首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The use of oncolytic viruses forms an appealing approach for cancer treatment. On the one hand the viruses replicate in, and kill, tumor cells, leading to their intra-tumoral amplification. On the other hand the viral infection will activate virus-directed immune responses, and may trigger immune responses directed against tumor cells and tumor antigens. To date, a wide variety of oncolytic viruses is being developed for use in cancer treatment. While the development of oncolytic viruses has often been initiated by researchers in academia and other public institutions, a large majority of the final product development and the testing of these products in clinical trials is industry led. As a consequence relatively few pre-clinical and clinical studies evaluated different oncolytic viruses in competitive side-by-side preclinical or clinical studies. In this review we will summarize the steps and considerations essential in the development and characterization of oncolytic viruses, and describe our multidisciplinary academic consortium, which involves a dozen departments in three different Dutch universities, collaborating in the development of oncolytic viruses. This consortium has the ambition to develop a small series of oncolytic viruses and to evaluate these in various cancers.  相似文献   

2.
    
The transformation of healthy cells to malignant often drives them to become inherently susceptible to viral infection as a trade-off to achieve uninhibited growth and immune escape. Enter oncolytic viruses (OVs), an exciting class of viruses that specifically infect cancer cells, leaving healthy tissue unharmed. Unfortunately, there is more to this story. Tumours are much more than a group of cancer cells, the surrounding tumour microenvironment (TME) comprises a collection of cells which influence and nourish the development and spread of the tumour. While initially quite promising, OV therapy has been met with a myriad of barriers due to the unwelcoming nature of the TME. Riddled with immunosuppressive factors and physical barriers, many tumours have proven impenetrable by OVs. Herein, we review the diverse array of approaches being used to target each component of the TME from enhancing entry into specific tumour types, breaking through the dense tumour stroma, eliminating cancer stem cells, and activating the immune system. We highlight the value of combination approaches which have led to complete successes in several in vivo models, some of which have entered clinical development.  相似文献   

3.
    
Oncolytic viruses infect, replicate in, and kill cancer cells selectively without harming normal cells. The rapidly expanding clinical development of oncolytic virotherapy is an exciting interdisciplinary field that provides insights into virology, oncology, and immunotherapy. Recent years have seen greater focus on rational design of cancer-selective viruses together with strategies to exploit their immunostimulatory capabilities, ultimately to develop powerful oncolytic cancer vaccines. However, despite great interest in the field, many important experiments are still conducted under optimum conditions in vitro, with many nutrients present in excess and with cellular stress kept to a minimum. Whilst this provides a convenient platform for cell culture, it bears little relation to the typical conditions found within a tumour in vivo, where cells are often subject to a range of metabolic and environmental stresses. Viral infection and cancer will both lead to production of metabolites that are also not present in media in vitro. Understanding how oncolytic viruses interact with cells exposed to more representative metabolic conditions in vitro represents an under-explored area of study that could provide valuable insight into the intelligent design of superior oncolytic viruses and help bridge the gap between bench and bedside. This review summarises the major metabolic pathways altered in cancer cells, during viral infection and highlights possible targets for future studies.  相似文献   

4.
    
BackgroundOne of the world's leading causes of death among females is breast cancer. Oncolytic viruses are promising anticancer therapy that can overcome resistance to current conventional therapies. Measles virus replicates in and destroys malignant cells without affecting healthy cells. The study aimed to evaluate the lives attenuated Measles virus vaccine against Iraqi patient derived breast cancer cells that have functional BRCA1/BRCA2 genes and compare its activity against international breast cancer MCF-7 and CAL-51 cell lines.MethodsThe virus was propagated in VERO-hSLAM slam cells. The MTT cytotoxicity assay used to test the virus's ability to kill three human breast cell lines (AMJ13), (MCF-7), and (CAL-51). The cytopathic effect of the measles virus was determined using an H&E stain. Immunocytochemistry assay using specific anti H protein monoclonal antibody for measles virus in the virally infected cells. Finally, apoptosis induction in the infected cells tested using double staining of acridine orange/propidium iodide.ResultsThe result shown that breast cancer cells are effectively infected and destroyed by live attenuated measles virus vaccine, and it caused a significant cytopathic effect in the infected cell lines after 48–72 h of infection with remarkable effect on AMJ13 cells (IC50 was 3.527 for AMJ13, when it was 5.079 and 9.171 for MCF-7 and CAL-51 respectively). Measles virus treatment induces apoptosis significantly in breast cancer cell lines compared with control cells.ConclusionMeV vaccine is useful and safe as anticancer therapy with a notable impact on the local Iraqi breast cancer AMJ13 cells.  相似文献   

