首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the in vivo effects of orally administered cariprazine (RGH-188; trans-N-{4-[2-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-ethyl]-cyclohexyl}-N′,N′-dimethyl-urea), a D3/D2 dopamine receptor partial agonist with ∼10-fold preference for the D3 receptor. Oral bioavailability of cariprazine at a dose of 1 mg/kg in rats was 52% with peak plasma concentrations of 91 ng/mL. Cariprazine 10 mg/kg had good blood-brain barrier penetration, with a brain/plasma AUC ratio of 7.6:1. In rats, cariprazine showed dose-dependent in vivo displacement of [3H](+)-PHNO, a dopamine D3 receptor-preferring radiotracer, in the D3 receptor-rich region of cerebellar lobules 9 and 10. Its potent inhibition of apomorphine-induced climbing in mice (ED50 = 0.27 mg/kg) was sustained for 8 h. Cariprazine blocked amphetamine-induced hyperactivity (ED50 = 0.12 mg/kg) and conditioned avoidance response (CAR) (ED50 = 0.84 mg/kg) in rats, and inhibited the locomotor-stimulating effects of the noncompetitive NMDA antagonists MK-801 (ED50 = 0.049 mg/kg) and phencyclidine (ED50 = 0.09 mg/kg) in mice and rats, respectively. It reduced novelty-induced motor activity of mice (ED50 = 0.11 mg/kg) and rats (ED50 = 0.18 mg/kg) with a maximal effect of 70% in both species. Cariprazine produced no catalepsy in rats at up to 100-fold dose of its CAR inhibitory ED50 value. Cariprazine 0.02-0.08 mg/kg significantly improved the learning performance of scopolamine-treated rats in a water-labyrinth learning paradigm. Though risperidone, olanzapine, and aripiprazole showed antipsychotic-like activity in many of these assays, they were less active against phencyclidine and more cataleptogenic than cariprazine, and had no significant effect in the learning task. The distinct in vivo profile of cariprazine may be due to its higher affinity and in vivo binding to D3 receptors versus currently marketed typical and atypical antipsychotics.  相似文献   

2.

Background

The genus Trichuris includes parasites of major relevance in veterinary and human medicine. Despite serious economic losses and enormous impact on public health, treatment options against whipworms are very limited. Additionally, there is an obvious lack of appropriately characterized experimental infection models. Therefore, a detailed parasitological characterization of a Trichuris muris isolate was performed in C57BL/10 mice. Subsequently, the in vivo efficacies of the aminophenylamidines amidantel, deacylated amidantel (dAMD) and tribendimidine as well as the cyclooctadepsipeptides emodepside and in particular PF1022A were analyzed. This was performed using various administration routes and treatment schemes targeting histotropic and further developed larval as well as immature and mature adult stages.

Methodology/Principal Findings

Duration of prepatent period, time-dependent localization of larvae during period of prepatency as well as the duration of patency of the infection were determined before drugs were tested in the characterized trichurosis model. Amidantel showed no effect against mature adult T. muris. Tribendimidine showed significantly higher potency than dAMD after oral treatments (ED50 values of 6.5 vs. 15.1 mg/kg). However, the opposite was found for intraperitoneal treatments (ED50 values of 15.3 vs. 8.3 mg/kg). When emodepside and PF1022A were compared, the latter was significantly less effective against mature adults following intraperitoneal (ED50 values of 6.1 vs. 55.7 mg/kg) or subcutaneous (ED50 values of 15.2 vs. 225.7 mg/kg) administration. Only minimal differences were observed following oral administration (ED50 values of 2.7 vs. 5.2 mg/kg). Triple and most single oral doses with moderate to high dosages of PF1022A showed complete efficacy against histotropic second stage larvae (3×100 mg/kg or 1×250 mg/kg), further developed larvae (3×10 mg/kg or 1×100 mg/kg) and immature adults (3×10 mg/kg or 1×100 mg/kg). Histotropic first stage larvae were only eliminated after three doses of PF1022A (3×100 mg/kg) but not after a single dose.

