首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Fed-batch fermentations of Acidothermus cellulolyticus utilizing mixtures of cellulose and sugars were investigated for potential improvements in cellulase enzyme production. In these fermentations, we combined cellulose from several sources with various simple sugars at selected concentrations. The best source of cellulose for cellulase production was found to be ball-milled Solka Floc at 15 g/l. Fed-batch fermentations with cellobiose and Solka Floc increased cell mass only slightly, but succeeded in significantly enhancing cellulase synthesis compared to batch conditions. Maximum cellulase activities obtained from fermentations initiated with 2.5 g cellobiose/l and 15 g Solka Floc/l were 0.187 units (U)/ml, achieved by continuous feeding to maintain <0.1 g cellobiose/l, and 0.215 U/ml using the same initial medium when 2.5 g cellobiose/l was step-fed after the sugar was nearly consumed. In batch, dual-substrate systems consisting of simple sugars with Solka Floc, substrate inhibition was evident in terms of specific growth rates, specific productivity values, and maximum enzyme yields. Limiting concentrations of glucose or sucrose at 5 g/l, and cellobiose at 2.5 g/l, in the presence of Solka Floc, yielded cellulase activities of 0.134, 0.159, and 0.164 U/ml, respectively. Offprint requests to: M. E. Himmel  相似文献   

2.
The fermentation of various saccharides derived from cellulosic biomass to ethanol was examined in mono- and cocultures of Clostridium thermocellum strain LQRI and C. thermohydrosulfuricum strain 39E. C. thermohydrosulfuricum fermented glucose, cellobiose, and xylose, but not cellulose or xylan, and yielded ethanol/acetate ratios of >7.0. C. thermocellum fermented a variety of cellulosic substrates, glucose, and cellobiose, but not xylan or xylose, and yielded ethanol/acetate ratios of ~1.0. At nonlimiting cellulosic substrate concentrations (~1%), C. thermocellum cellulase hydrolysis products accumulated during monoculture fermentation of Solka Floc cellulose and included glucose, cellobiose, xylose, and xylobiose. A stable coculture that contained nearly equal numbers of C. thermocellum and C. thermohydrosulfuricum was established that fermented a variety of cellulosic substrates, and the ethanol yield observed was twofold higher than in C. thermocellum monoculture fermentations. The metabolic basis for the enhanced fermentation effectiveness of the coculture on Solka Floc cellulose included: the ability of C. thermocellum cellulase to hydrolyze α-cellulose and hemicellulose; the enhanced utilization of mono- and disaccharides by C. thermohydrosulfuricum; increased cellulose consumption; threefold increase in the ethanol production rate; and twofold decrease in the acetate production rate. The coculture actively fermented MN300 cellulose, Avicel, Solka Floc, SO2-treated wood, and steam-exploded wood. The highest ethanol yield obtained was 1.8 mol of ethanol per mol of anhydroglucose unit in MN300 cellulose.  相似文献   

3.
The Zymomonas mobilis genes for ethanol production have been integrated into the chromosome of Klebsiella oxytoca M5A1. The best of these constructs, strain P2, produced ethanol efficiently from cellobiose in addition to monomeric sugars. Utilization of cellobiose and cellotriose by this strain eliminated the requirement for external beta-glucosidase and reduced the amount of commercial cellulase needed to ferment Solka Floc SW40 (primarily crystalline cellulose). The addition of plasmids encoding endoglucanases from Clostridium thermocellum resulted in the intracellular accumulation of thermostable enzymes as coproducts with ethanol during fermentation. The best of these, strain P2(pCT603T) containing celD, was used to hydrolyze amorphous cellulose to cellobiose and produce ethanol in a two-stage process. Strain P2(pCT603T) was also tested in combination with commercial cellulases. Pretreatment of Solka Floc SW40 at 60 degrees C with endoglucanase D substantially reduced the amount of commercial cellulase required to ferment Solka Floc. The stimulatory effect of the endoglucanase D pretreatment may result from the hydrolysis of amorphous regions, exposing additional sites for attack by fungal cellulases. Since endoglucanase D functions as part of a complex in C. thermocellum, it is possible that this enzyme may complex with fungal enzymes or bind cellulose to produce a more open structure for hydrolysis.  相似文献   