5.
Recent advances in cancer immunotherapy have renewed interest in oncolytic viruses (OVs) as a synergistic platform for the development of novel antitumor strategies. Cancer cells adopt multiple mechanisms to evade and suppress antitumor immune responses, essentially establishing a non-immunogenic (‘cold’) tumor microenvironment (TME), with poor T-cell infiltration and low mutational burden. Limitations to the efficacy of immunotherapy still exist, especially for a variety of solid tumors, where new approaches are necessary to overcome physical barriers in the TME and to mitigate adverse effects associated with current immunotherapeutics. OVs offer an attractive alternative by inducing direct oncolysis, immunogenic cell death, and immune stimulation. These multimodal mechanisms make OVs well suited to reprogram non-immunogenic tumors and TME into inflamed, immunogenic (‘hot’) tumors; enhanced release of tumor antigens by dying cancer cells is expected to augment T-cell infiltration, thereby eliciting potent antitumor immunity. Advances in virus engineering and understanding of tumor biology have allowed the optimization of OV-tumor selectivity, oncolytic potency, and immune stimulation. However, OV antitumor activity is likely to achieve its greatest potential as part of combinatorial strategies with other immune or cancer therapeutics.  相似文献   

6.
溶瘤病毒(Oncolytic virus,OV)是可以靶向感染并杀伤肿瘤细胞的一类病毒,其中溶瘤I型单纯疱疹病毒(Oncolytic herpes simplex virus type 1,OHSV-1)是目前研究最多的溶瘤病毒之一,可通过多种策略进行构建,已有多种OHSV-1进入临床试验,大量结果显示其具有较好的安全性和有效性。本文主要介绍OHSV-1的分子生物学特性与优势、主要的开发及靶向性策略、各类OHSV-1的研究进展以及目前存在的问题等。  相似文献   

7.
    
Tumours employ a variety of immune-evasion and suppression mechanisms to impair development of functional tumor-specific T cells and subvert T cell-mediated immunity in the tumour microenvironment. Adoptive T cell therapy (ACT) aims to overcome these barriers and overwhelm tumor defenses with a bolus of T cells that were selectively expanded ex vivo. Although this strategy has been effective in liquid tumors and melanomas, many tumors appear to be resistant to ACT. Several factors are thought to play into this resistance, including poor engraftment and persistence of transferred cells, tumour cell heterogeneity and antigen loss, poor immune cell recruitment and infiltration into the tumour, and susceptibility to local immunosuppression in the tumor microenvironment. Oncolytic viruses (OV) have been identified as powerful stimulators of the anti-tumour immune response. As such, OVs are inherently well-positioned to act in synergy with ACT to bolster the anti-tumour T cell response. Further, OV vaccines, wherein tumour-associated antigens are encoded into the viral backbone, have proven to be remarkable in boosting antigen-specific T cell response. Pre-clinical studies have revealed remarkable therapeutic outcomes when OV vaccines are paired with ACT. In this scenario, OV vaccines are thought to function in a “push and pull” manner, where push refers to expanding T cells in the periphery and pull refers to recruiting those cells into the tumour that has been rendered amenable to T cell attack by the actions of the OV. In this review, we discuss barriers that limit eradication of tumors by T cells, highlight attributes of OVs that break down these barriers and present strategies for rational combinations of ACT with OV vaccines.  相似文献   

8.
Recent developments in tumour treatment had focused on virotherapies that were currently revolutionising new innovated treatment pathways. This study focused on the fabrication of oncolytic adenoviral vector (Ad) nanosphere that self-targeted at lung tumour cells (A549), utilising the immune response for upper respiratory tract infection, caused by the Ad infection. This system was dependent upon T-cell immune response, surface charge and blood metabolism. Oncolytic Ad attacked lung A549 tumour cells by incorporated its own DNA to replace A549's, the triggered immune response generated T-cells also further attack A549. Direct Ad injection was demonstrated to be lethal and prohibited in vivo. In this research a multifunctional principal using polyprotein surface precipitation technique (PSP) whist maintaining biological controls for self-assembly polyprotein Ad nanosphere both biocompatible and reproducible, was demonstrated as a result of the enhanced transfection efficiency and a successful multifunctional drug delivery system for virotherapy.  相似文献   

9.
    
