首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mytichitin-CB was isolated from Mytilus coruscus in 2014. This antimicrobial peptide shows a weak inhibitory effect on Gram-negative bacteria but inhibits the growth of Gram-positive bacteria and fungi efficiently. Here, a C-terminal hemagglutinin and 6×Histidine (HA-6×His) double tagged three tandem repeats of Mytichitin-CB (3×Mytichitin-CB) with a molecular weight of about 21.5 kDa was expressed in Chlamydomonas reinhardtii. The recombinant 3×Mytichitin-CB was stably expressed following continuous sixth passages of cells and inhibited the growth of both Gram-negative and Gram-positive bacteria at maximum inhibitory concentration (MIC) values between 30 and 50 μg/mL. 3×Mytichitin-CB was stable in terms of its antibacterial activity when treated by a wide range of temperatures and pHs and was resistant to digestion by various proteases. C. reinhardtii-derived 3×Mytichitin-CB had low hemolytic activity and cell cytotoxicity. Moreover, 3×Mytichitin-CB efficiently caused changes on the cell morphology by destroying membrane integrity of the tested bacteria. Our data thus, for the first time, show that C. reinhardtii is a suitable host for stably expressing recombinant 3×Mytichitin-CB, which possesses potent antibacterial properties.  相似文献   

2.
The antimicrobial peptide ToAMP4 was isolated from Taraxacum officinale Wigg. flowers. Bacterial-expressed ToAMP4 showed antifungal activity but was inactive against bacteria. In this study, Chlamydomonas reinhardtii was used to express a C-terminal hemagglutinin (HA) and 6×His double tagged three repeats of ToAMP4 (3×ToAMP4)and the 3×ToAMP4-expressing cells were screened to express 3×ToAMP4 stably following continuous passaging for six months. Finally, a yield of 0.32 % of total soluble protein was achieved for 3×ToAMP4, which inhibits the growth of bacteria of both Gram-positive and Gram-negative at a minimum inhibitory concentration between 40 and 50 μg/ml. C. reinhardtii-derived 3×ToAMP4 maintained high stability in a wide range of temperature and pHs, tolerated to protease digestion at different extents and showed low hemolytic activity and cytotoxicity. Moreover, C. reinhardtii-expressed 3×ToAMP4 effectively caused damage on the membrane of targeted bacterial cells. In conclusion, our data show that C. reinhardtii has the potential to be used as a platform for the production of bioactive ToAMP4.  相似文献   

3.
This study, for the first time, demonstrated an unprecedented approach for the green synthesis of gold (Au) nanoparticles (NPs) using the polysaccharide of Spirulina maxima as a reducing agent. Time-kill kinetic analysis was used to evaluate the antifungal activity of the green synthesized Au NPs against the pathogenic Candida albicans (C. albicans). The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were found to be 32 μg/mL and 64 μg/mL, respectively. Ultra-structural analysis indicated prominent damage on cell wall of the C. albicans after Au NPs treatment, and suggested that the treatment could increase the membrane permeability and disintegration of cells leading to cellular death. The results of propidium iodide (PI) uptake assay showed the higher level of cell death in Au NPs treated C. albicans cells, further confirming the loss of plasma membrane integrity. Cytotoxicity analysis of Au NPs on HEK293T and A549 cells showed no cytotoxic effect up to 64 μg/mL of Au NPs concentration, indicating the potential use in in vivo studies. Also, the recovery of C. albicans infected zebrafish after Au NPs therapy suggest green synthesized Au NPs from S. maxima polysaccharide as a prospective anticandidal agent.  相似文献   

