首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Elevated levels of semicarbazide-sensitive amine oxidase (SSAO) activity have been observed in several human conditions such as congestive heart failure, diabetes mellitus, and inflammation. The reactive aldehydes and hydrogen peroxide produced by SSAO have been suggested to contribute to the progression of vascular complications associated with these conditions. In addition, SSAO activity has been shown to be involved in the leukocyte extravasation process at sites of inflammation. To facilitate characterization and development of specific and selective inhibitors of SSAO, we have developed a method for production of recombinant human SSAO. The extracellular region (residues 29-763) of human SSAO was expressed in HEK293 cells in fusion with a mutated Schistosoma japonicum glutathione S-transferase (GST) and secreted to the culture medium. The mutGST-SSAO fusion protein was purified in a single step by glutathione-affinity chromatography followed by site-specific cleavage using a GST-3C protease fusion protein to remove the mutGST fusion partner. A second glutathione-affinity chromatography step was then used to capture both the mutGST fusion partner and the GST-3C protease, resulting in milligram quantities of pure, enzymatically active, and soluble recombinant human SSAO.  相似文献   

2.

Background

Primary-amine oxidase (PrAO) catalyzes the oxidative deamination of endogenous and exogenous primary amines and also functions, in some tissues, as an inflammation-inducible endothelial factor, known as vascular adhesion protein-1. VAP-1 mediates the slow rolling and adhesion of lymphocytes to endothelial cells in a number of inflammatory conditions, including inflammation of the synovium.

Methods

Glucosamine binding to the enzyme was assessed spectrofluorometrically and the kinetics of inhibition of PrAO were determined spectrophotometrically through the use of direct or coupled assays, in the presence of different substrates.

Results

Glucosamine is not a substrate for PrAO, but acts as a time-dependent inhibitor of PrAO activity, displaying mixed inhibition kinetics. The observed inhibition and binding were augmented in the presence of H2O2.

Conclusions

Significant in vitro effects on PrAO require glucosamine in the millimolar concentration range and it is not clear at this stage whether a low but persistent level of PrAO inhibition might contribute to the anti-arthritic response.

General significance

This work was aimed at characterizing the interactions of PrAO/VAP-1 with glucosamine, a widely used “over-the-counter” supplement for the treatment of osteoarthritis.  相似文献   

3.
 Bovine serum amine oxidase (BSAO) reacts with 2-hydrazinopyridine, which binds the organic cofactor 2,4,5-trihydroxyphenylalanine quinone, forming a band at 435 nm. The band shifts to 526 nm around 60  °C, to 415 nm upon denaturation, but only shifts to 429 nm upon Cu2+ depletion. Its wavelength and intensity suggest that the adduct has the azo conformation, whilst the same adduct of crystallineEscherichia coli amine oxidase (ECAO) shows the hydrazone conformation in the X-ray structure. The steady state kinetics of aminomethyl- and aminoethylpyridines confirm that the formation of the product Schiff base, analogous to the azo form of the 2-hydrazinopyridine adduct, is not hindered in solution. The structural stability of the adduct in the absence of Cu2+ is taken to imply hydrogen bonding of the pyridyl nitrogen to a conserved aspartate, as in the ECAO adduct. Thus the ECAO adduct provides a good model for a transient intermediate leading to formation of the BSAO azo adduct. On the basis of this model and of the catalytic competence of Co2+-substituted BSAO, confirmed by the present data, a catalytic reaction scheme is proposed. Received: 2 December 1998 / Accepted: 22 March 1999  相似文献   

4.
The X-ray crystal structure of the copper-containing quinoprotein amine oxidase from E. coli has been determined in complex with the antidepressant drug tranylcypromine to 2.4 A resolution. The drug is a racemic mix of two enantiomers, but only one is seen bound to the enzyme. The other enantiomer is not acting as a substrate for the enzyme as no catalytic activity was detected when the enzyme was initially exposed to the drug. The inhibition of human copper amine oxidases could be a source of side-effects in its use as an antidepressant to inhibit the flavin-containing monoamine oxidases in the brain.  相似文献   

5.
MDL 72527 was considered a selective inhibitor of FAD-dependent polyamine oxidases. In the present communication, we demonstrate that MDL 72527 inactivates bovine serum amine oxidase, a copper-containing, TPQ-enzyme, time-dependently at 25 degrees C. In striking contrast, the enzyme remained active after incubation with excessive MDL 72527 at 37 degrees C, even after 70 h of incubation. Inactivation of BSAO with MDL 72527 at 25 degrees C did not involve the cofactor, as was shown by spectroscopy and by reaction with phenylhydrazine. Docking of MDL 72527 is difficult, owing to its size and two lipophilic moieties, and it has been shown that minor changes in reaction rate of substrates cause major changes in K(m) and k(cat)/K(m). We hypothesise that subtle conformational changes between 25 and 37 degrees C impair MDL 72527 from productive binding and prevent the nucleophilic group from reacting with the double bond system.  相似文献   

