首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dynamic epigenetic regulation is critical for proper oogenesis and early embryo development. During oogenesis, fully grown germinal vesicle oocytes develop to mature Metaphase II oocytes which are ready for fertilization. Fertilized oocyte proliferates mitotically until blastocyst formation and the process is called early embryo development. Throughout oogenesis and early embryo development, spatio-temporal gene expression takes place, and this dynamic gene expression is controlled with the aid of epigenetics. Epigenetic means that gene expression can be altered without changing DNA itself. Epigenome is regulated through DNA methylation and histone modifications. While DNA methylation generally ends up with repression of gene expression, histone modifications can result in expression or repression depending on type of modification, type of histone protein and its specific residue. One of the modifications is histone acetylation which generally ends up with gene expression. Histone acetylation occurs through the addition of acetyl group onto amino terminal of the core histone proteins by histone acetyltransferases (HATs). Contrarily, histone deacetylation is associated with repression of gene expression, and it is catalyzed by histone deacetylases (HDACs). This review article focuses on what is known about alterations in the expression of HATs and HDACs and emphasizes importance of HATs and HDACs during oogenesis and early embryo development.  相似文献   

2.
Cells respond to cytotoxicity by activating a variety of signal transduction pathways. One pathway frequently upregulated during cytotoxic response is macroautophagy (hereafter referred to as autophagy). Previously, we demonstrated that pan-histone deacetylase (HDAC) inhibitors, such as the anticancer agent suberoylanilide hydroxamic acid (SAHA, Vorinostat), can induce autophagy. In this study, we show that HDAC inhibition triggers autophagy by suppressing MTOR and activating the autophagic kinase ULK1. Furthermore, autophagy inhibition can sensitize cells to both apoptotic and nonapoptotic cell death induced by SAHA, suggesting the therapeutic potential of autophagy targeting in combination with SAHA therapy. This study also raised a series of questions: What is the role of HDACs in regulating autophagy? Do individual HDACs have distinct functions in autophagy? How do HDACs regulate the nutrient-sensing kinase MTOR? Since SAHA-induced nonapoptotic cell death is not driven by autophagy, what then is the mechanism underlying the apoptosis-independent death? Tackling these questions should lead to a better understanding of autophagy and HDAC biology and contribute to the development of novel therapeutic strategies.  相似文献   

3.
《Autophagy》2013,9(10):1521-1522
Cells respond to cytotoxicity by activating a variety of signal transduction pathways. One pathway frequently upregulated during cytotoxic response is macroautophagy (hereafter referred to as autophagy). Previously, we demonstrated that pan-histone deacetylase (HDAC) inhibitors, such as the anticancer agent suberoylanilide hydroxamic acid (SAHA, Vorinostat), can induce autophagy. In this study, we show that HDAC inhibition triggers autophagy by suppressing MTOR and activating the autophagic kinase ULK1. Furthermore, autophagy inhibition can sensitize cells to both apoptotic and nonapoptotic cell death induced by SAHA, suggesting the therapeutic potential of autophagy targeting in combination with SAHA therapy. This study also raised a series of questions: What is the role of HDACs in regulating autophagy? Do individual HDACs have distinct functions in autophagy? How do HDACs regulate the nutrient-sensing kinase MTOR? Since SAHA-induced nonapoptotic cell death is not driven by autophagy, what then is the mechanism underlying the apoptosis-independent death? Tackling these questions should lead to a better understanding of autophagy and HDAC biology and contribute to the development of novel therapeutic strategies.  相似文献   

4.
We studied the effects of three inhibitors of catecholamine synthesis on the development of sea urchinsSphaerechinus granularis andParacentrotus lividus. These drugs affected the early embryogenesis, which was expressed in inhibition of the cleavage divisions, appearance of abnormal embryos, and developmental arrest. The addition of arachidonic acid amide and dopamine to the incubation medium weakened the effects of the inhibitors. Spiperone induced developmental defects in preimplantation mouse embryos and sea urchin embryos. Arachidonic acid amide with dopamine exerted a protective effect against spiperone when introduced to sea urchin embryos at the blastula or late gastrula stages, rather than after fertilization. In murine embryos, this amide induced developmental defects and arrest itself, and its effect was reversible. Possible mechanisms underlying the effects of these drugs are discussed.  相似文献   

