demonstrated a strong upregulation of cytokine production in patients who are critically ill with SARS-CoV2-induced pneumonia. In a retrospective study of 41 patients with COVID-19, most patients with SARS-CoV-2 infection developed mild symptoms, whereas some patients later developed aggravated disease symptoms, and eventually passed away because of multiple organ dysfunction syndrome (MODS), as a consequence of a severe cytokine storm. Guidelines for the diagnosis and treatment of SARS-CoV-2 infected pneumonia were first published January 30th, 2020; these guidelines recommended for the first time that cytokine monitoring should be applied in severely ill patients to reduce pneumonia related mortality. The cytokine storm observed in COVID-19 illness is also an important component of mortality in other viral diseases, including SARS, MERS and influenza. In view of the severe morbidity and mortality of COVID-19 pneumonia, we review the current understanding of treatment of human coronavirus infections from the perspective of a dysregulated cytokine and immune response.  相似文献   

3.
4.
新型冠状病毒肺炎(COVID-19)是目前全球面临的最紧迫的公共卫生问题之一。牙周炎是一种高发病率的慢性疾病,同时也是多种全身性疾病的诱因。最新研究表明COVID-19与心血管疾病、高血压、糖尿病、肥胖和慢性肾病等其他慢性疾病存在相关性。旨在基于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的感染与牙周炎发生的主要致病机制探讨两者之间是否存在潜在关联。总结发现牙周炎与COVID-19发病率的上升没有直接关联,但是牙周炎能间接影响COVID-19预后。对两者关系的进一步了解,不仅可以预防牙周炎,还可以降低COVID-19不良预后的发生。本文为COVID-19合并牙周炎患者的治疗提供新型研究思路及理论参考。  相似文献   

5.
The new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 in Wuhan, China, has reached worldwide pandemic proportions, causing coronavirus disease 2019 (COVID-19). The clinical manifestations of COVID-19 vary from an asymptomatic disease course to clinical symptoms of acute respiratory distress syndrome and severe pneumonia. The lungs are the primary organ affected by SARS-CoV-2, with a very slow turnover for renewal. SARS-CoV-2 enters the lungs via angiotensin-converting enzyme 2 receptors and induces an immune response with the accumulation of immunocompetent cells, causing a cytokine storm, which leads to target organ injury and subsequent dysfunction. To date, there is no effective antiviral therapy for COVID-19 patients, and therapeutic strategies are based on experience treating previously recognized coronaviruses. In search of new treatment modalities of COVID-19, cell-based therapy with mesenchymal stem cells (MSCs) and/or their secretome, such as soluble bioactive factors and extracellular vesicles, is considered supportive therapy for critically ill patients. Multipotent MSCs are able to differentiate into different types of cells of mesenchymal origin, including alveolar epithelial cells, lung epithelial cells, and vascular endothelial cells, which are severely damaged in the course of COVID-19 disease. Moreover, MSCs secrete a variety of bioactive factors that can be applied for respiratory tract regeneration in COVID-19 patients thanks to their trophic, anti-inflammatory, immunomodulatory, anti-apoptotic, pro-regenerative, and proangiogenic properties.  相似文献   

6.
《Endocrine practice》2020,26(8):915-922
Objective: In December 2019, a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused an outbreak of coronavirus disease 2019 (COVID-19) that resulted in a global pandemic with substantial morbidity and mortality. Currently, there is no specific treatment or approved vaccine against COVID-19. The underlying associated comorbidity and diminished immune function of some pituitary patients (whether caused by the disease and its sequelae or treatment with excess glucocorticoids) increases their risk of contracting and developing complications from COVID-19 infection.Methods: A review of studies in PubMed and Google Scholar published between January 2020 to the time of writing (May 1, 2020) was conducted using the search terms ‘pituitary,’ ‘coronavirus,’ ‘COVID-19’, ‘2019-nCoV’, ‘diabetes mellitus’, ‘obesity’, ‘adrenal,’ and ‘endocrine.’Results: Older age and pre-existing obesity, hypertension, cardiovascular disease, and diabetes mellitus increase the risk of hospitalization and death in COVID-19 patients. Men tend to be more severely affected than women; fortunately, most men, particularly of younger age, survive the infection. In addition to general comorbidities that may apply to many pituitary patients, they are also susceptible due to the following pituitary disorder–specific features: hypercortisolemia and adrenal suppression with Cushing disease, adrenal insufficiency and diabetes insipidus with hypopituitarism, and sleep-apnea syndrome and chest wall deformity with acromegaly.Conclusion: This review aims to focus on the impact of COVID-19 in patients with pituitary disorders. As most countries are implementing mobility restrictions, we also discuss how this pandemic has affected patient attitudes and impacted our decision-making on management recommendations for these patients.Abbreviations: ACE = angiotensin-converting enzyme; AI = adrenal insufficiency; ARB = angiotensin receptor blocker; ARDS = acute respiratory disease syndrome; COVID-19 = coronavirus disease 2019; CPAP = continuous positive airway pressure; DI = diabetes insipidus; DM = diabetes mellitus; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2  相似文献   