Conclusions/Significance

These results indicate that the cyclooctadepsipeptides are a drug class with promising candidates for further evaluation for the treatment of trichurosis of humans and livestock animals in single dose regimens.  相似文献   

3.
As part of the presented research, thirteen new aminoalkanol derivatives were designed and obtained by chemical synthesis. In vivo studies (mice, i.p.) showed anticonvulsant activity (MES) of nine compounds, and in the case of one compound (R,S-trans-2-((2-(2,3,5-trimethylphenoxy)ethyl)amino)cyclohexan-1-ol, 4) both anticonvulsant (ED50 MES = 15.67 mg/kg, TD50 rotarod = 78.30 mg.kg, PI = 5.00) and analgesic activity (OXA-induced neuropathic pain, active at 15 mg/kg). For selected active compounds additional in vitro studies have been performed, including receptor studies (5-HT1A), evaluation of antioxidant activity (DPPH assay), metabolism studies as well as safety panel (mutagenicity, safety in relation to the gastrointestinal flora, cytotoxicity towards astrocytes as well as impact on their proliferation and cell cycle).  相似文献   

4.
Two new series of 4,6-diaryl-3-cyanopyridine 4a-r and 1,3,5-triaryl-2-pyrazolines 6a-f and were prepared. The new compounds were evaluated for their in vitro COX-2 selectivity and in vivo anti-inflammatory activity. Compounds 4o,r and 6d,f had moderate to high selectivity index (S.I.) compared to celecoxib (selectivity indexes of 4.5, 3.14, 4.79 and 3.21, respectively) and also, showed in vivo anti-inflammatory activity approximately equal to or higher than celecoxib (edema inhibition % = 60.5, 64.5, 59.3 and 59.3, after 3 h, respectively) and the effective anti-inflammatory doses were (ED50 = 10.1, 7.8, 8.46 and 10.7 mg/kg respectively, celecoxib ED50 = 10.8 mg/kg) and ulcerogenic liability were determined for these compounds which showed promising activity by being more potent than celecoxib with nearly negligible ulcerogenic liability compared to celecoxib (reduction in ulcerogenic liability versus celecoxib = 85, 82, 74 and 67%, respectively).  相似文献   

5.
A series of 17 new aminoalkanol derivatives of 6-methoxy- or 7-chloro-2-methylxanthone as well as 6-methoxy-4-methylxanthone was synthesized and evaluated for anticonvulsant activity. All compounds were verified in mice after intraperitoneal (ip) administration in maximal electroshock (MES) and subcutaneous pentetrazole (scMet) induced seizures as well as neurotoxicity assessment. Eleven of the tested substances showed protection against electrically evoked seizures in the majority of the tested mice at the dose of 100 mg/kg. Additionally, one was effective at the dose of 30 mg/kg. Five substances were active at the dose of 300 mg/kg or at the dose of 100 mg/kg in the minority of the tested mice. The most promising compound revealed ED50 value of 47.57 mg/kg in MES (mice, ip, 1 h after administration) and at the same time its TD50 was evaluated as above 400 mg/kg. Those values gave PI (calculated as TD50/ED50) of more than 8.41. Three other synthesized xanthone derivatives also proved to act as anticonvulsants and showed ED50 values in MES test (mice, ip) ranged 80–110 mg/kg. Results were quite encouraging and suggested that in the group of xanthone derivatives new potential anticonvulsants might be found.  相似文献   

6.
Even after considerable advances in the field of epilepsy treatment, convulsions are inefficiently controlled by standard drug therapy. Herein, a series of pyrimidine-carbothioamide derivatives 4(a-t) was designed as anticonvulsant agents by doing some important structural modifications in well-known anticonvulsant drugs. Two classical animal models were used for the in vivo anticonvulsant screening, maximum electroshock seizure (MES) and subcutaneous pentylenetetrazole (scPTZ) models; followed by motor impairment study by rotarod method. The most active compound 4g effectively suppressed seizure effect in both the animal models with median doses of 15.6 mg/kg (MES ED50), 278.4 mg/kg (scPTZ ED50) and 534.4 mg/kg (TD50) with no sign of neurotoxicity. Furthermore, in vitro GABA-AT enzyme activity assay of 4g showed inhibitory potency (IC50) of 12.23 μM. The docking study also favored the animal studies.  相似文献   

