共查询到20条相似文献,搜索用时 15 毫秒
1.
Bradham CA Foltz KR Beane WS Arnone MI Rizzo F Coffman JA Mushegian A Goel M Morales J Geneviere AM Lapraz F Robertson AJ Kelkar H Loza-Coll M Townley IK Raisch M Roux MM Lepage T Gache C McClay DR Manning G 《Developmental biology》2006,300(1):180-193
This paper reports a preliminary in silico analysis of the sea urchin kinome. The predicted protein kinases in the sea urchin genome were identified, annotated and classified, according to both function and kinase domain taxonomy. The results show that the sea urchin kinome, consisting of 353 protein kinases, is closer to the Drosophila kinome (239) than the human kinome (518) with respect to total kinase number. However, the diversity of sea urchin kinases is surprisingly similar to humans, since the urchin kinome is missing only 4 of 186 human subfamilies, while Drosophila lacks 24. Thus, the sea urchin kinome combines the simplicity of a non-duplicated genome with the diversity of function and signaling previously considered to be vertebrate-specific. More than half of the sea urchin kinases are involved with signal transduction, and approximately 88% of the signaling kinases are expressed in the developing embryo. These results support the strength of this nonchordate deuterostome as a pivotal developmental and evolutionary model organism. 相似文献
2.
《Bioorganic & medicinal chemistry》2016,24(1):12-19
Kinase-catalyzed protein phosphorylation is involved in a wide variety of cellular events. Development of methods to monitor phosphoproteins in normal and diseased states is critical to fully characterize cell signaling. Towards phosphoprotein analysis tools, our lab reported kinase-catalyzed labeling where γ-phosphate modified ATP analogs are utilized by kinases to label peptides or protein substrates with a functional tag. In particular, the ATP-biotin analog was developed for kinase-catalyzed biotinylation. However, kinase-catalyzed labeling has been tested rigorously with only a few kinases, preventing use of ATP-biotin as a general tool. Here, biotinylation experiments, gel or HPLC-based quantification, and kinetic measurements indicated that twenty-five kinases throughout the kinome tree accepted ATP-biotin as a cosubstrate. With this rigorous characterization of ATP-biotin compatibility, kinase-catalyzed labeling is now immediately useful for studying phosphoproteins and characterizing the role of phosphorylation in various biological events. 相似文献
3.
4.
Metal ions intersect a wide range of biological processes. Some metal ions are essential and hence absolutely required for the growth and health of an organism, others are toxic and there is great interest in understanding mechanisms of toxicity. Genetically encoded fluorescent sensors are powerful tools that enable the visualization, quantification, and tracking of dynamics of metal ions in biological systems. Here, we review recent advances in the development of genetically encoded fluorescent sensors for metal ions. We broadly focus on 5 classes of sensors: single fluorescent protein, FRET-based, chemigenetic, DNAzymes, and RNA-based. We highlight recent developments in the past few years and where these developments stand concerning the rest of the field. 相似文献
5.
Precise spatiotemporal organization and regulation of signal transduction networks are essential for cellular response to internal and external cues. To understand how this biochemical activity architecture impacts cellular function, many genetically encodable tools which regulate kinase activity at a subcellular level have been developed. In this review, we highlight various types of genetically encodable molecular tools, including tools to regulate endogenous kinase activity and biorthogonal techniques to perturb kinase activity. Finally, we emphasize the use of these tools alongside biosensors for kinase activity to measure and perturb kinase activity in real time for a better understanding of the cellular biochemical activity architecture. 相似文献
6.
7.