6.
利用L-谷氨酸氧化酶(LGOX),对酶法转化L-谷氨酸生产α-酮戊二酸(α-KG)的工艺条件进行了研究。首先对野生菌链霉菌Streptomyces sp.FMME066进行亚硝基胍诱变,获得一株遗传性状稳定的突变株Streptomyces sp.FMME067;突变株在最优培养基(g/L):果糖10,蛋白胨7.5,KH2PO4 1,CaCl2 0.05条件下,LGOX酶活为0.14 U/mL。LGOX的生化特征为最适pH 8.5、温度35℃,Mn2+是激活剂。对LGOX转化L-谷氨酸生产α-KG的条件进行优化,在最优条件下转化24 h,α-KG产量为38.1 g/L,转化率为81.4%。研究结果为开发LGOX酶法转化生产α-KG的工业化奠定了坚实的基础。  相似文献   

7.
葡萄糖氧化酶(GOD)是一种具有广泛应用前景的工业酶.为了实现葡萄糖氧化酶的高效生产,提高重组毕赤酵母生产GOD的产量和增强生产强度,对重组毕赤酵母诱导阶段的初始菌体浓度和甲醇浓度进行了优化.在此基础上,诱导期采用了双碳源(甘油、山梨醇和甘露醇)与甲醇混合流加的模式.研究发现,最佳诱导前初始菌体浓度和甲醇浓度分别为100 g/L和18 g/L,此时GOD产量为427.6 U/mL.在诱导阶段采用甘油、山梨醇和甘露醇与甲醇的混合添加均可以提高GOD产量,其中甘露醇与甲醇的混合流加效果最为显著.当甲醇与甘露醇混合流加的比例为20∶1(W/W)时,诱导156h GOD产量和生产强度分别可达711.3 U/mL和4.60 U/(mL·h),比甲醇单一流加策略结果分别提高了66.3%和67.9%.此外采用合适的甘露醇混合流加策略不但不会抑制AOX1启动子的表达,甚至有一定促进作用,AOX酶活性为8.8 U/g(对照为5.2 U/g).双碳源流加方式还能推广到毕赤酵母其他表型中,为该系统高效表达外源蛋白提供一种新策略.  相似文献   

8.
为了提高葡萄糖氧化酶 (GOD) 在毕赤酵母中的表达水平,提出了甲醇/山梨醇混合碳源诱导和共表达分子伴侣二硫键异构酶 (PDI) 和透明颤菌血红蛋白 (VHb) 两种策略。利用对照菌株X33/pPIC9k–GOD 在5 L发酵罐放大培养时,采用甲醇/山梨醇混合碳源诱导,GOD最终酶活为456 U/mL,比只采用甲醇作为单一碳源诱导时GOD最终酶活提高了20%。利用整合伴侣蛋白菌株X33/pPIC9k-GOD/pPICZ-PDI-VHb在5 L发酵罐进行高密度发酵,采用甲醇/山梨醇混合碳源诱导,GOD最终酶活达到716 U/mL,蛋白浓度为7.4 g/L。研究结果对提高外源蛋白在毕赤酵母中的表达有重要参考价值。  相似文献   

9.
To preserve the nucleophilicity of amino compounds during conjugative radioiodination, a new method for converting primary amines to phenolic secondary amines was developed. Amino acids were used as model compounds for establishing optimal conditions for the reductive amination. In the first step of the reaction, the aldehyde group of 4-hydroxybenzaldehyde (formylphenol) was reacted reversibly with an amino group to form an imine. The irreversible attachment of formylphenol to the amino group was accomplished by reduction of the imine with sodium cyanoborohydride. The pH optimum for the reaction was 5.0. Higher temperature has favorable effects on the rate and extent of the conjugation. Phenolic derivatives of amino compounds suitable for radioiodination are produced by the reactions described.  相似文献   

10.
11.
To clarify the metabolism of carcinogenic aminoazo dyes in target tissues, mixed function amine oxidase (MFAO) was purified from rat liver. The MFAO was solubilized from microsomes with Triton X in the presence of 20 glycerol and 1 mM EDTA and purified successively with DEAE Sepharose CL-6B, 2',5'-ADP Sepharose 4B and Hydroxyapatite column chromatography. The purified enzyme yielded a single protein band on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The apparent molecular weight was about 59,000. When dimethylaniline (DMA) was used as a substrate, the specific activity of the enzyme fortified with NADPH was about 430 nmol DMA N-oxide formed/mg protein/min with a yield of about 15%. N-Demethylation of dimethylaminoazobenzene (DAB) with the enzyme proceeded only when iron was added to the reaction system.  相似文献   

