首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro three dimensional (3D) cancer models were developed to observe the invasive capacity of melanoma cell spheroids co-cultured with the vascular-formed endothelial cell network. An array-like multicellular pattern of mouse melanoma cell line B16F1 was developed by magnetic cell labeling using a pin-holder device for allocation of magnetic force. When the B16F1 patterned together with a vascular network of human umbilical vein epithelial cells (HUVEC), spreading and progression were observed along the HUVEC network. The B16F1 cells over 80 µm distance from HUVEC remain in a compact spheroid shape, while B16F1 in the proximity of HUVEC aggressively changed their morphology and migrated. The mRNA expression levels of IL-6, MDR-1 and MMP-9 in B16F1 increased along with the distance the HUVEC network, and these expressions were increased by 5, 3 and 2-fold in the B16F1 close to HUVEC (within 80 µm distance) as compared to that far from HUVEC (over 80 µm distance). Our results clearly show that malignancy of tumor cells is enhanced in proximity to vascular endothelial cells and leads to intravasation.  相似文献   

2.
The purpose of this study was to determine the metastatic melanoma imaging property of 99mTc(EDDA)-HYNIC-Aoc-Nle-CycMSHhex {hydrazinonicotinamide-8-aminooctanoic acid-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2}. HYNIC-Aoc-Nle-CycMSHhex was synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The IC50 value of HYNIC-Aoc-Nle-CycMSHhex was 0.78?±?0.13?nM for B16/F10 melanoma cells. 99mTc(EDDA)-HYNIC-Aoc-Nle-CycMSHhex displayed significantly higher uptake (14.26?±?2.74 and 10.45?±?2.31%?ID/g) in B16/F10 metastatic melanoma-bearing lung than that in normal lung (0.90?±?0.15 and 0.53?±?0.14%?ID/g) at 2 and 4?h post-injection, respectively. B16/F10 pulmonary metastatic melanoma lesions were clearly visualized by SPECT/CT using 99mTc(EDDA)-HYNIC-Aoc-Nle-CycMSHhex as an imaging probe at 2?h post-injection, underscoring its potential as an imaging probe for metastatic melanoma detection.  相似文献   

3.
Melanoma is the most dangerous skin cancer due to its highly metastatic potential and resistance to chemotherapy. Currently, there is no effective treatment for melanoma once it is progressed to metastatic stage. Therefore, further study to elucidate the molecular mechanism underlying the metastasis of melanoma cells is urgently required for the improvement of melanoma treatment. In the present study, we found that diphthamide synthesis 3 (Dph3) is involved in the metastasis of B16F10 murine melanoma cells by insertional mutagenesis. We demonstrated that Dph3 disruption impairs the migration of B16F10 murine melanoma cells. The requirement of Dph3 in the migration of melanoma cells was further confirmed by gene silencing with siRNA in vitro. In corresponding to this result, overexpression of Dph3 significantly promoted the migratory ability of B16F10 and B16F0 melanoma cells. Moreover, down regulation of Dph3 expression in B16F10 melanoma cells strikingly inhibits their cellular invasion and metastasis in vivo. Finally, we found that Dph3 promotes melanoma migration and invasion through the AKT signaling pathway. To conclude, our findings suggest a novel mechanism underlying the metastasis of melanoma cells which might serve as a new intervention target for the treatment of melanoma.  相似文献   

4.
Reactive oxygen species (ROS) generation is linked to dynamic actin cytoskeleton reorganization, which is involved in tumor cell motility and metastasis. Thus, inhibition of ROS generation and actin polymerization in tumor cells may represent an effective anticancer strategy. However, the molecular basis of this signaling pathway is currently unknown. Here, we show that the Ecklonia cava-derived antioxidant dieckol downregulates the Rac1/ROS signaling pathway and inhibits Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein 2 (WAVE2)-mediated invasive migration of B16 mouse melanoma cells. Steady-state intracellular ROS levels were higher in malignant B16F10 cells than in parental, nonmetastatic B16F0 cells. Elevation of ROS by H2O2 treatment increased migration and invasion ability of B16F0 cells to level similar to that of B16F10 cells, suggesting that intracellular ROS signaling mediates the prometastatic properties of B16 mouse melanoma cells. ROS levels and the cell migration and invasion ability of B16 melanoma cells correlated with Rac1 activation and WAVE2 expression. Overexpression of dominant negative Rac1 and depletion of WAVE2 by siRNA suppressed H2O2-induced cell invasion of B16F0 and B16F10 cells. Similarly, dieckol attenuates the ROS-mediated Rac1 activation and WAVE2 expression, resulting in decreased migration and invasion of B16 melanoma cells. In addition, we found that dieckol decreases association between WAVE2 and NADPH oxidase subunit p47phox. Therefore, this finding suggests that WAVE2 acts to couple intracellular Rac1/ROS signaling to the invasive migration of B16 melanoma cells, which is inhibited by dieckol.  相似文献   