4.
The purpose of this study was to prepare various novel amide tethered ciprofloxacin-1,2,3-triazole-isatin hybrids 7a-l, and evaluate their in vitro anti-mycobacterial activity as well as cytotoxicity in VERO cells. The synthesized hybrids showed considerable in vitro activity against both MTB H37Rv and MDR-MTB with MIC of 0.12 to 32 μg/mL, and acceptable cytotoxicity in VERO cells (CC50: 8.0–>128.0 μg/mL). In particular, the most active hybrid 7a (MICMTB H37Rv: 0.5 μg/mL and MICMDR-MTB: 0.12 μg/mL) had the activity in the same level with the first-line anti-tubercular agents isoniazid (MIC: 0.12 μg/mL) and rifampicin (MIC: 0.25 μg/mL), and it was 2-fold more active than the parent ciprofloxacin (MIC: 1.0 μg/mL) against MTB H37Rv, and ≥16 folds more potent than ciprofloxacin (MIC: 2.0 μg/mL), isoniazid (MIC: >64 μg/mL) and rifampicin (MIC: >64 μg/mL) against MDR-MTB. Moreover, hybrid 7a (CC50: 16.0 μg/mL) also displayed considerable cytotoxicity towards VERO cells. Thus, hybrid 7a could act as a platform for further investigations.  相似文献   

5.

Background

Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies.

Methods

The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide.

Results

Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 μg/ml for yeasts, 125 to 500 μg/ml for Aspergillus species, and 7.81 to 62.5 μg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 × MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 × MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 × to 8 × MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol.

Conclusions

The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections.  相似文献   

6.
By feeding 1-methyl-l-tryptophan (1-MT) into cultures of the arthropod-associated fungus Chaetomium globosum TW1-1, three novel cytochalasan alkaloids, termed as armochaetoglosins A–C (13), together with five known analogues, namely prochaetoglobosin I (4), chaetoglobosin T (5), chaetoglobosin C (6), armochaetoglobin Y (7), and chaetoglobosin Vb (8), were isolated and characterized. Their structures including absolute configurations were elucidated by means of NMR spectroscopy, single-crystal X-ray crystallography, and comparison of the experimental electronic circular dichroism (ECD) spectra. Structurally, compounds 13 represented the first examples of 1′-N-methyl-chaetoglobosins, which were possibly biosynthesized from the additive 1-MT rather than tryptophan. Additionally, compound 3 showed the highest antibacterial activity against K. pneumoniae and ESBL-E. coli with MIC values of 4.0 μg/mL and 16.0 μg/mL, respectively, wherein the inhibitory effect of 3 against K. pneumoniae was stronger than that of the clinically used antibiotic meropenem, with an MIC value of 8 μg/mL. Our findings may provide new chemical templates for the development of new antibacterial agents against drug-resistant microbial pathogens.  相似文献   

7.
Propolis is rich in diverse bioactive compounds. Propolis samples were collected from three localities of Cameroon and used in the study. Column chromatography separation of propolis MeOH:DCM (50:50) extracts yielded a new isoflavonol, 2-hydroxy-8-prenylbiochanin A (1) alongside 2′,3′-dihydroxypropyltetraeicosanoate (2) and triacontyl p-coumarate (3) isolated from propolis for first time together with seven compounds: β-amyrine (4), oleanolic acid (5), β-amyrine acetate (6), lupeol (7), betulinic acid (8), lupeol acetate (9) and lupenone (10). These compounds were tested for their inhibitory effect on oxidative burst where intracellular reactive oxygen species (ROS) were produced from zymosan stimulated human whole blood phagocytes and on production of nitric oxide (NO) from lipopolysaccharide (LPS) stimulated J774.2 mouse macrophages. The cytotoxicity of these compounds was evaluated on NIH-3 T3 normal mouse fibroblast cells, antiradical potential on 2,2-diphenyl-1-picrylhydrazylhydrazyl (DPPH·) as well as their anti-yeast potential on four selected candida species. Compound 1 showed higher NO inhibition (IC50 = 23.3 ± 0.3 µg/mL) than standard compound L-NMMA (IC50 = 24.2 ± 0.8 µg/mL). Higher ROS inhibition was shown by compounds 6 (IC50 = 4.3 ± 0.3 µg/mL) and 9 (IC50 = 1.1 ± 0.1 µg/mL) than Ibuprofen (IC50 = 11.2 ± 1.9 µg/mL). Furthermore, compound 1 displayed moderate level of cytotoxicity on NIH-3 T3 cells, with IC50 = 5.8 ± 0.3 µg/mL compared to the cyclohexamide IC50 = 0.13 ± 0.02 µg/mL. Compound 3 showed lower antifungal activity on Candida krusei and Candida glabrata, MIC of 125 μg/mL on each strain compared to 50 μg/mL for fuconazole. The extracts showed low antifungal activities ranging from 250 to 500 μg/mL on C. albicans, C. krusei and C. glabrata and the values of MIC on Candida parapsilosis were 500 μg/mL and above. DPPH* scavenging activity was exhibited by compounds 1 (IC50 = 15.653 ± 0.335 μg/mL) and 3 (IC50 = 89.077 ± 24.875 μg/mL) compared to Vitamin C (IC50 = 3.343 ± 0.271 μg/mL) while extracts showed moderate antiradical activities with IC50 values ranging from 309.31 ± 2.465 to 635.52 ± 11.05 µg/mL. These results indicate that compounds 1, 6 and 9 are potent anti-inflammatory drug candidates while 1 and 3 could be potent antioxidant drugs.  相似文献   

