首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we synthesized hydroxy and/or alkoxy substituted phenyl-benzo[d]thiazole derivatives using substituted benzaldehydes and 2-aminothiophenol in MeOH. The structures of these compounds were established by 1H and 13C NMR and mass spectral analyzes. All synthesized compounds were evaluated for their mushroom tyrosinase inhibition activity. Out the 12 generated compounds, 2a and 2d exhibited much higher tyrosinase inhibition activity (45.36-73.07% and 49.94-94.17% at 0.01-20 μM, respectively) than kojic acid (9.29-50.80% at 1.25-20 μM), a positive control.The cytotoxicity of 2a and 2d was evaluated using B16 cells and the compounds were found to be nontoxic. Compounds 2a and 2d were also demonstrated to be potent mushroom tyrosinase inhibitors, displaying IC50 values of 1.14 ± 0.48 and 0.01 ± 0.0002 μM, respectively, compared with kojic acid, which has an IC50 value of 18.45 ± 0.17 μM. We also predicted the tertiary structure of tyrosinase, simulated the docking with compounds 2a and 2d and confirmed that the compounds strongly interact with mushroom tyrosinase residues. Kinetic plots showed that 2a and 2d are competitive tyrosinase inhibitors. Substitutions with a hydroxy group at R3 or both R3 and R1 of the phenyl ring indicated that these groups play a major role in the high binding affinity to tyrosinase. We further found that compounds 2a and 2d inhibit melanin production and tyrosinase activity in B16 cells. These results may assist in the development of new potent tyrosinase inhibitors against hyperpigmentation.  相似文献   

2.
l ‐DOPA (3,4‐dihydroxyphenyl‐l ‐alanine) is an extensively used drug for the treatment of Parkinson's disease. In the present study, optimization of nutritional parameters influencing l ‐DOPA production was attempted using the response surface methodology (RSM) from Brevundimonas sp. SGJ. A Plackett–Burman design was used for screening of critical components, while further optimization was carried out using the Box–Behnken design. The optimized levels of factors predicted by the model were pH 5.02, 1.549 g l?1 tryptone, 4.207 g l?1 l ‐tyrosine and 0.0369 g l?1 CuSO4, which resulted in highest l ‐DOPA yield of 3.359 g l?1. The optimization of medium using RSM resulted in a 8.355‐fold increase in the yield of l ‐DOPA. The anova showed a significant R2 value (0.9667), model F‐value (29.068) and probability (0.001), with insignificant lack of fit. The highest tyrosinase activity observed was 2471 U mg?1 at the 18th hour of the incubation period with dry cell weight of 0.711 g l?1. l ‐DOPA production was confirmed by HPTLC, HPLC and GC‐MS analysis. Thus, Brevundimonas sp. SGJ has the potential to be a new source for the production of l ‐DOPA.  相似文献   

3.
Herein, a straightforward synthetic strategy mediated by Ugi reaction was developed to synthesize novel series of compounds as tyrosinase inhibitors. The structures of all compounds were confirmed by FT-IR, 1H-NMR, 13C-NMR, and CHNOS techniques. The tyrosinase inhibitory activities of all synthesized derivatives 5a – m were determined against mushroom tyrosinase and it was found that derivative 5c possesses the best inhibition with an IC50 value of 69.53±0.042 μM compared to the rest of the synthesized derivatives. Structure–activity relationships (SARs) showed that the presence of 4-MeO or 4-NO2 at the R2 position plays a key role in tyrosinase inhibitory activities. The enzyme kinetics studies showed that compound 5c is an noncompetitive inhibitor. For in silico study, the allosteric site detection was first applied to find the appropriate binding site and then molecular docking and molecular dynamic studies were performed to reveal the position and interactions of 5c as the most potent inhibitor within the tyrosinase active site. The results showed that 5c bind well with the proposed binding site and formed a stable complex with the target protein.  相似文献   

4.
5.
Quantitative structure-activity relationship (QSAR) studies have been carried out on 4-anilino-3-quinolinecarbonitriles, a set of novel Src kinase inhibitors, with the aim of dissecting the structural requirements for Src inhibitory activities. After outlier identification using robust principal component analysis (robust PCA), linear models based on forward selection combined with multiple linear regression, (FS-MLR), enhanced replacement method followed by multiple linear regression (ERM) and a nonlinear model using support vector regression (SVR) were constructed and compared. All models were rigorously validated using leave-one-out cross-validation (LOOCV), 5-fold cross-validations (5-CV) and shuffling external validation (SEVs). ERM seems to outperform both FS-MLR and SVR evidenced by better prediction performance (n?=?35, R2training?=?0.918, R2pred?=?0.928). Robustness and predictive ability of ERM model were also evaluated. The generated QASR model revealed that the Src inhibitory activity of 4-anilino-3-quinolinecarbonitriles could be associated with the size of substituents in the C7 position and the steric hindrance effect. The results of the present study may be of great help in designing novel 4-anilino-3-quinolinecarbonitriles with more potent Src kinase inhibitory activity.  相似文献   