4.
The Zymomonas mobilis genes for ethanol production have been integrated into the chromosome of Klebsiella oxytoca M5A1. The best of these constructs, strain P2, produced ethanol efficiently from cellobiose in addition to monomeric sugars. Utilization of cellobiose and cellotriose by this strain eliminated the requirement for external beta-glucosidase and reduced the amount of commercial cellulase needed to ferment Solka Floc SW40 (primarily crystalline cellulose). The addition of plasmids encoding endoglucanases from Clostridium thermocellum resulted in the intracellular accumulation of thermostable enzymes as coproducts with ethanol during fermentation. The best of these, strain P2(pCT603T) containing celD, was used to hydrolyze amorphous cellulose to cellobiose and produce ethanol in a two-stage process. Strain P2(pCT603T) was also tested in combination with commercial cellulases. Pretreatment of Solka Floc SW40 at 60 degrees C with endoglucanase D substantially reduced the amount of commercial cellulase required to ferment Solka Floc. The stimulatory effect of the endoglucanase D pretreatment may result from the hydrolysis of amorphous regions, exposing additional sites for attack by fungal cellulases. Since endoglucanase D functions as part of a complex in C. thermocellum, it is possible that this enzyme may complex with fungal enzymes or bind cellulose to produce a more open structure for hydrolysis.  相似文献   

5.
A complete cellulase from Penicillium pinophilum was evaluated for the hydrolysis of α-cellulose derived from steam exploded sugarcane bagasse and other cellulosic substrates. α-Cellulose at 1% substrate concentration was completely hydrolyzed by Penicillium cellulase within 3 h wherein at 10% the hydrolysis was 100% within 24 h with an enzyme loading of 10 FPU/g. The hydrolysate yielded glucose as major end product as analyzed by HPLC. Under similar conditions, hydrolysis of Sigmacell (microcrystalline cellulose), CP-123 (pulverized cellulose powder) and ball milled Solka Floc were 42%, 56% and 52%, respectively. Further the hydrolysis performance of Penicillium sp. cellulase is compared with Trichoderma reesei cellulase (AccelleraseTM 1000) from Genencore. The kinetics of hydrolysis with respect to enzyme and substrate concentration will be presented.  相似文献   

6.
The saccharification of the polysaccharides of barley, oat, and wheat straws and Solka Floc was studied using the extracellular enzyme system synthesized by mutant strain NTG III/6 of the fungus Penicillium pinophilum 87160iii. The enzymes obtained in cultures containing Solka Floc or barley straw as the carbon source were compared. Solka Floc at 10% (w/v) concentration was hydrolyzed to the extent of 70% in 72 h at 50 degrees C using a reaction mixture containing 7 filter paper units/mL of cellulase induced on Solka Floc, but hydrolysis was increased to 90% when the enzyme induced on barley straw was used. Under the same conditions, the polysaccharides in barley, oat, and wheat straws were hydrolyzed, respectively, in 72 h, to the extent of 42-48%, 62%, and 52%, but hydrolysis was increased to 93%, 100%, and 92%, respectively, after treatment of the substrates with alkaline-H(2)O(2) reagent at room temperature.  相似文献   

7.
The rates of enzymatic hydrolysis of pretreated rice straw and bagasse have been studied and compared with the hydrolysis rates of microcrystalline cellulose powder (MCCP) and Solka Floc. The effects of particle size reduction and enzyme loading on the rates of hydrolysis of rice straw and bagasse were also studied. It was found that the rates of hydrolysis of pretreated rice straw and bagasse are much higher than that of MCCP and Solka Floc. For both rice straw and bagasse, particle size reduction had very little effect in enhancing the rate of hydrolysis. Lignin present at <10% did not seem to hinder the accessibility of the enzyme to the cellulose surface. An enzyme loading > 40 Ug?1 had no effect on the hydrolysis rate of rice straw or bagasse.  相似文献   

8.
The commercial production of chemicals and fuels from lignocellulosic residues by enzymatic means still requires considerable research on both the technical and economic aspects. Two technical problems that have been identified as requiring further research are the recycle of the enzymes used in hydrolysis and the reuse of the re calcitrant cellulose remaining after incomplete hydrolysis. Enzyme recycle is required to lower the cost of the enzymes, while the reuse of the spent cellulose will lower the feedstock cost. The conversion process studied was a combined enzymatic hydrolysis and fermentation (CHF) procedure that utilized the cellulolytic enzymes derived from the fungus Trichoderma harzianum E58 and the yeast Saccharomyces cerevisiae. The rate and extent of hydrolysis and ethanol production was monitored as was the activity and hydrolytic potential of the enzymes remaining in the filtrate after the hydrolysis period. When a commercial cellulose was used as the substrate for a routine 2-day CHF process, 60% of the original treated, water-extracted aspenwood was used as the substrate, only 13% of the original filter paper activity was detected after a similar procedure. The combination of 60% spent enzymes with 40% fresh enzymes resulted in the production of 30% less reducing sugars than the original enzyme mixture. Since 100% hydrolysis of the cellulose portion is seldom accomplished in an enzymatic hydrolysis pro cess, the residual cellulose was used as a substrate for the growth of T. harzianum E58 and production of celulolytic enzymes. The residue remaining after the CHF process was used as a substrate for the production of the cellulolytic enzymes. The production of enzymes from the residue of the Solka Floc hydrolysis was greater than the production of enzymes from the original Solka Floc.  相似文献   