8.
The capacity of Origanum vulgare L. essential oil (OVEO) and its majority compound, carvacrol (CAR), to induce direct tolerance and cross-tolerance in Staphylococcus aureus against high temperature (45 °C), lactic acid (pH 5.2) and NaCl (10 g/100 mL) was assessed. Overnight exposure of S. aureus to sublethal concentrations (1/2 MIC, 1/4 MIC) of either OVEO or CAR in meat broth revealed no induction of direct protection. S. aureus cells pre-adapted to OVEO or CAR showed no induction of cross-protection to high temperature, lactic acid or NaCl. Cells subjected to 24 h cycles of adaptation in increasing amounts (1/2 MIC to 2 × MIC) of OVEO or CAR showed no increase in direct tolerance. These results revealed a lack of induction of direct protection or cross-protection in S. aureus exposed to sublethal amounts of OVEO or CAR in meat-based broth, as determined by monitoring cell survival and growth behavior.  相似文献   

9.
A series of novel 2,3-dihydro-4H-1-benzoselenin-4-one (thio)semicarbazone derivatives were designed and synthesized by using molecular hybridization approach. All the target compounds were characterized by HRMS and NMR and evaluated in vitro antifungal activity against five pathogenic strains. In comparison with precursor selenochroman-4-ones, the hybrid molecules in this study showed significant improvement in antifungal activities. Notably, compound B8 showed significant antifungal activity against other strains excluding Aspergillus fumigatus (0.25 μg/mL on Candida albicans, 2 μg/mL on Cryptococcus neoformans, 8 μg/mL on Candida zeylanoides and 2 μg/mL on fluconazole-sensitive strains of Candida albicans). Moreover, compounds B8, B9 and C2 also displayed most potent activities against four fluconazole-resistance strains. Especially the MIC values of the hybrid molecule B8 against fluconazole-resistant strains were in the range of 0.5–2 μg/mL. Therefore, the molecular hybridization approach in this study provided new ideas for the development of antifungal drug.  相似文献   

10.
The unicellular green alga Chlamydomonas reinhardtii possesses a CO2-concentrating mechanism. In order to measure the CO2 permeability coefficients of the plasma membranes (PMs), carbonic anhydrase (CA) loaded vesicles were isolated from C. reinhardtii grown either in air enriched with 50 mL CO2 · L?1} (high-Ci cells) or in ambient air (350 μL CO2 · L?1}; low-Ci cells). Marker-enzyme measurements indicated less than 1% contamination with thylakoid and mitochondrial membranes, and that more than 90% of the PMs from high and low-Ci cells were orientated right-side-out. The PMs appeared to be sealed as judged from the ability of vesicles to accumulate [14C]acetate along a proton gradient for at least 10 min. Carbonic anhydrase-loaded PMs from high and low-Ci cells of C. reinhardtii were used to measure the exchange of 18O between doubly labelled CO2 (13C18O2) and H2O in stirred suspensions by mass spectrometry. Analysis of the kinetics of the 18O depletion from 13C18O2 in the external medium provides a powerful tool to study CO2 diffusion across the PM to the active site of CA which catalyses 18O exchange only inside the vesicles but not in the external medium (Silverman et al., 1976, J Biol Chem 251: 4428–4435). The activity of CA within loaded PM vesicles was sufficient to speed-up the 18O loss to H2O to 45360–128800 times the uncatalysed rate, depending on the efficiency of CA-loading and PM isolation. From the 18O-depletion kinetics performed at pH 7.3 and 7.8, CO2 permeability coefficients of 0.76 and 1.49·10?3} cm·s?1}, respectively, were calculated for high Ci cells. The corresponding values for low-Ci cells were 1.21 and 1.8·10?3} cm·s?1}. The implications of the similar and rather high CO2 permeability coefficients (low CO2 resistance) in high and low-Ci cells for the COi-concentrating mechanism of C. reinhardtii are discussed.  相似文献   