7.
8.
With ongoing research, it was found that asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was widespread in coronavirus disease 2019 (COVID-19) populations. Studies have confirmed asymptomatic patients with COVID-19 have potential infectivity, and most of the transmission occurred before symptoms appear. Asymptomatic infection rates varied widely in different countries and regions. Identifying the asymptomatic infected persons and cutting off the infection source is an effective way to prevent the spread of this disease. However, asymptomatic patients have hidden clinical symptoms, and screening based only on the clinical symptoms of COVID-19 can easily lead to a missed diagnosis. Therefore, determining asymptomatic infection patients by SARS-CoV-2 nucleic acid testing is the gold standard. A series of prevention and control measures adopted by the Chinese government, especially the “Four Early” policy, have achieved outstanding achievements, which are worth learning from by other countries.  相似文献   

9.
Acute respiratory disease caused by a novel coronavirus (SARS-CoV-2) has spread all over the world, since its discovery in 2019, Wuhan, China. This disease is called COVID-19 and already killed over 1 million people worldwide. The clinical symptoms include fever, dry cough, dyspnea, headache, dizziness, generalized weakness, vomiting, and diarrhea. Unfortunately, so far, there is no validated vaccine, and its management consists mainly of supportive care. Venous thrombosis and pulmonary embolism are highly prevalent in patients suffering from severe COVID-19. In fact, a prothrombotic state seems to be present in most fatal cases of the disease. SARS-CoV-2 leads to the production of proinflammatory cytokines, causing immune-mediated tissue damage, disruption of the endothelial barrier, and uncontrolled thrombogenesis. Thrombin is the key regulator of coagulation and fibrin formation. In severe COVID-19, a dysfunctional of physiological anticoagulant mechanisms leads to a progressive increase of thrombin activity, which is associated with acute respiratory distress syndrome development and a poor prognosis. Protease-activated receptor type 1 (PAR1) is the main thrombin receptor and may represent an essential link between coagulation and inflammation in the pathophysiology of COVID-19. In this review, we discuss the potential role of PAR1 inhibition and regulation in COVID-19 treatment.  相似文献   

10.
Coronavirus disease 2019 (COVID-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). From March 2020, several studies indicate that many subjects affected by mild-to-moderate COVID-19 presented olfactory/gustatory dysfunction (OD/GD) that appeared strongly correlated between them but not with the other symptoms suggestive of upper airway infectionIn order to evaluate patterns of gustatoy recovery, data from patients with confirmed COVID-19 were collected prospectively from 4 University Hospitals. At this relatively early point in the pandemic, the authors considered that subjective patterns of recovery of olfactory disfunction in COVID-19 patients are valuable for our patients, for hypothesis generation and treatment development.  相似文献   

11.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic worldwide. Long non-coding RNAs (lncRNAs) are a subclass of endogenous, non-protein-coding RNA, which lacks an open reading frame and is more than 200 nucleotides in length. However, the functions for lncRNAs in COVID-19 have not been unravelled. The present study aimed at identifying the related lncRNAs based on RNA sequencing of peripheral blood mononuclear cells from patients with SARS-CoV-2 infection as well as health individuals. Overall, 17 severe, 12 non-severe patients and 10 healthy controls were enrolled in this study. Firstly, we reported some altered lncRNAs between severe, non-severe COVID-19 patients and healthy controls. Next, we developed a 7-lncRNA panel with a good differential ability between severe and non-severe COVID-19 patients using least absolute shrinkage and selection operator regression. Finally, we observed that COVID-19 is a heterogeneous disease among which severe COVID-19 patients have two subtypes with similar risk score and immune score based on lncRNA panel using iCluster algorithm. As the roles of lncRNAs in COVID-19 have not yet been fully identified and understood, our analysis should provide valuable resource and information for the future studies.  相似文献   