9.
Cellulases [see 1,4(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma reesei, Rutgers C30, can be semicontinuously produced in an aqueous two-phase system composed of dextran and poly(ethylene glycol) using Solka Floc BW 200 as substrate. When substrate was intermittently added along with fresh top phase, which replaced the withdrawn top phase containing the produced enzymes, a yield of 1740 U endo-β-d-glucanase/g cellulose and 59.3 FPU/g cellulose was extracted with the top phase. Without fresh substrate added, a yield of 3920 U endo-β-d-glucanase/g cellulose and 127.7 FPU/g cellulose was extracted after five runs.  相似文献   

10.
Partial acid hydrolysis was studied as a per treatment to enhance enzymatic hydrolysis, such a pretreatment was carried out in a continuous flow reactor on oak corn Stover, newsprint, and Solka Floc at temperatures ranging from 160 to 220°C, acid concentration ranging from 0 to 1.2%, and a fixed treatment time of 0.22 min. The resulting slurries and solids were than hydrolyzed with Trichoderma ressei QM 9414 cellulase at 50°C for 48 hr. For all substrates except Solka Floc, increased glucose yields were achieved during enzymatic hydrolysis of the pretreated materials as compared to hydrolysis of the original substrate. In several cases, after pretreatment, 100° of the potential glucose content of the substrate was converted to glucose after 24hr of enzymatic hydrolysis. It is felt that the increased glucose yields achieved after this pretreatment are due to acid's removal of hemicellulose, reduced degree of polymerization, and possibly due to a change in the crystal structure of the cellulose.  相似文献   

11.
Summary The enzyme loading needed to achieve substrate saturation appeared to be the most economical enzyme concentration to use for hydrolysis, based on percentage hydrolysis. Saturation was reached at 25 filter paper units per gram substrate on Solka Floc BW300, as determined by studying (a) initial adsorption of the cellulase preparation onto the substrate, (b) an actual hydrolysis or (c) a combined hydrolysis and fermentation (CHF) process. Initial adsorption of the cellulases onto the substrate can be used to determine the minimal cellulase requirements for efficient hydrolysis since enzymes initially adsorbed to the substrate have a strong role in governing the overall reaction. Trichoderma harzianum E58 produces high levels of -glucosidase and is able to cause high conversion of Solka Floc BW300 to glucose without the need for exogenous -glucosidase. End-product inhibition of the cellulase and -glucosidase can be more effectively reduced by employing a CHF process than by supplemental -glucosidase.Offprint requests to: C. M. Hogan  相似文献   

12.
The fermentation of 1.0% untreated bagasse under optimum cultural and nutritional conditions with Aspergillus terreus GN1 indicated that the maximum rate of protein and cellulase production could be obtained during three days of submerged fermentation. Even though 16.4% protein recovery, 0.55 units CMCase/mL, and 0.027 FPase units/mL were obtained on the seventh day, the rates of increase in protein recovery and cellulase production were slower than those obtained up to these days, which were 14.3% protein recovery, 0.45 units CMCase/mL, and 0.019 units FPase/mL. There was an initial lag in the utilization of cellulose up to two days due to the utilization of the water-soluble carbohydrate present in untreated bagasse. Cellulose utilization and water-soluble carbohydrate content during fermentation were correlated with protein recovery and enzyme production. The protein and cellulase production during three days fermentation with 1.0% untreated and treated bagasse were compared and the protein content of the total biomass was calculated and treated bagasse were compared and the protein content of the biomass was calculated into constituent protein contributed by the fungal mycelium and the under graded bagasse. The total biomass recovered with untreated and treated bagasse was 1020 and 820 mg/g bagasse substrate, respectively, and contained 14.3 and 20.6% crude protein, respectively. The contribution of fungal biomass and under graded bagasse was 309 and 711, and 373 and 447 mg/g untreated and treated bagasse substrates, respectively. In an 8-L-flask trial during three days of fermentation, the recovery of SCP and cellulase were 66 g and 32,400 units (Sigma) for treated bagasse and 82 g and 8200 units (Sigma) for untreated bagasse, respectively.  相似文献   