11.
A series of novel (E)-4-oxo-2-crotonamide derivatives were designed and synthesized to find potent antituberculosis agents. All the target compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv(MTB). Results reveal that 4-phenyl moiety at part A and short methyl group at part C were found to be favorable. Most of the derivatives displayed promising activity against MTB with MIC ranging from 0.125 to 4?µg/mL. Especially, compound IIIa16 was found to have the best activity with MIC of 0.125?μg/mL against MTB and with MIC in the range of 0.05–0.48?µg/mL against drug-resistant clinical MTB isolates.  相似文献   

12.
The cellular uptake and antimycobacterial activity of usnic acid (UA) and usnic acid-loaded liposomes (UA-LIPOs) were assessed on J774 macrophages. The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of UA and UA-LIPO against Mycobacterium tuberculosis were determined. Concentrations required to inhibit 50% of cell proliferation (IC50) were 22.5 (±0.60) and 12.5 (±0.26) μg/ml, for UA and UA-LIPO, respectively. The MICs of UA and UA-LIPO were 6.5 and 5.8 μg/mL, respectively. The MBC of UA-LIPO was twice as low (16 μg/mL) as that of UA (32 μg/mL). An improvement in the intracellular uptake of UA-LIPO was found (21.6 × 104 ± 28.3 × 102 c.p.s), in comparison with UA (9.5 × 104 ± 11.4 × 102 c.p.s). In addition, UA-LIPO remains much longer inside macrophages (30 hours). All data obtained from the encapsulation of usnic acid into liposomes as a drug delivery system (DDS) indicate a strong interaction between UA-liposomes and J774 macrophages, thereby facilitating UA penetration into cells. Considering such a process as ruling the Mycobacterium-transfection by magrophages, we could state that associating UA with this DDS leads to an improvement in its antimycobacterial activity.  相似文献   

13.
The distribution spaces at equilibrium for 3H2O, [14C]urea and 3-O-[14C]-methylglucose were measured in white fat cells using centrifugation through silicone oil at 2500 × g; no significant differences were observed. l-[14C] Glucose added immediately before the centrifugation was used as a marker for the extracellular water space. The calculated intracellular water content of the cells after the centrifugation through oil (e.g. 3H2O space minus l-[14C] glucose space) is an unbiased measure of the water content of the cells in suspension as judged by the following criteria: (1) The intracellular distribution space for 3-O-[14C]methylglucose at equilibrium (methylglucose space minus l-glucose space) was not different from that calculated from a methylglucose wash-out curve. (2) The intracellular content of l-[14C]glucose (half time of efflux about 60 min) in cells preloaded during incubation of the tissue with collagenase was not different in cells recovered by (a) centrifugation through oil at 2500 × g, (b) centrifugation through oil at 600 × g, (c) centrifugation at 600 × g in the absence of oil and (d) filtration on Millipore filters.The intracellular content of water determined on cells from single rats weighing 120–150 g was 2.75 ± 0.55 μl/100 μl fat cells (± S.D., n = 30). The intracellular content of potassium, determined on cells from the same rats, was 252 ± 62 nmols/100 μl fat cells (± S.D., n = 30). The concentration of potassium in the intracellular water was calculated as 104 ± 15 mM (± S.D., n = 30).  相似文献   