6.
Tyrosinase may protect against oxidative stress by using the superoxide anion (O?2) in the production of melanin. We have examined this by comparing its cytotoxic effects in B16/F10 and B16/F10-differential deficient (-DD) mouse melanoma cells that express high and low levels of tyrosinase activity respectively. Xanthine oxidase (XO) was used to generate O?2 and cytotoxicity assessed by measuring cell survival. XO increased O?2 concentrations and 3 h later dose related decreases in cell survival were seen. F10 cells were more resistant to these cytotoxic effects than the F10-DD cells. [Nle4,DPhe7]MSH increased tyrosinase activity and melanin content, reduced O?2 concentration and increased the resistance of F10 cells to the cytotoxic effects of O?2. No such effects were seen in F10-DD cells. The effect of [Nle4,DPhe7]MSH on the resistance of the F10 cells was time-dependent and noticeable when tyrosinase activity but not melanin was increased. This suggests that it was the activation of tyrosinase rather than the increase in the melanin that provided the protection against O?2. In support of this, inhibition of tyrosinase with phenylthiocarbamide reduced the increased resistance induced by [Nle4,DPhe7]MSH. Moreover, although melanin was capable of scavenging O?2 it had little effect at concentrations comparable to those in the activated F10 cells. XO also increased the melanin content of F10 but not F10-DD cells. We conclude that tyrosinase is able to utilise O?2 to produce melanin and this provides pigment cells with a unique anti-oxidant mechanism.  相似文献   

7.
Ha YM  Park YJ  Lee JY  Park D  Choi YJ  Lee EK  Kim JM  Kim JA  Park JY  Lee HJ  Moon HR  Chung HY 《Biochimie》2012,94(2):533-540
Herein we describe the design, synthesis and biological activities of 2-(substituted phenyl)thiazolidine-4-carboxylic acid derivatives as novel tyrosinase inhibitors. The target compounds 2a2j were designed and synthesized from the structural characteristics of N-phenylthiourea, tyrosinase inhibitor and tyrosine, and l-DOPA, the natural substrates of tyrosinase. Among them, (2R/S,4R)-2-(2,4-dimethoxyphenyl)thiazolidine-4-carboxylic acid (2g) caused the greatest inhibition 66.47% at 20 μM of l-DOPA oxidase activity of mushroom tyrosinase. Kinetic analysis of tyrosinase inhibition revealed that 2g is a competitive inhibitor. We predicted the tertiary structure of tyrosinase, and simulated the docking of mushroom tyrosinase with 2g. These results suggest that the binding affinity of 2g with tyrosinase is high. Also, 2g effectively inhibited tyrosinase activity and reduced melanin levels in B16 cells treated with α-MSH. These data strongly suggest that 2g can suppress the production of melanin via the inhibition of tyrosinase activity.  相似文献   

8.
The sequential optimization strategy for design of an experimental and artificial neural network (ANN) linked genetic algorithm (GA) were applied to evaluate and optimize media component for L-asparaginase production by Aspergillus terreus MTCC 1782 in submerged fermentation. The significant media components identified by Plackett-Burman design (PBD) were fitted into a second order polynomial model (R2 = 0.910) and optimized for maximum L-asparaginase production using a five-level central composite design (CCD). A nonlinear model describing the effect of variables on L-asparaginase production was developed (R2 = 0.995) and optimized by a back propagation NN linked GA. Ground nut oil cake (GNOC) flour 3.99% (w/v), sodium nitrate (NaNO3) 1.04%, L-asparagine 1.84%, and sucrose 0.64% were found to be the optimum concentration with a maximum predicted L-asparaginase activity of 36.64 IU/mL using a back propagation NN linked GA. The experimental activity of 36.97 IU/mL obtained using the optimum concentration of media components is close to the predicted L-asparaginase activity of the ANN linked GA.  相似文献   

9.
New active sites can be introduced into naturally occurring enzymes by the chemical modification of specific amino acid residues in concert with genetic techniques. Chemical strategies have had a significant impact in the field of enzyme design such as modifying the selectivity and catalytic activity which is very different from those of the corresponding native enzymes. Thus, chemical modification has been exploited for the incorporation of active site binding analogs onto protein templates and for atom replacement in order to generate new functionality such as the conversion of a hydrolase into a peroxidase. The introduction of a coordination complex into a substrate binding pocket of trypsin could probably also be extended to various enzymes of significant therapeutic and biotechnological importance.

