首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design. Here, we identified a receptor-binding domain (RBD)-binding antibody, XG014, which potently neutralizes β-coronavirus lineage B (β-CoV-B), including SARS-CoV-2, its circulating variants, SARS-CoV and bat SARSr-CoV WIV1. Interestingly, antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibody-dependent SARS-CoV-2 spike (S) protein-mediated cell-cell fusion, suggesting a unique mode of recognition by XG014. Structural analyses reveal that XG014 recognizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional “down” conformation, while its family member XG005 directly competes with ACE2 binding and position the RBD “up”. Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo. Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines against β-CoV-B and newly emerging SARS-CoV-2 variants of concern.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13238-021-00871-6.  相似文献   

2.
Emerging SARS-CoV-2 variants are creating major challenges in the ongoing COVID-19 pandemic. Being able to predict mutations that could arise in SARS-CoV-2 leading to increased transmissibility or immune evasion would be extremely valuable in development of broad-acting therapeutics and vaccines, and prioritising viral monitoring and containment. Here we use in vitro evolution to seek mutations in SARS-CoV-2 receptor binding domain (RBD) that would substantially increase binding to ACE2. We find a double mutation, S477N and Q498H, that increases affinity of RBD for ACE2 by 6.5-fold. This affinity gain is largely driven by the Q498H mutation. We determine the structure of the mutant-RBD:ACE2 complex by cryo-electron microscopy to reveal the mechanism for increased affinity. Addition of Q498H to SARS-CoV-2 RBD variants is found to boost binding affinity of the variants for human ACE2 and confer a new ability to bind rat ACE2 with high affinity. Surprisingly however, in the presence of the common N501Y mutation, Q498H inhibits binding, due to a clash between H498 and Y501 side chains. To achieve an intermolecular bonding network, affinity gain and cross-species binding similar to Q498H alone, RBD variants with the N501Y mutation must acquire instead the related Q498R mutation. Thus, SARS-CoV-2 RBD can access large affinity gains and cross-species binding via two alternative mutational routes involving Q498, with route selection determined by whether a variant already has the N501Y mutation. These mutations are now appearing in emerging SARS-CoV-2 variants where they have the potential to influence human-to-human and cross-species transmission.  相似文献   

3.
The SARS-CoV-2 pandemic highlights the need for a detailed molecular understanding of protective antibody responses. This is underscored by the emergence and spread of SARS-CoV-2 variants, including Alpha (B.1.1.7) and Delta (B.1.617.2), some of which appear to be less effectively targeted by current monoclonal antibodies and vaccines. Here we report a high resolution and comprehensive map of antibody recognition of the SARS-CoV-2 spike receptor binding domain (RBD), which is the target of most neutralizing antibodies, using computational structural analysis. With a dataset of nonredundant experimentally determined antibody-RBD structures, we classified antibodies by RBD residue binding determinants using unsupervised clustering. We also identified the energetic and conservation features of epitope residues and assessed the capacity of viral variant mutations to disrupt antibody recognition, revealing sets of antibodies predicted to effectively target recently described viral variants. This detailed structure-based reference of antibody RBD recognition signatures can inform therapeutic and vaccine design strategies.  相似文献   

4.
The attachment of SARA-CoV-2 happens between ACE2 and the receptor binding domain (RBD) on the spike protein. Mutations in this domain can affect the binding affinity of the spike protein for ACE2. S477N, one of the most common mutations reported in the recent variants, is located in the RBD. Today's computational approaches in biology, especially during the SARS-CoV-2 pandemic, assist researchers in predicting a protein's behavior in contact with other proteins in more detail. In this study, we investigated the interactions of the S477N-hACE2 in silico to find the impact of this mutation on its binding affinity for ACE2 and immunity responses using dynamics simulation, protein–protein docking, and immunoinformatics methods. Our computational analysis revealed an increased binding affinity of N477 for ACE2. Four new hydrogen and hydrophobic bonds in the mutant RBD-ACE2 were formed (with S19 and Q24 of ACE2), which do not exist in the wild type. Also, the protein spike structure in this mutation was associated with an increase in stabilization and a decrease in its fluctuations at the atomic level. N477 mutation can be considered as the cause of increased escape from the immune system through MHC-II.  相似文献   