摘要 目的:五羟色胺(5-HT)对中枢神经系统发挥着重要的调控作用,其功能失调与许多精神类疾病密切相关,因此开发能实时灵敏检测5-HT的工具对研究此类疾病及研发靶向药物至关重要。最近新开发的iSeroSnFR和GRAB5-HT1.0两类5-HT荧光探针,具有细胞特异性、反应灵敏以及高时空分辨率等显著优势,已经成为深入探究5-HT作用机制的有力工具。本研究旨在探究荧光探针iSeroSnFR和GRAB5-HT1.0哪种能更有效地检测5-HT递质释放及动态变化,从而为后续优化5-HT荧光探针和利用这一有力工具解析神经疾病中的递质异常提供新思路。方法:将iSeroSnFR或GRAB5-HT1.0探针的基因序列插入到Sindbis病毒表达载体,然后把病毒分别转染到培养的小鼠离体脑片的海马CA1区,比较两种探针在神经元中的表达差异;并检测其对外源性5-HT药物诱导产生的荧光反应。另外,将上述病毒转染到急性小鼠脑片中缝核(DRN)区,给与电刺激检测两种探针响应内源5-HT释放的荧光信号差异。结果:在转染iSeroSnFR的海马CA1区神经元中均有荧光表达,但细胞边界不清晰;而转染了GRAB5-HT1.0的神经元细胞膜上表达有强烈的绿色荧光信号。用1 μM 5-HT处理培养的小鼠脑片海马CA1神经元时,iSeroSnFR探针没有明显的荧光强度变化;而GRAB5-HT1.0探针产生的荧光强度显著增强;用1 mM 5-HT处理时,iSeroSnFR探针产生一定强度的荧光反应,但响应幅度弱于GRAB5-HT1.0探针。另外,利用上述病毒转染急性小鼠脑片DRN区,通过电刺激诱导内源性5-HT释放,发现仅在表达GRAB5-HT1.0探针的DRN神经元中观察到显著增强的荧光反应;而iSeroSnFR探针几乎未产生明显荧光变化。结论:在小鼠脑中,GRAB5-HT1.0荧光探针对外源性及内源性的5-HT的亲和力更高、灵敏度更强。 相似文献
8.
Phosphorylation is the predominant mechanism of post-translational modification for regulation of protein function. With central roles in virtually every cellular process, and strong linkages with many diseases, there is a considerable interest in defining, and ultimately controlling, kinase activities. Investigations of human cellular phosphorylation events, which includes over 500 different kinases and tens of thousands of phosphorylation targets, represent a daunting challenge for proteomic researchers and cell biologists alike. As such, there is a priority to develop tools that enable the evaluation of cellular phosphorylation events in a high-throughput, and biologically relevant, fashion. Towards this objective, two distinct, but functionally related, experimental approaches have emerged; phosphoproteome investigations, which focus on the sub-population of proteins which undergo phosphorylation and kinome analysis, which considers the activities of the kinase enzymes mediating these phosphorylation events. Within kinome analysis, peptide arrays have demonstrated considerable potential as a cost-effective, high-throughput approach for defining phosphorylation-mediated signal transduction activity. In particular, a number of recent advances in the application of peptide arrays for kinome analysis have enabled researchers to tackle increasingly complex biological problems in a wider range of species. In this review, recent advances in kinomic analysis utilizing peptides arrays including several of the biological questions studied by our group, as well as outstanding challenges still facing this technology, are discussed. 相似文献
9.
Neurons and glia are functionally organized into circuits and higher-order structures that allow the precise information processing required for complex behaviors. To better understand the structure and function of the brain, we must understand synaptic connectivity, action potential generation and propagation, as well as well-orchestrated molecular signaling. Recently, dramatically improved sensors for voltage, intracellular calcium, and neurotransmitters/modulators, combined with advanced microscopy provide new opportunities for in vivo dissection of cellular and circuit activity in awake, behaving animals. This review focuses on the current trends in genetically encoded sensors for molecules and cellular events and their potential applicability to the study of nervous system in health and disease. 相似文献
10.