7.
Combination therapy is used to retard the selection of malaria parasite strains resistant to individual components of a combination of drugs. This approach has proved to be a success in the combination of sulphadoxine and pyrimethamine, which targets two different steps in the folate pathway of malaria parasites. However, after the success of this therapeutic combination, the efficacy of other combinations of drugs that target different enzymes in a particular metabolic pathway has, apparently, not been reported. In the current study, the antimalarial effect of a combination of risedronate (RIS), which is known for its anti-osteoporosis activity, and azithromycin (AZT) was investigated. Peter's suppression test was carried out on mice infected with 1 × 107 P. yoelii infected erythrocytes. Drug efficacy was analyzed by comparing the percent reduction in parasitaemia on day 4 post-infection. RIS was observed to be a blood schizonticidal agent against P. yoelii infection which showed ED50 7.0 (4.04–12.13) mg/kg/day x 4. Normalized isobologram showed additive action between RIS 1 mg/kg/day x 4 and AZT 10 mg/kg/day x 4, and antagonistic action for the rest of the combinations (RIS 1 + AZT 20, RIS 1 + AZT 40, RIS 5 + AZT 10, RIS 5 + AZT 20, RIS 5 + AZT 40, RIS 10 + AZT 10, RIS 10 + AZT 20 and RIS 10 + AZT 40 mg/kg/day x 4). Furthermore, a combination of RIS with AZT showed inferior efficacy as compared to AZT treatment alone. This antagonistic interaction may be due to the high accumulation of AZT in WBCs, which will reduce its serum bio-availability, whereas RIS has anti-parasitic activity by increasing WBCs.  相似文献   

8.
Plasmodium falciparum, the major causative parasite for the disease, has acquired resistance to most of the antimalarial drugs used today, presenting an immediate need for new antimalarial drugs. Here, we report the in vitro and in vivo antimalarial activities of 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol (N-251) against P. falciparum and Plasmodium berghei parasites. The N-251 showed high antimalarial potencies both in the in vitro and the in vivo tests (EC50 2.3 × 10−8 M; ED50 15 mg/kg (per oral)). The potencies were similar to that of artemisinin in vitro and greater than artemisinin's activity in vivo (p.o.). In addition, N-251 has little toxicity: a single oral administration at 2000 mg/kg to a rat gave no health problems to it. Administration of N-251 to mice bearing 1% of parasitemia (per oral 68 mg/kg, 3 times a day for 3 consecutive days) resulted in a dramatic decrease in the parasitemia: all the 5 mice given N-251 were cured without any recurrence, with no diarrhea or weight loss occurring in the 60 days of experiment. N-251 deserves more extensive clinical evaluation, desirably including future trials in the human.  相似文献   

9.
A new group of hybrid nitric oxide (NO) releasing anti-inflammatory (AI) coxib prodrugs (NO-coxibs) wherein the para-tolyl moiety present in celecoxib was replaced by a N-(4-nitrooxybutyl)piperidyl 15ab, or N-(4-nitrooxybutyl)-1,2,3,6-tetrahydropyridyl 17ab, NO-donor moiety was synthesized. All compounds released a low amount of NO upon incubation with phosphate buffered saline (PBS) at pH 7.4 (2.4–5.8% range). In comparison, the percentage NO released was higher (3.1–8.4% range) when these nitrate prodrugs were incubated in the presence of l-cysteine. In vitro COX-1/COX-2 isozyme inhibition studies showed this group of compounds are moderately more potent, and hence selective, inhibitors of the COX-2 relative to the COX-1 enzyme. AI structure–activity relationship data acquired showed that compounds having a MeSO2 COX-2 pharmacophore exhibited superior AI activity compared to analogs having a H2NSO2 substituent. Compounds having a MeSO2 COX-2 pharmacophore in conjunction with a N-(4-nitrooxybutyl)piperidyl (ED50 = 132.4 mg/kg po), or a N-(4-nitrooxybutyl)-1,2,3,6-tetrahydropyridyl (ED50 = 118.4 mg/kg po), moiety exhibited an AI potency profile that is similar to aspirin (ED50 = 128.7 mg/kg po) but lower than ibuprofen (ED50 = 67.4 mg/kg po).  相似文献   