5.
SARS-CoV-2, previously named 2019 novel coronavirus (2019-nCoV), has been associated with the global pandemic of acute respiratory distress syndrome. First reported in December 2019 in the Wuhan province of China, this new RNA virus has several folds higher transmission among humans than its other family member (SARS-CoV and MERS-CoV). The SARS-CoV-2 spike receptor-binding domain (RBD) is the region mediating the binding of the virus to host cells via Angiotensin-converting enzyme 2 (ACE2), a critical step of viral. Here in this study, we have utilized in silico approach for the virtual screening of antiviral library extracted from the Asinex database against the Receptor binding domain (RBD) of the S1 subunit of the SARS-CoV-2 spike glycoprotein. Further, the molecules were ranked based on their binding affinity against RBD, and the top 15 molecules were selected. The affinity of these selected molecules to interrupt the ACE2-Spike interaction was also studied. It was found that the chosen molecules were demonstrating excellent binding affinity against spike protein, and these molecules were also very effectively interrupting the ACE2-RBD interaction.Furthermore, molecular dynamics (MD) simulation studies were utilized to investigate the top 3 selected molecules' stability in the ACE2-RBD complexes. To the best of our knowledge, this is the first study where molecules' inhibitory potential against the Receptor binding domain (RBD) of the S1 subunit of the SARS-CoV-2 spike glycoprotein and their inhibitory potential against the ACE2-Spike has been studied. We believe that these compounds can be further tested as a potential therapeutic option against COVID-19.  相似文献   

6.
The coronavirus disease COVID-19 constitutes the most severe pandemic of the last decades having caused more than 1 million deaths worldwide. The SARS-CoV-2 virus recognizes the angiotensin converting enzyme 2 (ACE2) on the surface of human cells through its spike protein. It has been reported that the coronavirus can mildly infect cats, and ferrets, and perhaps dogs while not pigs, mice, chicken and ducks. Differences in viral infectivity among different species or individuals could be due to amino acid differences at key positions of the host proteins that interact with the virus, the immune response, expression levels of host proteins and translation efficiency of the viral proteins among other factors. Here, first we have addressed the importance that sequence variants of different animal species, human individuals and virus isolates have on the interaction between the RBD domain of the SARS-CoV-2 spike S protein and human angiotensin converting enzyme 2 (ACE2). Second, we have looked at viral translation efficiency by using the tRNA adaptation index. We find that integration of both interaction energy with ACE2 and translational efficiency explains animal infectivity. Humans are the top species in which SARS-CoV-2 is both efficiently translated as well as optimally interacting with ACE2. We have found some viral mutations that increase affinity for hACE and some hACE2 variants affecting ACE2 stability and virus binding. These variants suggest that different sensitivities to coronavirus infection in humans could arise in some cases from allelic variability affecting ACE2 stability and virus binding.  相似文献   

7.
SARS-CoV-2 variants with adaptive mutations have continued to emerge, causing fresh waves of infection even amongst vaccinated population. The development of broad-spectrum antivirals is thus urgently needed. We previously developed two hetero-bivalent nanobodies (Nbs), aRBD-2-5 and aRBD-2-7, with potent neutralization activity against the wild-type (WT) Wuhan isolated SARS-CoV-2, by fusing aRBD-2 with aRBD-5 and aRBD-7, respectively. Here, we resolved the crystal structures of these Nbs in complex with the receptor-binding domain (RBD) of the spike protein, and found that aRBD-2 contacts with highly-conserved RBD residues and retains binding to the RBD of the Alpha, Beta, Gamma, Delta, Delta plus, Kappa, Lambda, Omicron BA.1, and BA.2 variants. In contrast, aRBD-5 and aRBD-7 bind to less-conserved RBD epitopes non-overlapping with the epitope of aRBD-2, and do not show apparent binding to the RBD of some variants. However, when fused with aRBD-2, they effectively enhance the overall binding affinity. Consistently, aRBD-2-5-Fc and aRBD-2-7-Fc potently neutralized all of the tested authentic or pseudotyped viruses, including WT, Alpha, Beta, Gamma, Delta, and Omicron BA.1, BA.1.1 and BA.2. Furthermore, aRBD-2-5-Fc provided prophylactic protection against the WT and mouse-adapted SARS-CoV-2 in mice, and conferred protection against the Omicron BA.1 variant in hamsters prophylactically and therapeutically, indicating that aRBD-2-5-Fc could potentially benefit the prevention and treatment of COVID-19 caused by the emerging variants of concern. Our strategy provides new solutions in the development of broad-spectrum therapeutic antibodies for COVID-19.Subject terms: X-ray crystallography, Innate immunity  相似文献   