5.
Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting tumor cell immunotherapies have demonstrated long-lasting, and specific anti-tumor immune responses in animal models. The studies reported here specifically evaluate two aspects of the immune response generated by such immunotherapies: the persistence of irradiated tumor cells at the immunization site, and the breadth of the immune response elicited to tumor associated antigens (TAA) derived from the immunotherapy. To further define the mechanism of GM-CSF-secreting cancer immunotherapies, immunohistochemistry studies were performed using the B16F10 melanoma tumor model. In contrast to previous reports, our data revealed that the irradiated tumor cells persisted and secreted high levels of GM-CSF at the injection site for more than 21 days. Furthermore, dense infiltrates of dendritic cells were observed only in mice treated with GM-CSF-secreting B16F10 cells, and not in mice treated with unmodified B16F10 cells with or without concurrent injection of rGM-CSF. In addition, histological studies also revealed enhanced neutrophil and CD4+ T cell infiltration, as well as the presence of apoptotic cells, at the injection site of mice treated with GM-CSF-secreting tumor cells. To evaluate the scope of the immune response generated by GM-CSF-secreting cancer immunotherapies, several related B16 melanoma tumor cell subclones that exist as a result of genetic drift in the original cell line were used to challenge mice previously immunized with GM-CSF-secreting B16F10 cells. These studies revealed that GM-CSF-secreting cancer immunotherapies elicit T cell responses that effectively control growth of related but antigenically distinct tumors. Taken together, these studies provide important new insights into the mechanism of action of this promising novel cancer immunotherapy. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment.

Highlights

Snail stimulates MMP-14 activity in Snail overexpressing B16F1 melanoma cells but not in HT29 cells; Lumican inhibits the Snail-induced MMP-14 activity in Snail-B16F1 cells; Lumican inhibits the migration and growth of Snail-B16F1 cells in vitro; Lumican inhibits melanoma primary tumor growth of Snail-B16F1 cells in vivo.  相似文献   

7.
BACKGROUND INFORMATION: MTA1 (metastasis-associated gene 1) has been reported to be overexpressed in cancers with high potential to metastasize. Studies of the molecular mechanisms revealed that MTA1 plays an important role in the process of metastasis of many types of cancer. However, the role of MTA1 in melanoma development is unclear. RESULTS: We have investigated the therapeutic value of MTA1 in the B16F10 melanoma cell line with the C57BL/6 mouse model. Studies in vitro showed that MTA1 promoted the metastatic ability of B16F10 cancer cells. MTA1 down-regulation by RNA interference greatly reversed the malignant phenotypes of cancer cells. Immunohistochemical staining of MTA1 in human melanoma samples confirmed the up-regulation of MTA1 in the process of carcinogenesis. Studies in vivo confirmed down-regulation of MTA1 suppressed the growth and experimental metastasis of B16F10 melanoma cells. CONCLUSIONS: MTA1 plays an important role in melanoma development and metastasis. It has a promising potential as a target for in cancer gene therapy or chemotherapy.  相似文献   

8.
Abstract

We have examined the mechanism of homologous regulation of MSH receptor binding and receptor-mediated adenylate cyclase activation in three human and two mouse melanoma cell lines. Pretreatment with α-MSH resulted in a time- and dose-dependent up-regulation of MSH receptors in human D10 and 205 melanoma cells whereas in human HBL and in mouse B16–F1 and Cloudman S91 cells α-MSH induced receptor down-regulation. Up-regulation of receptors was maximal after a 24–h incubation period and an α-MSH concentration of 100 nM (EC50 = 2.4 nM). The increase in α-MSH binding was independent of adenylate cyclase activation and protein synthesis and appeared to be caused by recruitment of spare receptors. The structural requirements of the peptide for triggering this process differed from those found in receptor-binding analyses. Receptor down-regulation was maximal after 12 h and hence more rapid than up-regulation. In B16–F1 cells, 10 nM α-MSH caused the disappearance of 85–90% of the MSH receptors, the EC50 of 0.23 nM lying exactly between that for α-MSH-induced melanogenesis (0.027 nM) and the dissociation constant of receptor binding (1.31 nM). Down-regulation in B16–F1 cells appears to be the consequence of receptor internalization following MSH binding and seems to be initiated during an early step in MSH signalling, preceding the activation of adenylate cyclase and the cAMP signal. Receptor up- and down- regulation were not accompanied by an alteration in affinity to a-MSH, as demonstrated by Scatchard analysis of the binding curves.  相似文献   