5.
6.
7.
Histone deacetylases (HDACs) catalyze the deacetylation of epsilon-acetyl-lysine residues within the N-terminal tail of core histones and thereby mediate changes in the chromatin structure and regulate gene expression in eukaryotic cells. So far, surprisingly little is known about the substrate specificities of different HDACs. Here, we prepared a library of fluorogenic tripeptidic substrates of the general format Ac-P(-2)-P(-1)-Lys(Ac)-MCA (P(-1), P(-2)=all amino acids except cysteine) and measured their HDAC-dependent conversion in a standard fluorogenic HDAC assay. Different HDAC subtypes can be ranked according to their substrate selectivity: HDAH > HDAC8 > HDAC1 > HDAC3 > HDAC6. HDAC1, HDAC3, and HDAC6 exhibit a similar specificity profile, whereas both HDAC8 and HDAH have rather distinct profiles. Furthermore, it was shown that second-site modification (e.g., phosphorylation) of substrate sequences as well as corepressor binding can modulate the selectivity of enzymatic substrate conversion.  相似文献   

8.
Histone deacetylases (HDACs) are involved in epigenetic control of the expression of various genes by catalyzing deacetylation of ε-acetylated lysine residues. Here, we report the design, synthesis and evaluation of the (7-diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid (AC-SAHA) as a caged HDAC inhibitor, which releases the known pan-HDAC inhibitor SAHA upon cleavage of the photolabile (7-diethylaminocoumarin-4-yl)methyl protecting group in response to photoirradiation. A key advantage of AC-SAHA is that the caged derivative itself shows essentially no HDAC-inhibitory activity. Upon photoirradiation, AC-SAHA decomposes to SAHA and a 7-diethylaminocoumarin derivative, together with some minor products. We confirmed that AC-SAHA inhibits HDAC in response to photoirradiation in vitro by means of chemiluminescence assay. AC-SAHA also showed photoinduced inhibition of proliferation of human colon cancer cell line HCT116, as determined by MTT assay. Thus, AC-SAHA should be a useful tool for spatiotemporally controlled inhibition of HDAC activity, as well as a candidate chemotherapeutic reagent for human colon cancer.  相似文献   

9.
Blackwell L  Norris J  Suto CM  Janzen WP 《Life sciences》2008,82(21-22):1050-1058
Target specificity and off-target liabilities are routinely monitored during the early phases of drug discovery for most kinase projects. Typically these criteria are evaluated using a profiling panel comprised of a diverse collection of in vitro kinase assays and relates compound structure to potency and selectivity. The success of these efforts has led to the design of similar panels for phosphatase, protease, and epigenetic targets. Here the implementation of an epigenetic profiling panel, comprised of eleven histone deacetylases (HDACs) and one histone acetyltransferase (HAT), was used to evaluate chemical modulators of these enzymes. HDAC inhibitors (HDACi) such as sodium butyrate and trichostatin A demonstrate diverse biological effects which have led to broad speculation about their therapeutic potential in multiple disease states. Some HDACi have demonstrated tumor suppression in vivo and recently Zolinza was the first HDACi approved by the FDA for the treatment of cutaneous T-cell lymphoma. While HDACi have demonstrated therapeutic utility, many of the first generation compounds are pan-inhibitors. Thus, use of an HDAC profiling panel will be essential in achieving isoform specificity of the next generation of inhibitors. To this end, twenty-one compounds, twelve of which are known to have activities against the HDACs, were tested to evaluate the utility of the epigenetic panel. Additionally, these compounds were tested against a larger 72 member enzyme panel comprised of kinase, phosphatase and protease activities. This effort represents the first time these compounds have been profiled with such a broad range of biochemical activities.  相似文献   