8.
Epitopes that are conserved among SARS-like coronaviruses are attractive targets for design of cross-reactive vaccines and therapeutics. CR3022 is a SARS-CoV neutralizing antibody to a highly conserved epitope on the receptor binding domain (RBD) on the spike protein that is able to cross-react with SARS-CoV-2, but with lower affinity. Using x-ray crystallography, mutagenesis, and binding experiments, we illustrate that of four amino acid differences in the CR3022 epitope between SARS-CoV-2 and SARS-CoV, a single mutation P384A fully determines the affinity difference. CR3022 does not neutralize SARS-CoV-2, but the increased affinity to SARS-CoV-2 P384A mutant now enables neutralization with a similar potency to SARS-CoV. We further investigated CR3022 interaction with the SARS-CoV spike protein by negative-stain EM and cryo-EM. Three CR3022 Fabs bind per trimer with the RBD observed in different up-conformations due to considerable flexibility of the RBD. In one of these conformations, quaternary interactions are made by CR3022 to the N-terminal domain (NTD) of an adjacent subunit. Overall, this study provides insights into antigenic variation and potential cross-neutralizing epitopes on SARS-like viruses.  相似文献   

9.
Receptor binding studies on sarbecoviruses would benefit from an available toolkit of recombinant spike proteins, or domains thereof, that recapitulate receptor binding properties of native viruses. We hypothesized that trimeric Receptor Binding Domain (RBD) proteins would be suitable candidates to study receptor binding properties of SARS-CoV-1 and -2. Here we created monomeric and trimeric fluorescent RBD proteins, derived from adherent HEK293T, as well as in GnTI-/- mutant cells, to analyze the effect of complex vs high mannose glycosylation on receptor binding. The results demonstrate that trimeric, complex glycosylated proteins are superior in receptor binding compared to monomeric and immaturely glycosylated variants. Although differences in binding to commonly used cell lines were minimal between the different RBD preparations, substantial differences were observed when respiratory tissues of experimental animals were stained. The RBD trimers demonstrated distinct ACE2 expression profiles in bronchiolar ducts and confirmed the higher binding affinity of SARS-CoV-2 over SARS-CoV-1. Our results show that complex glycosylated trimeric RBD proteins are attractive to analyze sarbecovirus receptor binding and explore ACE2 expression profiles in tissues.  相似文献   

10.
An engineered human IgG1 antibody with longer serum half-life   总被引:1,自引:0,他引:1  
The serum half-life of IgG Abs is regulated by the neonatal Fc receptor (FcRn). By binding to FcRn in endosomes, IgG Abs are salvaged from lysosomal degradation and recycled to the circulation. Several studies have demonstrated a correlation between the binding affinity of IgG Abs to FcRn and their serum half-lives in mice, including engineered Ab fragments with longer serum half-lives. Our recent study extended this correlation to human IgG2 Ab variants in primates. In the current study, several human IgG1 mutants with increased binding affinity to human FcRn at pH 6.0 were generated that retained pH-dependent release. A pharmacokinetics study in rhesus monkeys of one of the IgG1 variants indicated that its serum half-life was approximately 2.5-fold longer than the wild-type Ab. Ag binding was unaffected by the Fc mutations, while several effector functions appeared to be minimally altered. These properties suggest that engineered Abs with longer serum half-lives may prove to be effective therapeutics in humans.  相似文献   