9.
Epidemiological evidence suggests that obesity can significantly increase the risk of various cancers, although the mechanisms underlying this link are completely unknown. Here, we analyzed the effect of adipocytes on melanoma and colon cancer cells proliferation, migration, and invasion. The potential effects of conditioned media (CM) obtained from differentiated mouse 3T3-L1 cells and human adipose tissue-derived mesenchymal stem cells (hAMSC) on the proliferation, migration, and invasion of B16BL6 melanoma and colon 26-L5 cancer cells were investigated. The 3T3-L1 and hAMSC CM increased cell proliferation, migration, and invasion in both the cell lines. In addition, adipocytes CM increased matrix metalloproteinase 9 (MMP-9) and MMP-2 activity in both B16BL6 and colon 26-L5 cells. These effects were found to be associated with an increased expression of various oncogenic proteins in B16BL6 and colon 26-L5 cells. Also, adipocyte CM induced Akt and mTOR activation in both tumor cell lines, and the pharmacological inhibition of Akt and mTOR blocked the CM induced Akt as well as mTOR activation and CM-stimulated melanoma and colon cancer cell proliferation, migration, and invasion. These data suggest that adipocyte promotes melanoma and colon cancer progression through modulating the expression of diverse proteins associated with cancer growth and metastasis as well as modulation of the Akt/mTOR signaling.  相似文献   

10.
In vitro melanocyte-stimulating hormone (MSH) stimulates melanogenesis in some, but not all, melanocytes and melanoma cells. In an attempt to explain this variation in response to αMSH, we examined cyclic adenosine monophosphate (cAMP) accumulation, tyrosinase activity, and melanin production in primary (1°) murine B16 melanoma cells and in two B16 cell lines (B16 F1 and B16 F10) that are known to respond to αMSH. In vivo all three B16 melanoma cell types produced pigmented tumours. In vitro αMSH increased tyrosinase activity and melanin content in the F1 and F10 cells but not in the B16 1° cells. αMSH, however, increased cAMP production in all three cell types, confirming that the inability of B16 1° cells to produce melanin in response to αMSH is not due to a lack of αMSH receptors or cAMP response to αMSH. Further, we present evidence for a separate pathway of melanogenesis that is independent of cAMP as calmodulin antagonists, which do not elevate cAMP, increased tyrosinase activity, and melanin production in both 1° and F1 cells.  相似文献   

11.
Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin β13. It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The VH CDR3 peptide from mAb A4 and VL CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.  相似文献   

12.
GRP78, a molecular chaperone with critical endoplasmic reticulum functions, is aberrantly expressed on the surface of cancer cells, including prostate and melanoma. Here it functions as a pro-proliferative and anti-apoptotic signaling receptor via NH2-terminal domain ligation. Auto-antibodies to this domain may appear in cancer patient serum where they are a poor prognostic indicator. Conversely, GRP78 COOH-terminal domain ligation is pro-apoptotic and anti-proliferative. There is no method to disrupt cell-surface GRP78 without compromising the total GRP78 pool, making it difficult to study cell-surface GRP78 function. We studied six cell lines representing three cancer types. One cell line per group expresses high levels of cell-surface GRP78, and the other expresses low levels (human hepatoma: Hep3B and HepG2; human prostate cancer: PC3 and 1-LN; murine melanoma: B16F0 and B16F1). We investigated the effect of Escherichia coli subtilase cytoxin catalytic subunit (SubA) on GRP78. We report that SubA specifically cleaves cell-surface GRP78 on HepG2, 1-LN, and B16F1 cells without affecting intracellular GRP78. B16F0 cells (GRP78low) have lower amounts of cleaved cell-surface GRP78. SubA has no effect on Hep3B and PC3 cells. The predicted 28-kDa GRP78 COOH-terminal fragment is released into the culture medium by SubA treatment, and COOH-terminal domain signal transduction is abrogated, whereas pro-proliferative signaling mediated through NH2-terminal domain ligation is unaffected. These experiments clarify cell-surface GRP78 topology and demonstrate that the COOH-terminal domain is necessary for pro-apoptotic signal transduction occurring upon COOH-terminal antibody ligation. SubA is a powerful tool to specifically probe the functions of cell-surface GRP78.  相似文献   