The aim of this study is the conversion of trypsin into a copper enzyme: tyrosinase by chemical modification. Tyrosinase is a biocatalyst (EC.1.14.18.1) containing two atoms of copper per active site with monooxygenase activity. The active site of trypsin (EC 3.4.21.4), a serine protease was chemically modified by copper (Cu+2) introduced p-aminobenzamidine (pABA- Cu+2: guanidine containing schiff base metal chelate) which exhibits affinity for the carboxylate group in the active site as trypsin-like inhibitor. Trypsin and the resultant semisynthetic enzyme preparation was analysed by means of its trypsin and catechol oxidase/tyrosinase activity. After chemical modification, trypsin-pABA-Cu+2 preparation lost 63% of its trypsin activity and gained tyrosinase/catechol oxidase activity. The kinetic properties (Kcat, Km, Kcat/Km), optimum pH and temperature of the trypsin-pABA-Cu+2 complex was also investigated.  相似文献   

10.
As a tumor suppressor, p53 protein regulates the cell cycle and is involved in preventing tumorgenesis. The protein level of p53 is under the tight control of its negative regulator human double minute 2 (HDM2) via ubiquitination. Therefore, the design of inhibitors of HDM2 has attracted much interest of research on developing novel anticancer drugs. Presently, two classes of molecules, i.e., the 1,4-benzodiazepine-2,5-diones (BDPs) and N-Acylpolyamine (NAPA) derivatives were studied by three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling approaches including the comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) as promising p53-HDM2 inhibitors. Based on both the ligand-based and receptor-guided (docking) alignments, two optimal 3D-QSAR models were obtained with good predictive power of q 2 = 0.41, r 2 pred = 0.60 for BDPs, and q 2 = 0.414, r 2 pred = 0.69 for NAPA analogs, respectively. By analysis of the model and its related contour maps, it is revealed that the electrostatic interactions contributed much larger to the compound binding affinity than the steric effects. And the contour maps intuitively suggested where to modify the molecular structures in order to improve the binding affinity. In addition, molecular dynamics simulation (MD) study was also carried out on the dataset with purpose of exploring the detailed binding modes of ligand in the HDM2 binding pocket. Based on the CoMFA contour maps and MD-based docking analyses, some key structural aspects responsible for inhibitory activity of these two classes of compounds were concluded as follows: For BDPs, the R1 and R3 regions should have small electronegativity groups; substituents R2 and R4 should be larger, and R3 substituent mainly involves in H-bonds forming. For NAPA derivatives, bulky and electropositive groups in ring B and ring A, small substituent at region P is favorable for the inhibitory activity. The models and related information, we hope, may provide important insight into the inhibitor-p53-HDM2 interactions and be helpful for facilitating the design of novel potent inhibitors.  相似文献   

11.
12.
13.
Hydrogen peroxide (H2O2) inactivates mushroom tyrosinase in a biphasic manner, with the rate being faster in the first phase than in the second one. The inactivation of the enzyme is dependent on H2O2 concentration (in the range of 0.05–5.0 mM), but independent of the pH (in the range of 4.5–8.0). The rate of inactivation of mushroom tyrosinase by H2O2 is faster under anaerobic conditions (nitrogen) than under aerobic ones (air). Substrate analogues such as L-mimosine, L-phenylalanine, p-fluorophenylalanine and sodium benzoate protect the enzyme against inactivation by H2O2. Copper chelators such as tropolone and sodium azide also protect the enzyme. Under identical conditions, apotyrosinase is not inactivated by H2O2, unlike holotyrosinase. The inactivation of mushroom tyrosinase is not accelerated by an OH?dot generating system (Fe2+-EDTA-H2O2) nor is it protected by OHdot scavengers such as mannitol, urate, sodium formate and histidine. Exhaustive dialysis or incubation with catalase does not restore the activity of H2O2-inactivated enzyme. The data suggest that Cu2+ at the active site of mushroom tyrosinase is essential for the inactivation by H2O2. The inactivation does not occur via the OHdot radical in the bulk phase but probably via an enzyme-bound OHdot.  相似文献   

14.
The investigation of new Mn(II)-based MRI/Molecular Imaging probes responsive to the enzyme tyrosinase for potential diagnostic applications is herein described. The expression of the enzyme tyrosinase, an oxidoreductase, is up-regulated in melanoma cancer cells. Three novel ligands (L1, L2 and L3) were designed as modified acyclic polyaminocarboxylate chelates by introducing an l-tyrosine residue in place of an aminoacetate unit. The corresponding Mn(II) complexes were fully characterised by 1H NMR relaxometric techniques in aqueous media. The responsive activity towards the expression of tyrosinase was then assessed by monitoring the 1H 1/T1 relaxivity changes during incubation experiments in buffered solutions containing tyrosinase at different concentrations and in B16F10 melanoma cell homogenate. New insight on the mechanism of action of these systems was gained by measuring the magnetic field dependence of the relaxivity and ESR spectra of the incubated solutions. The systems developed showed responsive activity to tyrosinase with a relaxation enhancement spanning from 50% (MnL1) to 350% (MnL3) which augurs well for the development of diagnostic probes to detect melanoma cancer.  相似文献   