13.
The high cost of cellulases remains the most significant barrier to the economical production of bio-ethanol from lignocellulosic biomass. The goal of this study was to optimize cellulases and xylanase production by a local indigenous fungus strain (Aspergillus niger DWA8) using agricultural waste (oil palm frond [OPF]) as substrate. The enzyme production profile before optimization indicated that the highest carboxymethyl cellulose (CMCase), filter paper (FPase), and xylanase activities of 1.06 U/g, 2.55 U/g, and 2.93 U/g were obtained on day 5, day 4, and day 5 of fermentation, respectively. Response surface methodology was used to study the effects of several key process parameters in order to optimize cellulase production. Of the five physical and two chemical factors tested, only moisture content of 75% (w/w) and substrate amount of 2.5 g had statistically significant effect on enzymes production. Under optimized conditions of 2.5 g of substrate, 75% (w/w) moisture content, initial medium of pH 4.5, 1 × 106 spores/mL of inoculum, and incubation at ambient temperature (±30°C) without additional carbon and nitrogen, the highest CMCase, FPase, and xylanase activities obtained were 2.38 U/g, 2.47 U/g, and 5.23 U/g, respectively. Thus, the optimization process increased CMCase and xylanase production by 124.5 and 78.5%, respectively. Moreover, A. niger DWA8 produced reasonably good cellulase and xylanase titers using OPF as the substrate when compared with previous researcher finding. The enzymes produced by this process could be further use to hydrolyze biomass to generate reducing sugars, which are the feedstock for bioethanol production.  相似文献   

14.
Polylactides produced from renewable feedstocks, such as corn starch, are being developed as alternatives to plastics derived from petroleum. In addition to corn, other less expensive biomass resources can be readily converted to component sugars (glucose, xylose, etc.) by enzyme and/or chemical treatment for fermentation to optically pure lactic acid to reduce the cost of lactic acid. Lactic acid bacteria used by the industry lack the ability to ferment pentoses (hemicellulose-derived xylose and arabinose), and their growth and fermentation optima also differ from the optimal conditions for the activity of fungal cellulases required for depolymerization of cellulose. To reduce the overall cost of simultaneous saccharification and fermentation (SSF) of cellulose, we have isolated bacterial biocatalysts that can grow and ferment all sugars in the biomass at conditions that are also optimal for fungal cellulases. SSF of Solka Floc cellulose by one such isolate, Bacillus sp. strain 36D1, yielded l(+)-lactic acid at an optical purity higher than 95% with cellulase (Spezyme CE; Genencor International) added at about 10 FPU/g cellulose, with a product yield of about 90% of the expected maximum. Volumetric productivity of SSF to lactic acid was optimal between culture pH values of 4.5 and 5.5 at 50 degrees C. At a constant pH of 5.0, volumetric productivity of lactic acid was maximal at 55 degrees C. Strain 36D1 also co-fermented cellulose-derived glucose and sugar cane bagasse hemicellulose-derived xylose simultaneously (SSCF). In a batch SSCF of 40% acid-treated hemicellulose hydrolysate (over-limed) and 20 g/L Solka Floc cellulose, strain 36D1 produced about 35 g/L lactic acid in about 144 h with 15 FPU of Spezyme CE/g cellulose. The maximum volumetric productivity of lactic acid in this SSCF was 6.7 mmol/L (h). Cellulose-derived lactic acid contributed to about 30% of this total lactic acid. These results show that Bacillus sp. strain 36D1 is well-suited for simultaneous saccharification and co-fermentation of all of the biomass-derived sugars to lactic acid.  相似文献   

15.
Some kinetic parameters of the β-d-glucosidase (cellobiase, β-d-glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β-d-glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. d-Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. d-Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while d-fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β-d-glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

16.
Park EY  Naruse K  Kato T 《Bioresource technology》2011,102(10):6120-6127
Cellulase production in cultures of Acremonium cellulolyticus was significantly improved by using waste milk pack (MP) that had been pretreated with cellulase. When MP cellulose pretreated with cellulase (3 FPU/g MP) for 12 h was used as the sole carbon source for A. cellulolyticus culture in a 3-L fermentor, the cellulase activity was 16 FPU/ml. This was 25-fold higher (0.67 FPU/ml) compared with untreated MP cellulose and was comparable to that achieved with pure cellulose (Solka Floc). As the pretreatment progressed, roughness on the surface of untreated MP cellulose became to be smooth, but development of fissures on the surface of pretreated MP cellulose was observed. Cellulase pretreatment of MP increased both the accessibility of A. cellulolyticus to the surface and number of adsorption sites of cellulase on the surface of MP cellulose, leading to improved cellulase production in the A. cellulolyticus.  相似文献   