10.

Background

It is widely recognized that only a handful of drugs are available against soil-transmitted helminthiasis, all of which are characterized by a low efficacy against Trichuris trichiura, when administered as single doses. The re-evaluation of old, forgotten drugs is a promising strategy to identify alternative anthelminthic drug candidates or drug combinations.

Methodology

We studied the activity of the veterinary drug oxantel pamoate against Trichuris muris, Ancylostoma ceylanicum and Necator americanus in vitro and in vivo. In addition, the dose-effect of oxantel pamoate combined with albendazole, mebendazole, levamisole, pyrantel pamoate and ivermectin was studied against T. muris in vitro and additive or synergistic combinations were followed up in vivo.

Principal Findings

We calculated an ED50 of 4.7 mg/kg for oxantel pamoate against T. muris in mice. Combinations of oxantel pamoate with pyrantel pamoate behaved antagonistically in vitro (combination index (CI) = 2.53). Oxantel pamoate combined with levamisole, albendazole or ivermectin using ratios based on their ED50s revealed antagonistic effects in vivo (CI = 1.27, 1.90 and 1.27, respectively). A highly synergistic effect (CI = 0.15) was observed when oxantel pamoate-mebendazole was administered to T. muris-infected mice. Oxantel pamoate (10 mg/kg) lacked activity against Ancylostoma ceylanicum and Necator americanus in vivo.

Conclusion/Significance

Our study confirms the excellent trichuricidal properties of oxantel pamoate. Since the drug lacks activity against hookworms it is necessary to combine oxantel pamoate with a partner drug with anti-hookworm properties. Synergistic effects were observed for oxantel pamoate-mebendazole, hence this combination should be studied in more detail. Since, of the standard drugs, albendazole has the highest efficacy against hookworms, additional investigations on the combination effect of oxantel pamoate-albendazole should be launched.  相似文献   

11.
A series of 1- and 2-naphthyloxy derivatives were synthesized and evaluated for histamine H3 receptor affinity. Most compounds showed high affinities with Ki values below 100?nM. The most potent ligand, 1-(5-(naphthalen-1-yloxy)pentyl)azepane (11) displayed high affinity for the histamine H3 receptor with a Ki value of 21.9?nM. The antagonist behaviour of 11 was confirmed both in vitro in the cAMP assay (IC50?=?312?nM) and in vivo in the rat dipsogenia model (ED50?=?3.68?nM). Moreover, compound 11 showed positive effects on scopolamine induced-memory deficits in mice (at doses of 10 and 15?mg/kg) and an analgesic effect in the formalin test in mice with ED50?=?30.6?mg/kg (early phase) and ED50?=?20.8?mg/kg (late phase). Another interesting compound, 1-(5-(Naphthalen-1-yloxy)pentyl)piperidine (13; H3R Ki?=?53.9?nM), was accepted for Anticonvulsant Screening Program at the National Institute of Neurological Disorders and Stroke/National Institute of Health (Rockville, USA). The screening was performed in the maximal electroshock seizure (MES), the subcutaneous pentylenetetrazole (scPTZ) and the 6-Hz psychomotor animal models of epilepsy. Neurologic deficit was evaluated by the rotarod test. Compound 13 inhibited convulsions induced by the MES with ED50 of 19.2?mg/kg (mice, i.p.), 17.8 (rats, i.p.), and 78.1 (rats, p.o.). Moreover, 13 displayed protection against the 6-Hz psychomotor seizures (32?mA) in mice (i.p.) with ED50 of 33.1?mg/kg and (44?mA) ED50 of 57.2?mg/kg.Furthermore, compounds 11 and 13 showed in vitro weak influence on viability of tested cell lines (normal HEK293, neuroblastoma IMR-32, hepatoma HEPG2), weak inhibition of CYP3A4 activity, and no mutagenicity. Thus, these compounds may be used as leads in a further search for histamine H3 receptor ligands with promising in vitro and in vivo activity.  相似文献   