Oncolytic virus (OV) is increasingly being recognized as a novel vector in cancer immunotherapy. Increasing evidence suggests that OV has the ability to change the immune status of tumor microenvironment, so called transformation of ‘cold’ tumors into ‘hot’ tumors. The improved anti-tumor immunity can be induced by OV and further enhanced through the combination of various immunomodulators. The Neo-2/15 is a newly de novo synthesized cytokine that functions as both IL-2 and IL-15. However, it specifically lacks the binding site of IL-2 receptor α subunit (CD25), therefore unable to induce the Treg proliferation. In present study, a recombinant vesicular stomatitis virus expressing the Neo-2/15 (VSVM51R-Neo-2/15) was generated. Intratumoral delivery of VSVM51R-Neo-2/15 efficiently inhibited tumor growth in mice without causing the IL-2-related toxicity previously observed in clinic. Moreover, treatment with VSVM51R-Neo-2/15 increased the number of activated CD8+ T cells but not Treg cells in tumors. More tumor-bearing mice were survival with VSVM51R-Neo-2/15 treatment, and the surviving mice displayed enhanced protection against tumor cell rechallenge due to the induced anti-tumor immunity. In addition, combination therapy of OV and anti-PD-L1 immune checkpoint inhibitors further enhanced the anti-tumor immune response. These findings suggest that our novel VSVM51R-Neo-2/15 can effectively inhibit the tumor growth and enhance the sensitivity to immune checkpoint inhibitors, providing promising attempts for further clinical trials.  相似文献   

10.
11.
目的 分析浙江省流行的麻疹病毒(MV)的基因特征,为更好地防控麻疹提供科学参考。方法 从GenBank检索并下载浙江省所有麻疹病毒株、中国麻疹疫苗株和WHO推荐参考株的血凝素蛋白(H)和核蛋白(N)的基因组序列,利用MEGA6.0软件进行比对分析,构建种系进化树,确定浙江省麻疹病毒流行的基因型别,并进行同源性和基因变异分析。结果 浙江省麻疹病毒以H1基因型为主(27株),其他基因型为辅(2株B3型)。H1a亚型(21/27株)占绝对优势,其次为H1b亚型(6/27株)。浙江省所有毒株间H蛋白的氨基酸同源性为96.9%~100.0%,与疫苗株Shanghai-191和Changchun-47的同源性均为95.0%~96.0%。浙江省所有毒株间N蛋白羧基末端的氨基酸同源性为82.7%~100.0%,与疫苗株Shanghai-191的同源性为85.8%~89.5%,与疫苗株Changchun-47的同源性为87.3%~91.0%。结论 麻疹病毒H1基因型为浙江省麻疹流行的优势株,与现行参考疫苗株(A基因型)差异较大,因此针对麻疹病毒H1基因型疫苗的研制是今后我省麻疹病毒防控的关键。  相似文献   

12.
Replicating oncolytic viruses are able to infect and lyse cancer cells and spread through the tumor, while leaving normal cells largely unharmed. This makes them potentially useful in cancer therapy, and a variety of viruses have shown promising results in clinical trials. Nevertheless, consistent success remains elusive and the correlates of success have been the subject of investigation, both from an experimental and a mathematical point of view. Mathematical modeling of oncolytic virus therapy is often limited by the fact that the predicted dynamics depend strongly on particular mathematical terms in the model, the nature of which remains uncertain. We aim to address this issue in the context of ODE modeling, by formulating a general computational framework that is independent of particular mathematical expressions. By analyzing this framework, we find some new insights into the conditions for successful virus therapy. We find that depending on our assumptions about the virus spread, there can be two distinct types of dynamics. In models of the first type (the “fast spread” models), we predict that the viruses can eliminate the tumor if the viral replication rate is sufficiently high. The second type of models is characterized by a suboptimal spread (the “slow spread” models). For such models, the simulated treatment may fail, even for very high viral replication rates. Our methodology can be used to study the dynamics of many biological systems, and thus has implications beyond the study of virus therapy of cancers.  相似文献   

13.
    