12.
The current coronavirus disease 2019 (COVID-19) pandemic has presented unprecedented challenges to global health. Although the majority of COVID-19 patients exhibit mild-to-no symptoms, many patients develop severe disease and need immediate hospitalization, with most severe infections associated with a dysregulated immune response attributed to a cytokine storm. Epidemiological studies suggest that overall COVID-19 severity and morbidity correlate with underlying comorbidities, including diabetes, obesity, cardiovascular diseases, and immunosuppressive conditions. Patients with such comorbidities exhibit elevated levels of reactive oxygen species (ROS) and oxidative stress caused by an increased accumulation of angiotensin II and by activation of the NADPH oxidase pathway. Moreover, accumulating evidence suggests that oxidative stress coupled with the cytokine storm contribute to COVID-19 pathogenesis and immunopathogenesis by causing endotheliitis and endothelial cell dysfunction and by activating the blood clotting cascade that results in blood coagulation and microvascular thrombosis. In this review, we survey the mechanisms of how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces oxidative stress and the consequences of this stress on patient health. We further shed light on aspects of the host immunity that are crucial to prevent the disease during the early phase of infection. A better understanding of the disease pathophysiology as well as preventive measures aimed at lowering ROS levels may pave the way to mitigate SARS-CoV-2-induced complications and decrease mortality.  相似文献   

13.
Singh  Ashutosh  Singh  Rahul Soloman  Sarma  Phulen  Batra  Gitika  Joshi  Rupa  Kaur  Hardeep  Sharma  Amit Raj  Prakash  Ajay  Medhi  Bikash 《中国病毒学》2020,35(3):290-304
The recent outbreak of coronavirus disease(COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has already affected a large population of the world. SARS-CoV-2 belongs to the same family of severe acute respiratory syndrome coronavirus(SARS-CoV) and Middle East respiratory syndrome coronavirus(MERSCoV). COVID-19 has a complex pathology involving severe acute respiratory infection, hyper-immune response, and coagulopathy. At present, there is no therapeutic drug or vaccine approved for the disease. There is an urgent need for an ideal animal model that can reflect clinical symptoms and underlying etiopathogenesis similar to COVID-19 patients which can be further used for evaluation of underlying mechanisms, potential vaccines, and therapeutic strategies. The current review provides a paramount insight into the available animal models of SARS-CoV-2, SARS-CoV, and MERS-CoV for the management of the diseases.  相似文献   

14.
Severe coronavirus disease 2019 (COVID-19) has been complicated by coagulopathy and thrombotic events including venous thromboembolism, pulmonary embolism, and arterial thrombus at a rate higher than has traditionally been seen with sepsis-induced coagulopathy or disseminated intravascular coagulation leading most centers to treat hospitalized patients with prophylactic anticoagulation. We present a case of a patient with thoracic outlet syndrome who presents with brachial artery thrombosis in the setting of infection with COVID-19. Both thoracic outlet syndrome and COVID-19 infection are independently associated with increased risk of thrombotic events. The induced hypercoagulable state from COVID-19 infection may result in acute arterial thrombosis in patients with predisposing anatomic differences consistent with thoracic outlet syndrome.Level of Evidence: V  相似文献   

15.
《Cytotherapy》2022,24(8):755-766
Currently, treating coronavirus disease 2019 (COVID-19) patients, particularly those afflicted with severe pneumonia, is challenging, as no effective pharmacotherapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exists. Severe pneumonia is recognized as a clinical syndrome characterized by hyper-induction of pro-inflammatory cytokine production, which can induce organ damage, followed by edema, dysfunction of air exchange, acute respiratory distress syndrome, acute cardiac injury, secondary infection and increased mortality. Owing to the immunoregulatory and differentiation potential of mesenchymal stem cells (MSCs), we aimed to outline current insights into the clinical application of MSCs in COVID-19 patients. Based on results from preliminary clinical investigations, it can be predicted that MSC therapy for patients infected with SARS-CoV-2 is safe and effective, although multiple clinical trials with a protracted follow-up will be necessary to determine the long-term effects of the treatment on COVID-19 patients.  相似文献   

16.
The outbreak of the novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) responsible for coronavirus disease 2019 (COVID-19) has developed into an unprecedented global pandemic. Clinical investigations in patients with COVID-19 has shown a strong upregulation of cytokine and interferon production in SARS-CoV2- induced pneumonia, with an associated cytokine storm syndrome. Thus, the identification of existing approved therapies with proven safety profiles to treat hyperinflammation is a critical unmet need in order to reduce COVI-19 associated mortality. To date, no specific therapeutic drugs or vaccines are available to treat COVID-19 patients. This review evaluates several options that have been proposed to control SARS-CoV2 hyperinflammation and cytokine storm, eincluding antiviral drugs, vaccines, small-molecules, monoclonal antibodies, oligonucleotides, peptides, and interferons (IFNs).  相似文献   