10.
11.
12.
The role of the individual histone deacetylases (HDACs) in the regulation of cancer cell proliferation was investigated using siRNA-mediated protein knockdown. The siRNA for HDAC3 and HDAC1 demonstrated significant morphological changes in HeLa S3 consistent with those observed with HDAC inhibitors. SiRNA for HDAC 4 or 7 produced no morphological changes in HeLa S3 cells. HDAC1 and 3 siRNA produced a concentration-dependent inhibition of HeLa cell proliferation; whereas, HDAC4 and 7 siRNA showed no effect. HDAC3 siRNA caused histone hyperacetylation and increased the percent of apoptotic cells. These results demonstrate that the Class I HDACs such as HDACs 1 and 3 are important in the regulation of proliferation and survival in cancer cells. These results and the positive preclinical results with non-specific inhibitors of the HDAC enzymes provide further support for the development of Class I selective HDAC inhibitors as cancer therapeutics.  相似文献   

13.
Subcellular localization of rice histone deacetylases in organelles   总被引:1,自引:0,他引:1  
Pil Joong Chung 《FEBS letters》2009,583(13):2249-271
Histone deacetylases (HDACs) are known to function in the nucleus. Here, we report on the organellar localization of three rice HDACs, OsSIR2b, OsHDAC6, and OsHDAC10. The 35S:OsSIR2b-GFP and 35S:OsHDAC10-GFP constructs were introduced into tobacco BY2 cells. Co-localization analysis of the green fluorescent protein and MitoTracker fluorescent signals in the transformed BY2 cells indicated that OsSIR2b and OsHDAC10 are localized in the mitochondria. Transgenic Arabidopsis lines harboring 35S:OsHDAC6-GFP and 35S:OsHDAC10-GFP constructs were similarly analyzed, revealing that OsHDAC6-GFP is localized exclusively in chloroplasts, whereas OsHDAC10-GFP is localized in both mitochondria and chloroplasts. The presence of OsHDAC6-GFP and OsHDAC10-GFP in chloroplasts was verified by immunodetection.  相似文献   

14.
15.
Nitric oxide is an important intraovarian regulatory factor. The periimplantation period is a critical phase in mouse development. Although it was shown that nitric oxide plays an essential role during gestation, its role in the preimplantation period is not yet fully clear. We studied the involvement of nitric oxide in developmental competence (embryonic defects and morphology of pre- and postimplantation embryos) using nitric oxide synthase inhibitors, which suppress all forms of nitric oxide synthase, and female mice, to which the inhibitors had been administered before their mating with intact males. The level of mortality of pre- and postimplantation embryos in females mated to intact males increased soon after the administration of inhibitors. Studies of the morphology of embryos have shown that there was a delay in embryogenesis at the stages of cleavage and gastrulation. The results obtained suggest that nitric oxide is a potent regulator of embryonic differentiation, specifically in pre- and postimplantation mouse embryos.  相似文献   

16.
Small RNA molecules in early embryos, delivered from sperm to zygotes upon fertilization, are required for normal mouse embryonic development. Even modest changes in the levels of sperm‐derived miRNAs appear to influence early embryos and subsequent development. For example, stress‐associated behaviors develop in mice after injection into normal zygotes sets of sperm miRNAs elevated in stressed male mice. Here, we implicate early embryonic miR‐409‐3p in establishing anxiety levels in adult female, but not male mice. First, we found that exposure of male mice to chronic social instability stress, which leads to elevated anxiety in their female offspring across at least three generations through the paternal lineage, elevates sperm miR‐409‐3p levels not only in exposed males, but also in sperm of their F1 and F2 male offspring. Second, we observed that while injection of a mimic of miR‐409‐3p into zygotes from mating control males was incapable of mimicking this effect in offspring derived from them, injection of a specific inhibitor of this miRNA led to the opposite, anxiolytic effect in female, but not male, and offspring. These findings imply that baseline miR‐409‐3p activity in early female embryos is necessary for the expression of normal anxiety levels when they develop into adult females. In addition, elevated embryo miR‐409‐3p activity, possibly as a consequence of stress‐induced elevation of its expression in sperm, may participate in, but may not be sufficient for, the induction of enhanced anxiety.  相似文献   