13.
A series of shikonin derivatives, selectively acylated by various fluorinated carboxylic acids at the side chain of shikonin, were synthesized and their anticancer activity evaluated, in which eight compounds are reported for the first time. Among all the compounds tested, compound S7 showed the most potent anticancer activity against B16‐F10 (malignant melanoma cells), MG63 (human osteosarcoma cells), and A549 (lung cancer cells) with IC50 0.39 ± 0.01, 0.72 ± 0.04 and 0.58 ± 0.02 µmol/L. Docking simulation of compound S7 was carried out to position S7 into a tubulin active site to determine the probable binding conformation. All the results suggested that compound S7 may be a potential anticancer agent. Chirality 25:757–762, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
We have observed that in vivo interaction between melanoma and resting T cells promotes suppression of antigen-driven proliferative T cell expansion. We hypothesized that this suppression would affect tumor antigen-specific T cell populations more potently than tumor-unrelated T cell populations. A B16F10 cell line was stably transfected to express low levels of the lymphocytic choriomeningitis virus (LCMV) glycoprotein GP33 (B16GP33). Mice bearing B16F10 or B16GP33 tumors were infected with LCMV, and proliferative expansion of LCMV epitope-specific T cell populations was quantified. In vitro and in vivo assays confirmed low levels of antigenic GP33 expression by B16GP33 tumors. Suppressed expansion of GP33-specific T cells was equivalent between mice bearing B16F10 and B16GP33 tumors. These observations suggest that the ability of growing melanoma tumors to impair antigen-driven proliferative expansion of activated T cells is global and not antigen-specific, and provide further insight into the influence of cancer on activated T cell homeostasis.  相似文献   

15.
The human homologue of NG2, the human melanoma proteoglycan (HMP), is expressed on most human melanomas. To investigate the role of this proteoglycan in melanoma progression, we have attempted to identify functionally important molecular ligands for NG2. Immunohistochemical analysis of cell lines that endogenously express NG2/HMP suggests that NG2/HMP associates with CD44 and α4β1 integrin, two molecules previously implicated in melanoma progression. Transfection of rat NG2 into the NG2-negative B16 mouse melanoma cell line also resulted in a highly colocalized pattern of expression between the transfected rat NG2 and the endogenously expressed mouse CD44 and α4β1 integrin molecules. In functional assays, expression of NG2 decreased the adhesion of B16 melanoma cells to CD44 monoclonal antibodies, hyaluronic acid, the C-terminal 40-kDa fibronectin fragment, and the CS1 fibronectin peptide, suggesting that NG2 may negatively modulate CD44- and α4β1-mediated binding events. Expression of NG2 increased the proliferation of melanoma cells in culture and increased tumorigenicity in vivo. Moreover, NG2 expression led to increased lung metastasis of B16F1 and B16F10 melanoma cells in experimental metastasis studies. Together, these studies demonstrate that NG2 is capable of modulating the adhesion, proliferation, and metastatic potential of melanoma cells. J. Cell. Physiol. 177:299–312, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
A new series of 1,2,4-triazole-linked urea and thiourea conjugates have been synthesized and evaluated for their in vitro cytotoxicity against selected human cancer cell lines namely, breast (MCF-7, MDA-MB-231), lung (A549) prostate (DU145) and one mouse melanoma (B16-F10) cell line and compared with reference drug. The compound 5t showed significant cytotoxicity on MCF-7 breast cancer cell line with a IC50 value of 7.22?±?0.47?µM among all the tested compounds. Notably, induction of apoptosis by compound 5t on MCF-7 cells was evaluated using different staining techniques such as acridine orange/ethidium bromide (AO/EB), annexin V-FITC/PI, and DAPI. Further, clonogenic assay indicates the inhibition of colony formation on MCF-7 cells by compound 5t. Moreover, the flow-cytometric analysis also revealed that compound 5t caused the arrest of cells at G0/G1 phase of cell cycle. In addition, the compounds when tested on normal human cells (L-132) were found to be safer with low cytotoxicity profile.  相似文献   