14.
A series of novel benzofuran-isatin hybrids 6a–m tethered through different length alkyl linkers propylene, butylene, pentylene and hexylene were designed, synthesized and evaluated for their in vitro anti-mycobacterial activities against both drug-susceptible and multi-drug resistant (MDR) Mycobacterium tuberculosis (MTB) and cytotoxicity towards VERO cells. All hybrids with acceptable cytotoxicity in VERO cells (CC50: 64 to >1024 μg/mL) also exhibited considerable anti-mycobacterial activities against both drug-susceptible and MDR-MTB strains with MIC in a range of 0.125–4 μg/mL. The SAR indicated that the length of the linker played a pivotal role on the activity, and the longer linker could enhance the activity. The most active hybrid 6d (MIC: 0.125 and 0.125 μg/mL) was comparable to or better than rifampicin (MIC: 0.5 μg/mL) and isoniazid (MIC: 0.06 μg/mL) against MTB H37Rv, and was ≥256 folds more potent than rifampicin (MIC: 64 μg/mL) and isoniazid (MIC: >128 μg/mL) against MDR-MTB strain, but was less active than TAM16 (MIC: <0.06 μg/mL against the tested two strains). The hybrid 6d also showed low cytotoxicity towards VERO cell (CC50: 128 μg/mL), but it was inferior to TAM16 in metabolic stability and in vivo pharmacokinetic profiles.  相似文献   

15.
A set of novel gatifloxacin-1H-1,2,3-triazole-isatin hybrids 6a-l was designed, synthesized and evaluated for their in vitro anti-mycobacterial activities against M. tuberculosis (MTB) H37Rv and MDR-TB as well as cytotoxicity. The results showed that all the targets (MIC: 0.025–3.12 μg/mL) exhibited excellent inhibitory activity against MTB H37Rv and MDR-TB, but were much more toxic (CC50: 7.8–62.5 μg/mL) than the parent gatifloxacin (GTFX) (CC50: 125 μg/mL). Among them, 61 (MIC: 0.025 μg/mL) was 2–32 times more potent in vitro than the references INH (MIC: 0.05 μg/mL), GTFX (MIC: 0.78 μg/mL) and RIF (MIC: 0.39 μg/mL) against MTB H37Rv. The most active conjugate 6 k (MIC: 0.06 μg/mL) was 16–>2048 times more potent than the three references (MIC: 1.0–>128 μg/mL) against MDR-TB. Both of the two hybrids warrant further investigations.  相似文献   

16.
Many enveloped viruses bud from cholesterol-rich lipid rafts on the cell membrane. Depleting cellular cholesterol impedes this process and results in viral particles with reduced viability. Viperin (Virus Inhibitory Protein, Endoplasmic Reticulum-associated, Interferon iNducible) is an endoplasmic reticulum membrane–associated enzyme that exerts broad-ranging antiviral effects, including inhibiting the budding of some enveloped viruses. However, the relationship between viperin expression and the retarded budding of virus particles from lipid rafts on the cell membrane is unclear. Here, we investigated the effect of viperin expression on cholesterol biosynthesis using transiently expressed genes in the human cell line human embryonic kidney 293T (HEK293T). We found that viperin expression reduces cholesterol levels by 20% to 30% in these cells. Following this observation, a proteomic screen of the viperin interactome identified several cholesterol biosynthetic enzymes among the top hits, including lanosterol synthase (LS) and squalene monooxygenase (SM), which are enzymes that catalyze key steps in establishing the sterol carbon skeleton. Coimmunoprecipitation experiments confirmed that viperin, LS, and SM form a complex at the endoplasmic reticulum membrane. While coexpression of viperin was found to significantly inhibit the specific activity of LS in HEK293T cell lysates, coexpression of viperin had no effect on the specific activity of SM, although did reduce SM protein levels by approximately 30%. Despite these inhibitory effects, the coexpression of neither LS nor SM was able to reverse the viperin-induced depletion of cellular cholesterol levels, possibly because viperin is highly expressed in transfected HEK293T cells. Our results establish a link between viperin expression and downregulation of cholesterol biosynthesis that helps explain viperin''s antiviral effects against enveloped viruses.  相似文献   