15.
Abstract

A series of umbelliferone analogues were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that some of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. Especially, 2-oxo-2-[(2-oxo-2H-chromen-7-yl)oxy]ethyl-2,4-dihydroxybenzoate (4e) bearing 2,4-dihydroxy substituted phenyl ring exhibited the most potent tyrosinase inhibitory activity with IC50 value 8.96?µM and IC50 value of kojic acid is 16.69. The inhibition mechanism analyzed by Lineweaver–Burk plots revealed that the type of inhibition of compound 4e on tyrosinase was non-competitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compounds 4c and 4e showed the highest binding affinity with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compounds 4c and 4e may serve as a structural template for the design and development of novel tyrosinase inhibitors.  相似文献   

16.
Four fatty acids (FA, palmitic, myristic, decanoic, hexanoic) were individually conjugated to the N-terminus of the α-MSH fragment analog, H-Asp5-His6-D-Phe7-Arg8-Trp9-Lys10-NH2. This resulted in enhanced potency of the conjugates (compared to the unconjugated melanotropin analog) as determined in the lizard skin bioassay and in the mouse melanoma cell tyrosinase bioassay. The shorter conjugates of hexanoic and decanoic acid were at least equipotent to α-MSH in the lizard skin bioassay, whereas the longer myristoyl and palmitoyl analogs were 100 times less active. The myristoyl and palmitoyl conjugates exhibited a “creeping” potency in the lizard skin bioassay—that is, potency of the peptides increased with time in contact with the skins. These observations may be related to the more lipid nature of these FA-conjugates. In the tyrosinase assay, the conjugates were 10–100 times more active than α-MSH or the unconjugated analog. Each of the FA-melanotropic peptide conjugates exhibited prolonged (residual) melanotropic activity in both the lizard skin and melanoma cell bioassays. In other words, after removal of the melanotropin conjugates from contact with the skins or cells, responses were still manifested for hours or days thereafter. As little as 1 hr of contact with melanoma cells resulted in enhanced enzyme activity as measured 48 hr later. Since the conjugates, but not H-[Ast5,D-Phe7,Lys10]α-MSH5-10-NH2, exhibited prolonged activity, the conversion of reversible agonists to irreversible agonists was demonstrated.  相似文献   

17.
A novel tyrosinase inhibitor, an arbutin derivative having undecylenic acid at the 6-position of its glucose moiety, was enzymatically synthesized. Its inhibitory activity was studied in vitro by using catechol and phenol as substrates. The IC50 value of the arbutin ester on tyrosinase using catechol (4 × 10−4 M) was 1% of that when arbutin (4 × 10−2 M) was used. Using phenol, IC50 of the arbutin ester (3 × 10−4 M) as substrate was 10% of that of arbutin (3 × 10−3 M). These results suggest that the arbutin ester inhibits the latter part of the tyrosinase reaction, which consists of hydroxylation and oxidation.  相似文献   

18.
Amino acid analyses of irradiated bovine superoxide dismutase solutions showed that only a few types of residues are destroyed by H and Br2? radicals and confirmed the indications obtained from work on free amino acids. Furthermore destruction of lysine - unexpected on the basis of data obtained in free solutions of amino acids exposed to Br2? - was observed in the copper-containing protein. Different extent of amino acid losses were observed depending on pH and presence or absence of copper. Correlation of these losses with residual enzymic activity permitted identification of some vital residues.  相似文献   

19.
20.
A series of hydroxy substituted amino chalcone compounds have been synthesized. These compounds were then evaluated for their inhibitory activities on tyrosinase and melanogenesis in murine B16F10 melanoma cell lines. The structures of the compounds synthesized were confirmed by 1H NMR, 13C NMR, FTIR and HRMS. Two novel amino chalcone compounds exhibited higher tyrosinase inhibitory activities (IC50 values of 9.75 μM and 7.82 μM respectively) than the control kojic acid (IC50: 22.83 μM). Kinetic studies revealed them to act as competitive tyrosinase inhibitors with their Ki values of 4.82 μM and 1.89 μM respectively. Both the compounds inhibited melanin production and tyrosinase activity in B16 cells. Docking results confirm that the active inhibitors strongly interact with mushroom tyrosinase residues. This study suggests that the depigmenting effect of novel amino chalcone compounds might be attributable to inhibition of tyrosinase activity, suggesting amino chalcones to be a promising candidate for use as depigmentation agents or as anti-browning food additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号