It is increasingly apparent that nature evolved peroxiredoxins not only as H2O2 scavengers but also as highly sensitive H2O2 sensors and signal transducers. Here we ask whether the H2O2 sensing role of Prx can be exploited to develop probes that allow to monitor intracellular H2O2 levels with unprecedented sensitivity. Indeed, simple gel shift assays visualizing the oxidation of endogenous 2-Cys peroxiredoxins have already been used to detect subtle changes in intracellular H2O2 concentration. The challenge however is to create a genetically encoded probe that offers real-time measurements of H2O2 levels in intact cells via the Prx oxidation state. We discuss potential design strategies for Prx-based probes based on either the redox-sensitive fluorophore roGFP or the conformation-sensitive fluorophore cpYFP. Furthermore, we outline the structural and chemical complexities which need to be addressed when using Prx as a sensing moiety for H2O2 probes. We suggest experimental strategies to investigate the influence of these complexities on probe behavior. In doing so, we hope to stimulate the development of Prx-based probes which may spearhead the further study of cellular H2O2 homeostasis and Prx signaling. 相似文献
11.
《Bioorganic & medicinal chemistry letters》2014,24(24):5648-5651
We describe the design, synthesis, and evaluation of a selective activity probe for leucine-rich repeat kinase 2 (LRRK2), a possible molecular target for the treatment of Parkinson’s disease. Our optimal chemosensor design, termed Nictide-S2, incorporates a phosphorylation-sensitive sulfonamido-oxine fluorophore at an engineered cysteine within the substrate sequence. This design allows for the direct, real-time analysis of LRRK2 kinase activity with a detection limit of 2.5 nM. Under optimized conditions, we measured a Z′ factor of 0.7 demonstrating the potential utility of this assay for inhibitor screening. Off-target kinases capable of phosphorylating Nictide-S2 are identified and an optimized inhibitor cocktail for suppressing background signal is provided. The resulting chemosensor could be utilized to identify LRRK2 inhibitors as well as selectively report on LRRK2 activity in the presence of off-target kinases. 相似文献
12.
《Bioorganic & medicinal chemistry letters》2020,30(17):127405
Apoptosis Signal-Regulating Kinase-1 (ASK1) is a known member of the Mitogen-Activated Protein Kinase Kinase Kinase (MAP3K) family and upon stimulation will activate the p38- and JNK-pathways leading to cardiac apoptosis, fibrosis, and hypertrophy. Using Structure-Based Drug Design (SBDD) in parallel with deconstruction of a published compound, a novel series of ASK1 inhibitors was optimized, which incorporated a saturated heterocycle proximal to the hinge-binding motif. This yielded a unique chemical series with excellent selectivity across the broader kinome, and desirable drug-like properties. The lead compound (10) is highly soluble and permeable, and exhibits a cellular EC50 = 24 nM and Kd < 1 nM. Of the 350 kinases tested, 10 has an IC50 ≤ 500 nM for only eight of them. This paper will describe the design hypotheses behind this series, key data points during the optimization phase, as well as a possible structural rationale for the kinome selectivity. Based on crystallographic data, the presence of an aliphatic cycle adjacent to the hinge-binder in the active site of the protein kinase showed up in <1% of the >5000 structures in the Protein Data Bank, potentially conferring the selectivity seen in this series. 相似文献
13.
Alina P. Ryumina Ekaterina O. Serebrovskaya Marina V. Shirmanova Ludmila B. Snopova Maria M. Kuznetsova Ilya V. Turchin Nadezhda I. Ignatova Natalia V. Klementieva Arkady F. Fradkov Boris E. Shakhov Elena V. Zagaynova Konstantin A. Lukyanov Sergey A. Lukyanov 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
Genetically encoded photosensitizers are a promising optogenetic instrument for light-induced production of reactive oxygen species in desired locations within cells in vitro or whole body in vivo. Only two such photosensitizers are currently known, GFP-like protein KillerRed and FMN-binding protein miniSOG. In this work we studied phototoxic effects of miniSOG in cancer cells.Methods
HeLa Kyoto cell lines stably expressing miniSOG in different localizations, namely, plasma membrane, mitochondria or chromatin (fused with histone H2B) were created. Phototoxicity of miniSOG was tested on the cells in vitro and tumor xenografts in vivo.Results
Blue light induced pronounced cell death in all three cell lines in a dose-dependent manner. Caspase 3 activation was characteristic of illuminated cells with mitochondria- and chromatin-localized miniSOG, but not with miniSOG in the plasma membrane. In addition, H2B-miniSOG-expressing cells demonstrated light-induced activation of DNA repair machinery, which indicates massive damage of genomic DNA. In contrast to these in vitro data, no detectable phototoxicity was observed on tumor xenografts with HeLa Kyoto cell lines expressing mitochondria- or chromatin-localized miniSOG.Conclusions
miniSOG is an excellent genetically encoded photosensitizer for mammalian cells in vitro, but it is inferior to KillerRed in the HeLa tumor.General significance
This is the first study to assess phototoxicity of miniSOG in cancer cells. The results suggest an effective ontogenetic tool and may be of interest for molecular and cell biology and biomedical applications. 相似文献14.