17.
Infections by non-albicans Candida species are a life-threatening condition, and formation of biofilms can lead to treatment failure in a clinical setting. This study was aimed to demonstrate the in vitro antibiofilm activity of fluconazole (FLU) and voriconazole (VOR) against C. glabrata, C. parapsilosis and C. rugosa with diverse antifungal susceptibilities to FLU and VOR. The antibiofilm activities of FLU and VOR in the form of suspension as well as pre-coatings were assessed by XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. Morphological and intracellular changes exerted by the antifungal drugs on Candida cells were examined by scanning electron microscope (SEM) and transmission electron microscope (TEM). The results of the antibiofilm activities showed that FLU drug suspension was capable of killing C. parapsilosis and C. rugosa at minimum inhibitory concentrations (MICs) of 4× MIC FLU and 256× MIC FLU, respectively. While VOR MICs ranging from 2× to 32× were capable of killing the biofilms of all Candida spp tested. The antibiofilm activities of pre-coated FLU were able to kill the biofilms at ¼× MIC FLU and ½× MIC FLU for C. parapsilosis and C. rugosa strains, respectively. While pre-coated VOR was able to kill the biofilms, all three Candida sp at ½× MIC VOR. SEM and TEM examinations showed that FLU and VOR treatments exerted significant impact on Candida cell with various degrees of morphological changes. In conclusion, a fourfold reduction in MIC50 of FLU and VOR towards ATCC strains of C. glabrata, C. rugosa and C. rugosa clinical strain was observed in this study.  相似文献   

18.
To study the effect of culture medium on hydrogen production by the marine green algae, Platymonas subcordiformis under sulfur deprivation, cell growth, hydrogen production, and starch and protein catabolism was investigated in the work. Algae cells cultured only in optimized medium required 6~8 days to reach the late logarithmic at the approximate density of (2.00 ± 0.18) × 106 cells/mL, which in traditional medium needed 18~22 days to reach (1.85 ± 0.20) × 106 cells/mL. Increased levels of Chlorophyll (10.74 ± 0.20 μg/mL), starch (149.50 ± 6.15 μg/mL), and protein (213.00 ± 7.36 μg/mL) were accumulated in optimized medium, which were 1.06, 1.47, and 1.87-fold of the algae cells cultured in traditional medium, respectively. The sealed culture of algae cells in sulfur-deprived optimized medium shifted to anaerobic conditions after 96 h of light illumination and produced 0.45 ± 0.12 mL H2, but in traditional medium maintained aerobic condition and no hydrogen was produced. In addition, changes in starch and protein content during continuous light illumination indicated that more endogenous substrate was consumed in the sulfur-deprived optimized medium than that in the sulfur-deprived traditional medium.  相似文献   

19.
Phytochemical investigation of a 90 % ethanol extract of Pachysandra terminalis Sieb. Et Zucc led to the isolation of a novel alkaloid, terminamine T (1); a new pregnane-type alkaloid, terminamine U (2); and four known pregnane-type alkaloids (3-6). The structures of these compounds were elucidated on the basis of nuclear magnetic resonance spectra, mass spectrometry data, single-crystal X-ray diffraction, and by a comparison with data from the literature. All compounds were evaluated for their antibacterial activities against gram-positive (S. aureus, ATCC 29213) and gram-negative (E. coli, ATCC 25922) bacteria. Compounds 2-6 exhibited generally modest to poor antibiotic properties. Furthermore, compound 2 showed antibacterial activity against methicillin-resistant Staphylococcus epidermidis (MRSE), methicillin-resistant Staphylococcus aureus (MRSA), and methicillin-resistant Staphylococcus aureus USA300 (LAC) with a minimal inhibitory concentration (MIC) value of 32 μg/mL (75 μM) and minimum bactericidal concentration (MBC) values of 64, 128, and 128 μg/mL (150, 300, and 300 μM), respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号