17.
We previously described an inverse correlation between galectin-9 (Gal-9) expression and metastasis in patients with malignant melanoma and breast cancer. This study verified the ability of Gal-9 to inhibit lung metastasis in experimental mouse models using highly metastatic B16F10 melanoma and Colon26 colon cancer cells. B16F10 cells transfected with a secreted form of Gal-9 lost their metastatic potential. Intravenous Gal-9 administration reduced the number of metastases of both B16F10 and Colon26 cells in the lung, indicating that secreted Gal-9 suppresses metastasis. Analysis of adhesive molecule expression revealed that B16F10 cells highly express CD44, integrin alpha1, alpha 4, alpha V, and beta1, and that Colon26 cells express CD44, integrin alpha2, alpha 5, alpha V, and beta1, suggesting that Gal-9 may inhibit the adhesion of tumor cells to vascular endothelium and the extracellular matrix (ECM) by binding to such adhesive molecules. Indeed, Gal-9 suppressed the binding of hyaluronic acid to CD44 on both B16F10 and Colon26 cells, and also suppressed the binding of vascular cell adhesion molecule-1 to very late antigen-4 on B16F10 cells. Furthermore, Gal-9 inhibited the binding of tumor cells to ECM components, resulting in the suppression of tumor cell migration. The present results suggest that Gal-9 suppresses both attachment and invasion of tumor cells by inhibiting the binding of adhesive molecules on tumor cells to ligands on vascular endothelium and ECM.  相似文献   

18.
Summary. The in vitro and in vivo effects of two flavonons, naringenin (NG) and hesperitin (HP) on the proliferation rate of highly metastatic murine B16-F10 melanoma cell were investigated. NG or HP treatment of melanoma cells produced a remarkable reduction of cell proliferation, paralleled with both the lowering of the intracellular levels of polyamine, spermidine and spermine and the enhancement of transglutaminase (TGase, EC 2.3.2.13) activity. Orally administered NG or HP in C57BL6/N mice inoculated with B16-F10 cells affected the pulmonary invasion of melanoma cells in an in vivo metastatic assay. The number of lung metastases detected by a computerized image analyzer was reduced, compared to untreated animals, by about 69% in NG-treated mice and by about 36% in HP-treated mice. Survival studies showed that 50% of the NG-treated animals died 38 ± 3.1 days after tumor cell injection (control group: 18 ± 1.5 days) and HP-treated mice died 27 ± 2.3 days after cell inoculation. Taken together, these findings provide further evidences for the potential anticancer properties of dietary flavonoids as chemopreventive agents against malignant melanoma.  相似文献   

19.

Background

We report here the isolation and characterization of a new compound Ailanthus excelsa chloroform extract-1 (AECHL-1) (C29H36O10; molecular weight 543.8) from the root bark of Ailanthus excelsa Roxb. The compound possesses anti-cancer activity against a variety of cancer cell lines of different origin.

Principal Findings

AECHL-1 treatment for 12 to 48 hr inhibited cell proliferation and induced death in B16F10, MDA-MB-231, MCF-7, and PC3 cells with minimum growth inhibition in normal HEK 293. The antitumor effect of AECHL-1 was comparable with that of the conventional antitumor drugs paclitaxel and cisplatin. AECHL-1-induced growth inhibition was associated with S/G2-M arrests in MDA-MB-231, MCF-7, and PC3 cells and a G1 arrest in B16F10 cells. We observed microtubule disruption in MCF-7 cells treated with AECHL-1 in vitro. Compared with control, subcutaneous injection of AECHL-1 to the sites of tumor of mouse melanoma B16F10 implanted in C57BL/6 mice and human breast cancer MCF-7 cells in athymic nude mice resulted in significant decrease in tumor volume. In B16F10 tumors, AECHL-1 at 50 µg/mouse/day dose for 15 days resulted in increased expression of tumor suppressor proteins P53/p21, reduction in the expression of the oncogene c-Myc, and downregulation of cyclin D1 and cdk4. Additionally, AECHL-1 treatment resulted in the phosphorylation of p53 at serine 15 in B16F10 tumors, which seems to exhibit p53-dependent growth inhibitory responses.

Conclusions

The present data demonstrate the activity of a triterpenoid AECHL-1 which possess a broad spectrum of activity against cancer cells. We propose here that AECHL-1 is a futuristic anti-cancer drug whose therapeutic potential needs to be widely explored for chemotherapy against cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号