Spencer C. Alford Jiahui Wu Yongxin Zhao Robert E. Campbell Thomas Knöpfel 《Biology of the cell / under the auspices of the European Cell Biology Organization》2013,105(1):14-29
The discovery of naturally evolved fluorescent proteins and their subsequent tuning by protein engineering provided the basis for a large family of genetically encoded biosensors that report a variety of physicochemical processes occurring in living tissue. These optogenetic reporters are powerful tools for live‐cell microscopy and quantitative analysis at the subcellular level. In this review, we present an overview of the transduction mechanisms that have been exploited for engineering these genetically encoded reporters. Finally, we discuss current and future efforts towards the combined use of various optogenetic actuators and reporters for simultaneously controlling and imaging the physiology of cells and tissues. 相似文献
15.
Martin Oheim Marcel van 't Hoff Anne Feltz Alsu Zamaleeva Jean-Maurice Mallet Mayeul Collot 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014
Most chemical and, with only a few exceptions, all genetically encoded fluorimetric calcium (Ca2+) indicators (GECIs) emit green fluorescence. Many of these probes are compatible with red-emitting cell- or organelle markers. But the bulk of available fluorescent-protein constructs and transgenic animals incorporate green or yellow fluorescent protein (GFP and YFP respectively). This is, in part, not only heritage from the tendency to aggregate of early-generation red-emitting FPs, and due to their complicated photochemistry, but also resulting from the compatibility of green-fluorescent probes with standard instrumentation readily available in most laboratories and core imaging facilities. Photochemical constraints like limited water solubility and low quantum yield have contributed to the relative paucity of red-emitting Ca2+ probes compared to their green counterparts, too. The increasing use of GFP and GFP-based functional reporters, together with recent developments in optogenetics, photostimulation and super-resolution microscopies, has intensified the quest for red-emitting Ca2+ probes. In response to this demand more red-emitting chemical and FP-based Ca2+-sensitive indicators have been developed since 2009 than in the thirty years before. 相似文献
16.
《Cell calcium》2016,59(6):638-648
Localized subcellular changes in Ca2+ serve as important cellular signaling elements, regulating processes as diverse as neuronal excitability and gene expression. Studies of cellular Ca2+ signaling have been greatly facilitated by the availability of fluorescent Ca2+ indicators. The respective merits of different indicators to monitor bulk changes in cellular Ca2+ levels have been widely evaluated, but a comprehensive comparison for their use in detecting and analyzing local, subcellular Ca2+ signals is lacking. Here, we evaluated several fluorescent Ca2+ indicators in the context of local Ca2+ signals (puffs) evoked by inositol 1,4,5-trisphosphate (IP3) in cultured human neuroblastoma SH-SY5Y cells, using high-speed video-microscopy. Altogether, nine synthetic Ca2+ dyes (Fluo-4, Fluo-8, Fluo-8 high affinity, Fluo-8 low affinity, Oregon Green BAPTA-1, Cal-520, Rhod-4, Asante Calcium Red, and X-Rhod-1) and three genetically-encoded Ca2+-indicators (GCaMP6-slow, -medium and -fast variants) were tested; criteria include the magnitude, kinetics, signal-to-noise ratio and detection efficiency of local Ca2+ puffs. Among these, we conclude that Cal-520 is the optimal indicator for detecting and faithfully tracking local events; that Rhod-4 is the red-emitting indicator of choice; and that none of the GCaMP6 variants are well suited for imaging subcellular Ca2+ signals. 相似文献
17.