17.
Cellulolytic enzymes produced by Trichoderma sp. have attracted interest in converting the biomass to simple sugars in the production of cellulosic ethanol. In this work, a novel cellulolytic strain M501 was isolated and identified as T. gamsii by sequencing the ITS rDNA region. The production of cellulase (CMCase) by T. gamsii M501 was enhanced by employing statistical methods. The strain grown in the optimized production medium composed of mineral salts, microcrystalline cellulose (13.7 g/l), tryptone (4.8 g/l) and trace elements (2 mL/l) at pH 5.5 and 28 °C for 72 h produced a maximum CMCase of 61.3 U/mL. The optimized production medium also showed the other enzyme activity of FPU (2.6 U/mL), β-glucosidase (2.1 U/mL), xylanase (681 U/mL) and β- xylosidase (0.6 U/mL). The crude cellulase cocktail produced by T. gamsii M501 efficiently hydrolyzed alkali pretreated sugarcane bagasse with glucose and xylose yield of 78 % and 74 % respectively at 10 % solid loading. This study is the first of its kind research on biomass saccharification using T. gamsii cellulase cocktail. Therefore, the novel strain T. gamsii M501 would be useful for further development of an enzyme cocktail for cellulosic ethanol production.  相似文献   

18.
Cellulose hydrolysis by Celluclast 1.5L (Novozymes A/S, Denmark) enzyme preparation was studied in a special tubular membrane reactor, where a porous stainless steel filter was covered by a non-woven technical textile layer providing a fine, hairy surface for simultaneous adsorption of both the cellulose particles and the biocatalyst. Solka Floc BW 200 powder and Mavicell pellets were used as substrates in the process. Beyond the adsorption studies, the composite membrane was characterized, having 30 l/m2 bar h hydraulic permeability and an ability to retain both cellulose and enzyme, while glucose (product) permeated easily across the membrane. Using Solka Floc substrate experiments were carried out in both the hairy tubular and a “normal” flat sheet membrane bioreactor. It was found that 10% higher average conversion was possible to achieve in the special layered tubular unit compared to the “traditional” ultrafiltration membrane reactors. Finally, milled and sieved Mavicell pellets were applied as substrates, and 70% conversion was reached with the pretreated fraction.  相似文献   

19.
Cellulase production using corn cob residue from xylose manufacture as substrate was carried out by Trichoderma reesei ZU-02. It was found that on the same cellulose basis, the cellulase activity and yield produced on corn cob residue were comparable with that on purified cellulose. Under batch process, the optimum concentration of substrate was 40 g/l and the optimum C/N ratio was 8.0. In 500 ml flasks, cellulase activity reached 5.25 IU/ml (213.4 IU/g cellulose) after seven days' cultivation. In a 30 m(3) stirred fermenter for large scale production, cellulase and cellobiase activity were 5.48 IU/ml (222.8 IU/g cellulase) and 0.25 IU/ml (10.2 IU/g cellulose), respectively, after four days' submerged fermentation. The produced cellulase could effectively hydrolyze the corn cob residue, and the yield of enzymatic hydrolysis reached 90.4% on 10% corn cob residue (w/v) when the cellulase dosage was 20 IU/g substrate.  相似文献   

20.
Steam-exploded aspen has been examined as a candidate feedstock for both cellulose production and enzymatic hydrolysis of wood. Batch and fed-batch cultivation methods were evaluated and compared with previous experiments using ball-milled, crystalline cellulose (Solka Floe). Batch cultivation of Trichoderma reesei Rut C-30 on 9 wt% water-washed aspen yielded enzyme productivities and activities comparable to those obtained on Solka Floe (40 FP IU/L-h; 7. 5 FP IU/mL). Fed-batch cultivation of Rut C-30 resulted in higher enzyme productivities and tilers than batch cultivation (50 FP IU/L-h; 15 FP IU/mL). However, the overall enzyme production performance was lower than on Solka Floe at comparable cellulose feeding rates and concentrations. This may be due to the accumulation of steam explosion by-products and lignin in the fermentor.The hydroiysis of water-washed steam-exploded aspen was performed at different enzyme loadings and wood concentrations. Glucose production, using 10 and 15wt% suspension, showed that while glucose concentration increased with wood load, the yield of glucose derived from cellulose decreased. With 10wt% suspensions, it was possible to obtain a cellous conversion to glucose above 95%. Low cellulose levels in the hydrolyzates indicated that the filter paper activity ratios (approximately 1.5), a significant result since the fungus was grown exclusively on wood. mIt also suggested that the observed yield decrease is more likely to be caused by glucose than cellobiose inhibition of the enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号