Measles virus (MV) with attenuated pathogenicity has potential as oncolytic agent. However, the clinical translation of this therapy concept has one major hurdle: the production of sufficient amounts of infectious oncolytic MV particles. The current study describes oncolytic MV production in Vero cells grown on microcarrier using serum‐free medium. The impact of the number of harvests, cell concentration at infection (CCI), multiplicity of infection (MOI), and temperature on MV production was determined in different production scales/systems (static T‐flasks, dynamic spinner, and bioreactor system) and modes (batch, repeated‐batch, and perfusion). Cell growth, metabolic, and production kinetics were analyzed. It was found that the number of harvests had the strongest positive impact on MV yield in each production scale, and that high temperatures affected MV yield adversely. Moderate MV titers were produced in T‐ and spinner flasks at 37°C (~107 TCID50 mL?1, where TCID50 is tissue culture infective doses 50%), but stirred tank reactor (STR) MV production at 37°C yielded up to 10 000‐fold lower MV titers. In contrast, at lower temperatures (32°C, 27°C), 1.4 × 107 TCID50 mL?1 were achieved in the STR. Variations in MOI and CCI had almost no influence on MV production yield. The current study improves oncolytic MV production process understanding and identifies process bottlenecks for large‐scale production.  相似文献   

14.
    
The study of measles virus (MeV) as a cancer immunotherapeutic was prompted by clinical observations of leukemia and lymphoma regressions in patients following measles virus infection in the 1970s and 1980s. Since then, numerous preclinical studies have confirmed the oncolytic activity of MeV vaccine strains as well as their potential to promote long-lasting tumor-specific immune responses. Early clinical data indicate that some of these effects may translate to the treatment of cancer patients. In this review, we provide a structured summary of current evidence for the anti-tumor immune activity of oncolytic MeV. We start with an overview of MeV oncolysis and MeV-induced immunogenic cell death. Next, we relate findings on MeV-mediated activation of antigen-presenting cells, T cell priming and effector mechanisms to the cancer immunity cycle. We discuss additional factors in the tumor microenvironment which are modulated by MeV treatment as well as the role of anti-viral immunity. Based on these findings, we highlight avenues for rational enhancement of oncolytic MeV immunotherapy by vector engineering. We further point to advantages and drawbacks of experimental models and propose areas warranting promising research. Lastly, we review the available immunomonitoring data from several Phase I clinical trials. While this review presents data for MeV, the concepts and principles introduced herein apply to other oncolytic viruses, providing a framework to assess novel cancer immunotherapies.  相似文献   

15.
安全、有效、具有靶向性的病毒载体是基因治疗药物在临床上得以应用的关键。AAV是微小病毒科的一种,它能以其低的免疫原性及广泛的宿主性对人及灵长类进行感染,并且经过改造后的AAV病毒能更有效的靶向性特定组织及肿瘤细胞。重点对AAV病毒载体的衣壳蛋白基因工程修饰、转录调控修饰和转录后microRNA干扰表达修饰及衣壳蛋白化学修饰靶向机理,以及改造方法进行介绍。修饰后的AAV能改善其感染引起的性免疫反应、转染效率和肿瘤靶向性。  相似文献   

16.
Subclinical doses of Paclitaxel (PTX) given 1 day prior to a HER-2/neu (neu)-targeted, granulocyte-macrophage colony stimulating factor (GM-CSF)-secreting whole-cell vaccine enhances neu-specific T cell responses and slows neu+ tumor growth in tolerized HER-2/neu (neu-N) mice. We demonstrate that co-administration of PTX and Cyclophosphamide (CY) synergizes to slow tumor growth, and that in vitro, DC precursors exposed to PTX before LPS maturation results in greater co-stimulatory molecule expression, IL-12 production, and the ability to induce CD8+ T cells with enhanced lytic activity against neu+ tumors. PTX treatment also enhances maturation marker expression on CD11c+ DCs isolated from vaccine-draining lymph nodes. Ex vivo, these DCs activate CD8+ T cells with greater lytic capability than DC’s from vaccine alone-treated neu-N mice. Finally, PTX treatment results in enhanced antigen-specific, IFN-γ-secreting CD8+ T cells in vivo. Thus, administration of PTX with a tumor vaccine improves T cell priming through enhanced maturation of DC.  相似文献   