12.
Suprofen is a new potent, orally effective non-narcotic analgesic agent having a potent inhibitory action on prostaglandin (PG) biosynthesis. Recent experiments have shown that suprofen inhibits uterine hyperactivity induced by the physiological substances, arachidonic acid, bradykinin (BK) and PGF. The present study explores the possibility that the analgesic activity of suprofen may involve multiple mechanisms of interaction with PGs, inhibiting synthesis at low doses and with higher doses possibly directly interacting with PGs and other physiological mediators of nociception at a common site. Experiments in mice have shown that suprofen antagonizes abdominal stretching induced by the physiological precursor of PG release, arachidonic acid (ED50 = 0.07 mg/kg, p.p.), and by the nociceptive agents acetylcholine (ACh) (ED50 = 1.7 mg/kg, p.o), BK (ED50 = 65 mg/kg, p.o.) acetic acid (HAC) (H+ ion; ED50 = mg/kg, p.o), and PGE2, itself (ED50 = 20.2 mg/kg, i.p.). In rabbits, i.a. administered suprofen (ED50 = 0.98 mg/kg) blocked the reflex discharge of spinal sensory neurons evoked by BK (2 to 8 μg, i.a). The analgesic activity of suprofen may involve multiple mechanism of interaction with PGs and other mediators, including BK; suprofen blocks the nociceptive actions of PGs by inhibiting their formation, via the cyclooxygenase pathway, and possibly at PG sites of action, probably at peripheral nerve endings.  相似文献   

13.
A series of dimeric 1,3-cyclohexanedione oxime ethers were synthesized and found to have significant antiplasmodial activity with IC50’s in the range 3–12 μM. The most active dimer was tested in the Plasmodium berghei mouse model of malaria and at a dose of 48 mg/kg gave a 45% reduction in parasitaemia. Several commercial herbicides, all known to be inhibitors of maize acetyl-CoA carboxylase, were also tested for antimalarial activity, but were essentially inactive with the exception of butroxydim which gave an IC50 of 10 μM.  相似文献   

14.
A novel class of fused pyrazole-derived inhibitors of p38α mitogen-activated protein kinase (MAPK) is disclosed. These inhibitors were evaluated for their ability to inhibit the p38α enzyme, the secretion of TNFα in a LPS-challenged THP1 cell line and TNFα-induced production of IL-8 in 50% human whole blood. This series was optimized through a SAR investigation to provide inhibitors with IC50 values in the low single-digit nanomolar range in whole blood. Further investigation of their pharmacokinetic profiles led to the identification of two potent and orally bioavailable p38 inhibitors 10m and 10q. Inhibitor 10m was found to be efficacious in vivo in the inhibition of TNFα production in LPS-stimulated Lewis rats with an ED50 of 0.1 mg/kg while 10q was found to have an ED50 of 0.05–0.07 mg/kg.  相似文献   