11.
The strength of binding between human angiotensin converting enzyme 2 (ACE2) and the receptor binding domain (RBD) of viral spike protein plays a role in the transmissibility of the SARS-CoV-2 virus. In this study we focus on a subset of RBD mutations that have been frequently observed in infected individuals and probe binding affinity changes to ACE2 using surface plasmon resonance (SPR) measurements and free energy perturbation (FEP) calculations. Our SPR results are largely in accord with previous studies but discrepancies do arise due to differences in experimental methods and to protocol differences even when a single method is used. Overall, we find that FEP performance is superior to that of other computational approaches examined as determined by agreement with experiment and, in particular, by its ability to identify stabilizing mutations. Moreover, the calculations successfully predict the observed cooperative stabilization of binding by the Q498R N501Y double mutant present in Omicron variants and offer a physical explanation for the underlying mechanism. Overall, our results suggest that despite the significant computational cost, FEP calculations may offer an effective strategy to understand the effects of interfacial mutations on protein–protein binding affinities and, hence, in a variety of practical applications such as the optimization of neutralizing antibodies.  相似文献   

12.
SARS-CoV-2 has become a big challenge for the scientific community worldwide. SARS-CoV-2 enters into the host cell by the spike protein binding with an ACE2 receptor present on the host cell. Developing safe and effective inhibitor appears an urgent need to interrupt the binding of SARS-CoV-2 spike protein with ACE2 receptor in order to reduce the SARS-CoV-2 infection. We have examined the penta-peptide ATN-161 as potential inhibitor of ACE2 and SARS-CoV-2 spike protein binding, where ATN-161 has been commercially approved for the safety and possess high affinity and specificity towards the receptor binding domain (RBD) of S1 subunit in SARS-CoV-2 spike protein. We carried out experiments and confirmed these phenomena that the virus bindings were indeed minimized. ATN-161 peptide can be used as an inhibitor of protein-protein interaction (PPI) stands as a crucial interaction in biological systems. The molecular docking finding suggests that the binding energy of the ACE2-spike protein complex is reduced in the presence of ATN-161. Protein-protein docking binding energy (-40.50 kcal/mol) of the spike glycoprotein toward the human ACE2 and binding of ATN-161 at their binding interface reduced the biding energy (-26.25 kcal/mol). The finding of this study suggests that ATN-161 peptide can mask the RBD of the spike protein and be considered as a neutralizing candidate by binding with the ACE2 receptor. Peptide-based masking of spike S1 protein (RBD) and its neutralization is a highly promising strategy to prevent virus penetration into the host cell. Thus masking of the RBD leads to the loss of receptor recognition property which can reduce the chance of infection host cells.  相似文献   

13.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), which causes coronavirus disease-19 (COVID-19) has caused more than 2 million deaths around the globe. The high transmissibility rate of the disease is related to the strong interaction between the virus spike receptor-binding domain (RBD) and the human angiotensin-converting enzyme 2 (ACE2) as documented in several reports. In this study, using state-of-the-art computational methods, natural products were screened and their molecular mechanism to disrupt spike RBD-ACE2 recognition was evaluated. There is the sensitivity of results to receptor ensemble docking calculations. Binding free energy and MD simulation are important tools to evaluate the thermodynamics of binding stability and the capacity of top hits to disrupt RBD-ACE2 recognition. The free energy profiles provide a slight decrease in binding affinity of the virus-receptor interaction. Three flavonoids parvisoflavone B (3), alpinumisoflavone (5) and norisojamicin (2) were effective in blocking the viral entry by binding strongly at the spike RBD-ACE2 interface with the inhibition constant of 0.56, 0.78 and 0.93 μM, respectively. The same compounds demonstrated similar effect on free ACE2 protein. Compound (2), also demonstrated ability to bind strongly on free spike RBD. Well-tempered metadynamics established that parvisoflavone B (3) works by binding to three sites namely interface α, β and loop thereby inhibiting viral cell entry. Owing to their desirable pharmacokinetic properties, the presented top hit natural products are suggested for further SARS-COV-2 molecular targets and subsequent in vitro and in vivo evaluations.  相似文献   