17.
刘旭  张东亮  刘文虎 《生物磁学》2011,(7):1382-1384
溶瘤腺病毒是一组通过基因工程构建的腺病毒、能够选择性在肿瘤细胞中完成感染-复制周期,从而特异性地杀伤、溶解肿瘤而不伤及其他正常细胞、组织,其作用机制包括:通过基因的缺失突变、插入特异性启动子、以及通过病毒结构蛋白的修饰等方面,实现肿瘤靶向治疗作用。本文就相关研究及进展进行综述。  相似文献   

18.
溶瘤腺病毒是一组通过基因工程构建的腺病毒、能够选择性在肿瘤细胞中完成感染-复制周期,从而特异性地杀伤、溶解肿瘤而不伤及其他正常细胞、组织,其作用机制包括:通过基因的缺失突变、插入特异性启动子、以及通过病毒结构蛋白的修饰等方面,实现肿瘤靶向治疗作用。本文就相关研究及进展进行综述。  相似文献   

19.
目的:探讨溶瘤腺病毒(ZD55-gene)作为载体携带外源抗癌基因(XAF1)抗肝癌移植瘤的生长及其安全性。方法:抽提溶瘤腺病毒ZD55-XAF1的基因组DNA,PCR扩增鉴定病毒;细菌平板培养和支原体检测试剂盒检测细胞有无细菌、支原体污染;通过荷瘤小鼠动物实验,观察溶瘤腺病毒ZD55-XAF1对肝癌移植瘤生长的抑制、小鼠的临床反应指标、血清肝毒性指标、各脏器组织中的病毒残留分布及病理切片观察。结果:细胞培养过程无细菌和支原体污染;较对照组,受试小鼠血清肝酶AST活性上升(P0.05),而ALT和ALP活性基本无变化(P0.05);PCR检测各脏器均有病毒基因组DNA存在;HE染色显示受试小鼠各脏器具有不同程度的损伤,病毒处理对肿瘤细胞具有明显的杀伤效果,而受试小鼠的临床反应并无明显异常。结论:溶瘤腺病毒ZD55-XAF1能够抑制肿瘤生长,杀死肿瘤细胞,对小鼠血清肝酶活性影响较小而对各脏器有不同程度的轻微损伤,作为癌症基因治疗载体有潜在的应用价值但其安全性还有待提高。  相似文献   

20.
    
There are more than 500 kinases in the human genome, many of which are oncogenic once constitutively activated. Fortunately, numerous hyperactive kinases are druggable, and several targeted small molecule kinase inhibitors have demonstrated impressive clinical benefits in cancer treatment. However, their often cytostatic rather than cytotoxic effect on cancer cells, and the development of resistance mechanisms, remain significant limitations to these targeted therapies. Oncolytic viruses are an emerging class of immunotherapeutic agents with a specific oncotropic nature and excellent safety profile, highlighting them as a promising alternative to conventional therapeutic modalities. Nonetheless, the clinical efficacy of oncolytic virotherapy is challenged by immunological and physical barriers that limit viral delivery, replication, and spread within tumours. Several of these barriers are often associated with oncogenic kinase activity and, in some cases, worsened by the action of oncolytic viruses on kinase signaling during infection. What if inhibiting these kinases could potentiate the cancer-lytic and anti-tumour immune stimulating properties of oncolytic virotherapies? This could represent a paradigm shift in the use of specific kinase inhibitors in the clinic and provide a novel therapeutic approach to the treatment of cancers. A phase III clinical trial combining the oncolytic Vaccinia virus Pexa-Vec with the kinase inhibitor Sorafenib was initiated. While this trial failed to show any benefits over Sorafenib monotherapy in patients with advanced liver cancer, several pre-clinical studies demonstrate that targeting kinases combined with oncolytic viruses have synergistic effects highlighting this strategy as a unique avenue to cancer therapy. Herein, we review the combinations of oncolytic viruses with kinase inhibitors reported in the literature and discuss the clinical opportunities that represent these pharmacoviral approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号