《Cell calcium》2017
Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis. 相似文献
18.
19.
《Cell calcium》2017
Drosophila phototransduction is mediated by phospholipase C leading to activation of cation channels (TRP and TRPL) in the 30000 microvilli forming the light-absorbing rhabdomere. The channels mediate massive Ca2+ influx in response to light, but whether Ca2+ is released from internal stores remains controversial. We generated flies expressing GCaMP6f in their photoreceptors and measured Ca2+ signals from dissociated cells, as well as in vivo by imaging rhabdomeres in intact flies. In response to brief flashes, GCaMP6f signals had latencies of 10–25 ms, reached 50% Fmax with ∼1200 effectively absorbed photons and saturated (ΔF/F0 ∼ 10–20) with 10000–30000 photons. In Ca2+ free bath, smaller (ΔF/F0 ∼4), long latency (∼200 ms) light-induced Ca2+ rises were still detectable. These were unaffected in InsP3 receptor mutants, but virtually eliminated when Na+ was also omitted from the bath, or in trpl;trp mutants lacking light-sensitive channels. Ca2+ free rises were also eliminated in Na+/Ca2+ exchanger mutants, but greatly accelerated in flies over-expressing the exchanger. These results show that Ca2+ free rises are strictly dependent on Na+ influx and activity of the exchanger, suggesting they reflect re-equilibration of Na+/Ca2+ exchange across plasma or intracellular membranes following massive Na+ influx. Any tiny Ca2+ free rise remaining without exchanger activity was equivalent to <10 nM (ΔF/F0 ∼0.1), and unlikely to play any role in phototransduction. 相似文献
20.
Gerald A. Dienel;Douglas L. Rothman; 《Journal of neurochemistry》2024,168(5):506-532
Isotopic assays of brain glucose utilization rates have been used for more than four decades to establish relationships between energetics, functional activity, and neurotransmitter cycling. Limitations of these methods include the relatively long time (1–60 min) for the determination of labeled metabolite levels and the lack of cellular resolution. Identification and quantification of fuels for neurons and astrocytes that support activation and higher brain functions are a major, unresolved issues. Glycolysis is preferentially up-regulated during activation even though oxygen level and supply are adequate, causing lactate concentrations to quickly rise during alerting, sensory processing, cognitive tasks, and memory consolidation. However, the fate of lactate (rapid release from brain or cell–cell shuttling coupled with local oxidation) is long disputed. Genetically encoded biosensors can determine intracellular metabolite concentrations and report real-time lactate level responses to sensory, behavioral, and biochemical challenges at the cellular level. Kinetics and time courses of cellular lactate concentration changes are informative, but accurate biosensor calibration is required for quantitative comparisons of lactate levels in astrocytes and neurons. An in vivo calibration procedure for the Laconic lactate biosensor involves intracellular lactate depletion by intravenous pyruvate-mediated trans-acceleration of lactate efflux followed by sensor saturation by intravenous infusion of high doses of lactate plus ammonium chloride. In the present paper, the validity of this procedure is questioned because rapid lactate–pyruvate interconversion in blood, preferential neuronal oxidation of both monocarboxylates, on-going glycolytic metabolism, and cellular volumes were not taken into account. Calibration pitfalls for the Laconic lactate biosensor also apply to other metabolite biosensors that are standardized in vivo by infusion of substrates that can be metabolized in peripheral tissues. We discuss how technical shortcomings negate the conclusion that Laconic sensor calibrations support the existence of an in vivo astrocyte–neuron lactate concentration gradient linked to lactate shuttling from astrocytes to neurons to fuel neuronal activity. 相似文献