14.
The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and the subsequent COVID-19 pandemic have visited a terrible cost on the world in the forms of disease, death, and economic turmoil. The rapid development and deployment of extremely effective vaccines against SARS-CoV-2 have seemingly brought within reach the end of the pandemic. However, the virus has acquired mutations. and emerging variants of concern are more infectious and reduce the efficacy of existing vaccines. Although promising efforts to combat these variants are underway, the evolutionary pressures leading to these variants are poorly understood. To that end, here we have studied the effects on the structure and function of the SARS-CoV-2 spike glycoprotein receptor-binding domain of three amino-acid substitutions found in several variants of concern, including alpha (B.1.1.7), beta (B.1.351), and gamma (P.1). We found that these substitutions alter the receptor-binding domain structure, stability, and ability to bind to angiotensin converting enzyme 2, in such a way as to possibly have opposing and compensatory effects. These findings provide new insights into how these variants of concern may have been selected for infectivity while maintaining the structure and stability of the receptor binding domain.

The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in late 2019 and its subsequent spread around the world have caused the deadliest airborne pandemic in the United States, recently surpassing the 1918 influenza pandemic nearly a century ago (1). The international scientific community has risen to the challenge of combating SARS-CoV-2 and COVID-19. The year 2020 ended with the fastest development of vaccine candidates, starting with the genetic sequence of the virus being reported (2) to human trials of novel mRNA-based vaccines within 3 months. Now, there are three SARS-CoV-2 vaccines approved for use within the United States and many more next-generation and pan-coronavirus vaccines currently in development. These advances have made substantial contributions to the control of the COVID-19 pandemic within the United States. Despite multiple manufacturers receiving emergency use authorization and an unprecedented vaccination campaign, significant challenges remain including uncertainty regarding durability, vaccination hesitancy, limited access to healthcare among disadvantaged persons, as well as the continued emergence of variants of concern (VOC). Our ultimate success in quelling this pandemic may lie in our ability, not only to characterize new variants, but also to be able to predict the emergence of new variants. Such advances will require an increased understanding of evolutionary pressures and constraints on viral variation.Three SARS-CoV-2 lineages, the alpha variant lineage B.1.1.7 (or 501Y.V1) first identified within the United Kingdom, the beta variant lineage B.1.351 (or 501Y.V2) identified in South Africa, and the gamma variant lineage P.1 (or 501Y.V3) identified in Brazil, have been demonstrated to possess increased infectivity (3) and in the case, beta and gamma exhibit reduced neutralization by antibodies reacting with the cognate regions of the spike protein within the original Wuhan strain of SARS-CoV-2 (4, 5, 6). The alpha variant possesses the N501Y substitution within the spike glycoprotein receptor-binding domain (RBD) which has been shown to enhance binding to angiotensin converting enzyme 2 (ACE2), the entry receptor for SARS-CoV-2 (7, 8, 9). The beta and gamma variants possess N501Y as well as substitutions at two other sites within the RBD, E484K, and K417N in beta and K417T in gamma (10). These RBD substitutions present in the spike protein of the B.1.351 and P.1 variants have been shown to reduce the binding and neutralization of mRNA vaccine-induced antibodies as well as potent human monoclonal antibodies (11).The consequences of the K417N, E484K, and N501Y substitutions on RBD-ACE2 interactions have also been examined, with the increased infectivity of the alpha variant resulting from the enhanced binding to ACE2 when the RBD N501Y substitution is present (9). The E484K substitution has been shown to enhance ACE2 binding (12) and reduce the efficacy of neutralizing antibodies (13). A recent study examined the effects of the K417N substitution on ACE2 binding and antibody interactions using molecular dynamics and found that K417N disrupts RBD-ACE2 interactions, as well as interactions with a monoclonal antibody (14). However, the effects of these substitutions on the structure of the RBD itself have not been examined. Based on the nature of these substitutions, including residue changes in charge or polar to nonpolar substitutions, we hypothesized that the K417N, E484K, and N501Y substitutions alter the RBD structure and stability as well as ACE2 binding interactions. We studied those changes in single-substitution RBD variants as well as in the RBD containing all three substitutions using molecular dynamics and biophysical approaches. Our data suggest that these VOC substitutions significantly alter RBD structure and stability, with consequences for ACE2 binding and proteolytic susceptibility, having potentially opposing consequences for the fitness of new variants. These findings have implications for viral evolution and the design of subunit vaccine candidates.  相似文献   