15.
The discovery of new effective and safe antimalarial drugs is mandatory. In this report, we formulate and evaluate transdermal (td) 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) using the Plasmodium berghei rodent malaria parasite in vivo model. The selected solvent for the ointment type of td N-89 was polyethylene glycol (PEG) [PEG400:PEG 4000 = 8:1 (v/w)]. We tested different application areas of 4, 6, and 8 cm2 on the shaved backs of mice. Pharmacokinetic (PK) analysis of N-89 parameters after a single 4 cm2 transdermal application revealed that the Tmax was 2 h, the T1/2 was 1.9 h, and the AUC was 1951.1 ng.h/mL. More than 10 ng/mL of plasma concentration was maintained for 12 h. The ED50 values for the 4, 6, and 8 cm2 application areas in a 4-day suppressive test were 18.9, 25.1, and 26.8 mg/kg, respectively. We additionally tested the cure effect of td N-89 in mice at a dose of 60 mg/kg, twice daily for 4 days at 0.2% parasitemia. Parasites disappeared following day 7 post-treatment in all td N-89 treated groups. Mice were cured without any parasite recurrence or dermal irritation. In conclusion, this study determined for the first time the PK parameters and effect of a new ointment type of td N-89. This suggests that transdermal treatment with N-89 is an effective and safe alternative route for the treatment of malaria, especially in children.  相似文献   

16.
《Phytomedicine》2014,21(12):1543-1548
The association of non-steroidal anti-inflammatory drugs with certain plant extracts can increase antinociceptive activity, permitting the use of lower doses and thus limiting side effects. Therefore, the aim objective of the current study was to examine the effects of curcumin on the nociception and pharmacokinetics of diclofenac in rats. Antinociception was assessed using the formalin test. Diluted formalin was injected subcutaneously into the dorsal surface of the right hind paw. Nociceptive behavior was quantified as the number of flinches of the injected paw during 60 min after injection, and a reduction in formalin-induced flinching was interpreted as an antinociceptive response. Rats were treated with oral diclofenac (1–31 mg/kg), curcumin (3.1–100 mg/kg) or the diclofenac–curcumin combination (2.4–38.4 mg/kg). To determine the possibility of a pharmacokinetic interaction, the oral bioavailability of diclofenac (10 mg/kg) was studied in presence and the absence of curcumin (31 mg/kg). Diclofenac, curcumin, or diclofenac–curcumin combination produced an antinociceptive effect on the formalin test. ED30 values were estimated for the individual drugs, and an isobologram was constructed. The derived theoretical ED30 for the antinociceptive effect (19.2 mg/kg) was significantly different from the observed experimental ED30 value (9.8 mg/kg); hence, the interaction between diclofenac and curcumin that mediates the antinociceptive effect was synergistic. Notwithstanding, the interaction does not appear to involve pharmacokinetic mechanisms, as oral curcumin failed to produce any significant alteration in oral diclofenac bioavailability. Data suggest that the diclofenac–curcumin combination can interact at the systemic level and may have therapeutic advantages for the clinical treatment of inflammatory pain.  相似文献   

17.
Increased exposure to blue or visible light, fluctuations in oxygen tension, and the excessive accumulation of toxic retinoid byproducts places a tremendous amount of stress on the retina. Reduction of visual chromophore biosynthesis may be an effective method to reduce the impact of these stressors and preserve retinal integrity. A class of non-retinoid, small molecule compounds that target key proteins of the visual cycle have been developed. The first candidate in this class of compounds, referred to as visual cycle modulators, is emixustat hydrochloride (emixustat). Here, we describe the effects of emixustat, an inhibitor of the visual cycle isomerase (RPE65), on visual cycle function and preservation of retinal integrity in animal models. Emixustat potently inhibited isomerase activity in vitro (IC50 = 4.4 nM) and was found to reduce the production of visual chromophore (11-cis retinal) in wild-type mice following a single oral dose (ED50 = 0.18 mg/kg). Measure of drug effect on the retina by electroretinography revealed a dose-dependent slowing of rod photoreceptor recovery (ED50 = 0.21 mg/kg) that was consistent with the pattern of visual chromophore reduction. In albino mice, emixustat was shown to be effective in preventing photoreceptor cell death caused by intense light exposure. Pre-treatment with a single dose of emixustat (0.3 mg/kg) provided a ~50% protective effect against light-induced photoreceptor cell loss, while higher doses (1–3 mg/kg) were nearly 100% effective. In Abca4-/- mice, an animal model of excessive lipofuscin and retinoid toxin (A2E) accumulation, chronic (3 month) emixustat treatment markedly reduced lipofuscin autofluorescence and reduced A2E levels by ~60% (ED50 = 0.47 mg/kg). Finally, in the retinopathy of prematurity rodent model, treatment with emixustat during the period of ischemia and reperfusion injury produced a ~30% reduction in retinal neovascularization (ED50 = 0.46mg/kg). These data demonstrate the ability of emixustat to modulate visual cycle activity and reduce pathology associated with various biochemical and environmental stressors in animal models. Other attributes of emixustat, such as oral bioavailability and target specificity make it an attractive candidate for clinical development in the treatment of retinal disease.  相似文献   