17.
Coronavirus disease 2019(COVID-19), a pandemic disease caused by the severe acute respiratory syndrome coronavirus 2(SARS-Co V2), is growing at an exponential rate worldwide. Manifestations of this disease are heterogeneous; however, advanced cases often exhibit various acute respiratory distress syndrome-like symptoms, systemic inflammatory reactions, coagulopathy, and organ involvements. A common theme in advanced COVID-19 is unrestrained immune activation, classically referred to as a "cytokine storm", as well as deficiencies in immune regulatory mechanisms such as T regulatory cells. While mesenchymal stem cells(MSCs) themselves are objects of cytokine regulation, they can secrete cytokines to modulate immune cells by inducing antiinflammatory regulatory Treg cells, macrophages and neutrophils; and by reducing the activation of T and B cells, dendritic and nature killer cells. Consequently, they have therapeutic potential for treating severe cases of COVID-19. Here we discuss the unique ability of MSCs, to act as a "living antiinflammatory", which can "rebalance" the cytokine/immune responses to restore equilibrium. We also discuss current MSC trials and present different concepts for optimization of MSC therapy in patients with COVID-19 acute respiratory distress syndrome.  相似文献   

18.
Dear Editor, The ongoing coronavirus disease 2019(COVID-19)global pandemic is caused by a novel coronavirus,severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),which instigates severe and often fatal symptoms.As of September 4th,2020,more than 26 million cases of COVID-19 and almost 900,000 deaths have been reported to WHO.Based on Kissler and colleagues'modeled projections of future viral transmission scenarios,a resurgence in SARS-CoV-2 could occur over the next five years(Kissler et al.,2020).Research and clinical trials are underway to develop vacci-nes and treatments for COVID-19,but there are currently no specific vaccines or treatments for COVID-19(www.who.int),and therapeutic and prophylactic interventions are urgently needed to combat the outbreak of SARS-CoV-2.Of partic-ular importance is the identification of drugs which are effective,less-intrusive,most socioeconomic,and ready-to-use.  相似文献   

19.
Coronavirus disease 2019 (COVID-19) is the seventh member of the bat severe acute respiratory syndrome family. COVID-19 can fuse their envelopes with the host cell membranes and deliver their genetic material. COVID-19 attacks the respiratory system and stimulates the host inflammatory responses, enhances the recruitment of immune cells, and promotes angiotensin-converting enzyme 2 activities. Patients with confirmed COVID-19 may have experienced fever, dry cough, headache, dyspnea, acute kidney injury, acute respiratory distress syndrome, and acute heart injury. Several strategies such as oxygen therapy, ventilation, antibiotic or antiviral therapy, and renal replacement therapy are commonly used to decrease COVID-19-associated mortality. However, these approaches may not be good treatment options. Therefore, the search for an alternative-novel therapy is urgently important to prevent the disease progression. Recently, microRNAs (miRNAs) have emerged as a promising strategy for COVID-19. The design of oligonucleotide against the genetic material of COVID-19 might suppress virus RNA translation. Several previous studies have shown that host miRNAs play an antiviral role and improve the treatment of patients with COVID-19. miRNAs by binding to the 3′-untranslated region (UTR) or 5′-UTR of viral RNA play an important role in COVID-19-host interplay and viral replication. miRNAs interact with multiple pathways and reduce inflammatory biomarkers, thrombi formation, and tissue damage to accelerate the patient outcome. The information in this review provides a summary of the current clinical application of miRNAs for the treatments of patients with COVID-19.  相似文献   

20.
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is an ongoing pandemic disease. SARS-CoV-2-specific CD4+ and CD8+ T-cell responses have been detected and characterized not only in COVID-19 patients and convalescents, but also unexposed individuals. Here, we review the phenotypes and functions of SARS-CoV-2-specific T cells in COVID-19 patients and the relationships between SARS-CoV-2-specific T-cell responses and COVID-19 severity. In addition, we describe the phenotypes and functions of SARS-CoV-2-specific memory T cells after recovery from COVID-19 and discuss the presence of SARS-CoV-2-reactive T cells in unexposed individuals and SARS-CoV-2-specific T-cell responses elicited by COVID-19 vaccines. A better understanding of T-cell responses is important for effective control of the current COVID-19 pandemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号