15.
The coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the coronavirus disease 2019 pandemic, and the closely related SARS-CoV coronavirus enter cells by binding at the human angiotensin converting enzyme 2 (hACE2). The stronger hACE2 affinity of SARS-CoV-2 has been connected with its higher infectivity. In this work, we study hACE2 complexes with the receptor-binding domains (RBDs) of the human SARS-CoV-2 and human SARS-CoV viruses, using all-atom molecular dynamics simulations and computational protein design with a physics-based energy function. The molecular dynamics simulations identify charge-modifying substitutions between the CoV-2 and CoV RBDs, which either increase or decrease the hACE2 affinity of the SARS-CoV-2 RBD. The combined effect of these mutations is small, and the relative affinity is mainly determined by substitutions at residues in contact with hACE2. Many of these findings are in line and interpret recent experiments. Our computational protein design calculations redesign positions 455, 493, 494, and 501 of the SARS-CoV-2 receptor binding motif, which contact hACE2 in the complex and are important for ACE2 recognition. Sampling is enhanced by an adaptive importance sampling Monte Carlo method. Sequences with increased affinity replace CoV-2 glutamine by a negative residue at position 493; serine by a nonpolar or aromatic residue or an asparagine at position 494; and asparagine by valine or threonine at position 501. Substitutions at positions 455 and 501 have a smaller effect on affinity. Substitutions suggested by our design are seen in viral sequences encountered in other species, including bat and pangolin. Our results might be used to identify potential virus strains with higher human infectivity and assist in the design of peptide-based or peptidomimetic compounds with the potential to inhibit SARS-CoV-2 binding at hACE2.  相似文献   

16.
Combating the worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of new variants demands understanding of the structural basis of the interaction of antibodies with the SARS-CoV-2 receptor-binding domain (RBD). Here, we report five X-ray crystal structures of sybodies (synthetic nanobodies) including those of binary and ternary complexes of Sb16–RBD, Sb45–RBD, Sb14–RBD–Sb68, and Sb45–RBD–Sb68, as well as unliganded Sb16. These structures reveal that Sb14, Sb16, and Sb45 bind the RBD at the angiotensin-converting enzyme 2 interface and that the Sb16 interaction is accompanied by a large conformational adjustment of complementarity-determining region 2. In contrast, Sb68 interacts at the periphery of the SARS-CoV-2 RBD–angiotensin-converting enzyme 2 interface. We also determined cryo-EM structures of Sb45 bound to the SARS-CoV-2 spike protein. Superposition of the X-ray structures of sybodies onto the trimeric spike protein cryo-EM map indicates that some sybodies may bind in both “up” and “down” configurations, but others may not. Differences in sybody recognition of several recently identified RBD variants are explained by these structures.  相似文献   

17.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic. Intermediate horseshoe bats (Rhinolophus affinis) are hosts of RaTG13, the second most phylogenetically related viruses to SARS-CoV-2. We report the binding between intermediate horseshoe bat ACE2 (bACE2-Ra) and SARS-CoV-2 receptor-binding domain (RBD), supporting the pseudotyped SARS-CoV-2 viral infection. A 3.3 Å resolution crystal structure of the bACE2-Ra/SARS-CoV-2 RBD complex was determined. The interaction networks of Patch 1 showed differences in R34 and E35 of bACE2-Ra compared to hACE2 and big-eared horseshoe bat ACE2 (bACE2-Rm). The E35K substitution, existing in other species, significantly enhanced the binding affinity owing to its electrostatic attraction with E484 of SARS-CoV-2 RBD. Furthermore, bACE2-Ra showed extensive support for the SARS-CoV-2 variants. These results broaden our knowledge of the ACE2/RBD interaction mechanism and emphasize the importance of continued surveillance of intermediate horseshoe bats to prevent spillover risk.  相似文献   