18.
We report here the synthesis and biological evaluation of a series of 37 compounds as precursors of potent antimalarial bis-thiazolium salts (T3 and T4). These prodrugs were either thioester, thiocarbonate or thiocarbamate type and were synthesized in one step by reaction of an alkaline solution of the parent drug with the appropriate activated acyl group. Structural variations affecting physicochemical properties were made in order to improve oral activity. Twenty-five of them exhibited potent antimalarial activity with IC50 lower than 7 nM against Plasmodium falciparum in vitro. Notably, 3 and 22 showed IC50 = 2.2 and 1.8 nM, respectively. After oral administration 22 was the most potent compound clearing the parasitemia in Plasmodium vinckei infected mice with a dose of 1.3 mg/kg.  相似文献   

19.
Two series of new thiazolidin-4-one derivatives 4ac and 8ae were designed and prepared. All the synthesized compounds were evaluated for their in vitro COX-2 selectivity and anti-inflammatory activity in vivo. Compounds 8c and 8d showed the best overall in vitro COX-2 selectivity (selectivity indexes of 4.56 and 5.68 respectively) and in vivo activities (edema inhibition % = 61.8 and 67 after 3 h, respectively) in comparison with the reference drug celecoxib (S.I. = 7.29, edema inhibition % = 60 after 3 h). In addition, 8c and 8d were evaluated for their mean effective anti-inflammatory doses (ED50 = 27.7 and 18.1 μmol/kg respectively, celecoxib ED50 = 28.2 μmol/kg) and ulcerogenic liability (reduction in ulcerogenic potential versus celecoxib = 85%, 92% respectively. Molecular docking studies were performed and the results were in agreement with that obtained from the in vitro COX inhibition assays.  相似文献   

20.
Peptides derived from larger molecules that are important modulators in cancer regression are becoming leads for development of therapeutic drugs. It has been reported that Abrus abrin, isolated from the seeds of Abrus precatorius, showed in vitro and in vivo antitumor properties by the induction of apoptosis. The present study was designed to evaluate the in vivo therapeutic effectiveness of abrin-derived peptide (ABP) fraction in Dalton's lymphoma (DL) mice model. The lethal dose (LD50) of ABP was found to be 2.25 mg/kg body weight and further the acute toxicity was determined with sublethal doses in normal mice. The acute toxicity like body weight, peripheral blood cell count, lympho-hematological and biochemical parameters remained unaffected till 200 μg/kg body weight of ABP. The sublethal doses of ABP showed very significant growth inhibitory properties in vivo DL mice model. There were 24%, 70.8% and 89.7% reductions in DL cell survival in 25, 50 and 100 μg/kg body weight of ABP, respectively. Analysis of the growth inhibitory mechanism in DL cells revealed nuclear fragmentation, and condensation with the appearance of the sub-G0/G1 peak is indicative of apoptosis. Further, the Western blotting showed that apoptosis was mediated by the reduction in the ratio of Bcl-2 and Bax protein expression, and activation of caspase-3 through the release of cytochrome c in DL cells. Kaplan–Meier survival analysis showed an effective antitumor response (104.6 increase in life span (ILS) %) with a dose of 100 μg/kg body weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号