17.
18.
Histone deacetylase (HDAC) proteins have emerged as important targets for anti-cancer drugs, with four small molecules approved for use in the clinic. Suberoylanilide hydroxamic acid (Vorinostat, SAHA) was the first FDA-approved HDAC inhibitor for cancer treatment. However, SAHA inhibits most of the eleven HDAC isoforms. To understand the structural requirements of HDAC inhibitor selectivity and develop isoform selective HDAC inhibitors, SAHA analogs modified in the linker at the C5 position were synthesized and tested for potency and selectivity. C5-modified SAHA analogs displayed dual selectivity to HDAC6 and HDAC8 over HDAC 1, 2, and 3, with only a modest reduction in potency. These findings are consistent with prior work showing that modification of the linker region of SAHA can alter isoform selectivity. The observed HDAC6/8 selectivity of C5-modified SAHA analogs provide guidance toward development of isoform selective HDAC inhibitors and more effective anti-cancer drugs.  相似文献   

19.
Resistance towards imatinib (IM) remains troublesome in treating many chronic myeloid leukemia (CML) patients. Heme oxygenase-1 (HO-1) is a key enzyme of antioxidative metabolism in association with cell resistance to apoptosis. Our previous studies have shown that overexpression of HO-1 resulted in resistance development to IM in CML cells, while the mechanism remains unclear. In the current study, the IM-resistant CML cells K562R indicated upregulation of some of the histone deacetylases (HDACs) compared with K562 cells. Therefore, we herein postulated HO-1 was associated with HDACs. Silencing HO-1 expression in K562R cells inhibited the expression of some HDACs, and the sensitivity to IM was increased. K562 cells transfected with HO-1 resisted IM and underwent obvious some HDACs. These findings related to the inhibitory effects of high HO-1 expression on the reactive oxygen species (ROS) signaling pathway that negatively regulated HDACs. Increased expression of HO-1 activated HDACs by inhibiting ROS production. In summary, HO-1, which is involved in the development of drug resistance in CML cells by regulating the expression of HDACs, is probably a novel target for improving CML therapy.  相似文献   

20.
BACKGROUND: the inhibition of histone deacetylase (HDAC) has been reported as an effective mechanism on therapy in neoplastic diseases. Among HDAC inhibitors, Trichostatin A (TSA) and Valproic Acid (VPA) prevent the tumorigenesis in rodent and human models. Malformations as neural tube and axial skeletal defects are well-known VPA side effects. Recent hypotheses suggest the HDAC inhibitor activity as the teratogenic mechanism of VPA. The teratogenic potency of TSA is, at the moment, unknown. The aim of the present work is to investigate the HDAC inhibition on embryos exposed in utero to TSA or VPA and to compare the teratogenic potential of these two molecules on the axial skeleton morphogenesis. METHODS: Pregnant CD mice were i.p. treated on day 8 post coitum (9.00 a.m.) with 400 mg/kg VPA or with 0, 2, 4, 8, 16 mg/kg TSA. Embryos explanted 1 hr after the treatment from some females exposed to 400 mg/kg VPA or to 16 mg/kg TSA were processed for Western blotting and immunohistochemical analysis, in order to evaluate the histone hyperacetylation in the total embryo homogenates and to visualize the hyperacetylated tissues. Foetuses at term were processed for skeletal examination. RESULTS: Both VPA and TSA were able to induce hyperacetylation on embryos, specifically at the level of the caudal neural tube and of somites. At term, TSA showed teratogenic effects at the axial skeleton, quite similar to those observed after VPA exposure. CONCLUSIONS: In conclusion, both VPA and TSA are teratogenic in mice. A direct correlation between somite hyperacetylation and axial abnormalities could suggest the HDAC inhibition as the mechanism of the teratogenic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号