18.
New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appear rapidly every few months. They have showed powerful adaptive ability to circumvent the immune system. To further understand SARS-CoV-2's adaptability so as to seek for strategies to mitigate the emergence of new variants, herein we investigated the viral adaptation in the presence of broadly neutralizing antibodies and their combinations. First, we selected four broadly neutralizing antibodies, including pan-sarbecovirus and pan-betacoronavirus neutralizing antibodies that recognize distinct conserved regions on receptor-binding domain (RBD) or conserved stem-helix region on S2 subunit. Through binding competition analysis, we demonstrated that they were capable of simultaneously binding. Thereafter, a replication-competent vesicular stomatitis virus pseudotyped with SARS-CoV-2 spike protein was employed to study the viral adaptation. Twenty consecutive passages of the virus under the selective pressure of individual antibodies or their combinations were performed. It was found that it was not hard for the virus to adapt to broadly neutralizing antibodies, even for pan-sarbecovirus and pan-betacoronavirus antibodies. The virus was more and more difficult to escape the combinations of two/three/four antibodies. In addition, mutations in the viral population revealed by high-throughput sequencing showed that under the selective pressure of three/four combinational antibodies, viral mutations were not prone to present in the highly conserved region across betacoronaviruses (stem-helix region), while this was not true under the selective pressure of single/two antibodies. Importantly, combining neutralizing antibodies targeting RBD conserved regions and stem helix synergistically prevented the emergence of escape mutations. These studies will guide future vaccine and therapeutic development efforts and provide a rationale for the design of RBD-stem helix tandem vaccine, which may help to impede the generation of novel variants.  相似文献   

19.
This study describes a novel, neutralizing monoclonal antibody (mAb), 11D7, discovered by mouse immunization and hybridoma generation, against the parental Wuhan-Hu-1 RBD of SARS-CoV-2. We further developed this mAb into a chimeric human IgG and recombinantly expressed it in plants to produce a mAb with human-like, highly homogenous N-linked glycans that has potential to impart greater potency and safety as a therapeutic. The epitope of 11D7 was mapped by competitive binding with well-characterized mAbs, suggesting that it is a Class 4 RBD-binding mAb that binds to the RBD outside the ACE2 binding site. Of note, 11D7 maintains recognition against the B.1.1.529 (Omicron) RBD, as well neutralizing activity. We also provide evidence that this novel mAb may be useful in providing additional synergy to established antibody cocktails, such as Evusheld™ containing the antibodies tixagevimab and cilgavimab, against the Omicron variant. Taken together, 11D7 is a unique mAb that neutralizes SARS-CoV-2 through a mechanism that is not typical among developed therapeutic mAbs and by being produced in ΔXFT Nicotiana benthamiana plants, highlights the potential of plants to be an economic and safety-friendly alternative platform for generating mAbs to address the evolving SARS-CoV-2 crisis.  相似文献   

20.
Antibodies (Abs) are a crucial component of the immune system and are often used as diagnostic and therapeutic agents. The need for high‐affinity and high‐specificity antibodies in research and medicine is driving the development of computational tools for accelerating antibody design and discovery. We report a diverse set of antibody binding data with accompanying structures that can be used to evaluate methods for modeling antibody interactions. Our Antibody‐Bind (AB‐Bind) database includes 1101 mutants with experimentally determined changes in binding free energies (ΔΔG) across 32 complexes. Using the AB‐Bind data set, we evaluated the performance of protein scoring potentials in their ability to predict changes in binding free energies upon mutagenesis. Numerical correlations between computed and observed ΔΔG values were low (r = 0.16–0.45), but the potentials exhibited predictive power for classifying variants as improved vs weakened binders. Performance was evaluated using the area under the curve (AUC) for receiver operator characteristic (ROC) curves; the highest AUC values for 527 mutants with |ΔΔG| > 1.0 kcal/mol were 0.81, 0.87, and 0.88 using STATIUM, FoldX, and Discovery Studio scoring potentials, respectively. Some methods could also enrich for variants with improved binding affinity; FoldX and Discovery Studio were able to correctly rank 42% and 30%, respectively, of the 80 most improved binders (those with ΔΔG < −1.0 kcal/mol) in the top 5% of the database. This modest predictive performance has value but demonstrates the continuing need to develop and improve protein energy functions for affinity prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号