12.
Abstract

Ferulic acid is an abundant cinnamic acid derivative found in the plant kingdom. It is a commercially available substrate utilized to produce flavor compounds such as 4-vinylguaiacol (4-VG), vanillin, and vanillic acid. The isolate Bacillus cereus SAS-3006 was screened and selected based on its ability to produce 4-VG upon ferulic acid biotransformation. It was identified based on morphological and physiochemical characteristics and its 16S ribosomal DNA sequence (GenBank accession number: KF699134). A maximum amount (79.4 mg/L) of 4-VG accumulation was observed on the 5th day of incubation when the culture was grown on 2.5 mM ferulic acid as sole carbon source. Further conversion of 4-VG to other intermediates such as vanillin, vanillic acid, protocatechuic acid, acetovanillone, and vanillyl alcohol was not observed. In-vitro conversion of ferulic acid to 4-VG was also studied with cell extracts of B. cereus SAS-3006. The present study provides the first evidence for production of 4-VG as the sole product using B. cereus SAS-3006.  相似文献   

13.
Pyruvate oxidase (PyOD) is a very useful enzyme for clinical diagnostic applications and environmental monitor. Optimization of the fermentation medium for maximization of PyOD constitutively, production by Escherichia coli DH5α/pSMLPyOD was carried out. Response surface methodology (RSM) was used to optimize the medium constituents. A 26–2 fractional factorial design (first order model) was carried out to identify the significant effect of medium components towards PyOD production. Statistical analysis of results shows that yeast extract, ammonium sulfate and composite phosphate were significant factors on PyOD production. The optimized values of these three factors were obtained by RSM based on the result of a 23 central composite rotatable design. Under these proposed optimized medium, the model predicted a PyOD activity of 610 U/L and via experimental rechecking the model, an activity of 670 U/L was attained.  相似文献   

14.
Murine N1-acetylated polyamine oxidase (mPAO) was treated with N,N′-bis-(prop-2-ynyl)-1,4-diaminobutane, a poor substrate and inhibitor for the enzyme, with Km and Ki values in the millimolar range. Apparently, its oxidation produces prop-2-ynal, which reacts with amino acyl nucleophiles. Using a steady-state kinetic assay, four phases were identified, the first being the oxidation of the compound via Michealis-Menten-type kinetics. As prop-2-ynal accumulates, there is a biphasic reduction in the rate. This process leads to an mPAO form that is nearly inactive (fourth phase), but displays classical Michealis-Menten-type kinetics. The enzyme-bound flavin is not modified in this process. In contrast, micromolar concentrations of the MDL 72527 (N,N′-bis-[buta-2,3-dienyl]-1,4-diaminobutane) inhibited mPAO rapidly and completely. It inhibits by first binding tightly and apparently irreversibly, and then slowly converts to a species where the inhibitor is covalently bound to the N5-position of the flavin’s isoalloxazine ring. The covalent adduct was identified as a flavocyanine.  相似文献   

15.
The copper-containing quinoenzyme semicarbazide-sensitive amine oxidase (EC 1.4.3.21; SSAO) is a multifunctional protein. In some tissues, such as the endothelium, it also acts as vascular-adhesion protein 1 (VAP-1), which is involved in inflammatory responses and in the chemotaxis of leukocytes. Earlier work had suggested that lysine might function as a recognition molecule for SSAO/VAP-1. The present work reports the kinetics of the interaction of l-lysine and some of its derivatives with SSAO. Binding was shown to be saturable, time-dependent but reversible and to cause uncompetitive inhibition with respect to the amine substrate. It was also specific, since d-lysine, l-lysine ethyl ester and ε-acetyl-l-lysine, for example, did not bind to the enzyme. The lysine-rich protein soluble elastin bound to the enzyme relatively tightly, which may have relevance to the reported roles of SSAO in maintaining the extracellular matrix (ECM) and in the maturation of elastin. Our data show that lysyl residues are not oxidized by SSAO, but they bind tightly to the enzyme in the presence of hydrogen peroxide. This suggests that binding in vivo of SSAO to lysyl residues in physiological targets might be regulated in the presence of H2O2, formed during the oxidation of a physiological SSAO substrate, yet to be identified.  相似文献   

16.
Enzymatic oxidative dehydrogenation of biomass-derived l-lactate in the presence of O2 is regarded as a green alternative for pyruvate production, but the process also results in H2O2 accumulation. To remove the effect of H2O2 on pyruvate production, various potential catalases from different species were screened for their efficiency in H2O2 degradation. Then, an in vitro cascade biocatalysis was designed using lactate oxidase from Aerococcus viridans (AvLOX) and catalase from Ureibacillus thermosphaericus (UtCAT). The in situ removal of H2O2 by UtCAT significantly improved the yield and productivity of pyruvate. To simplify the technological processes and reduce production costs, a whole cell biocatalyst without the addition of catalase for the production of pyruvate was established by coexpressing AvLOX and UtCAT in Escherichia coli. By applying suitable coexpression strategies and changing the ribosome binding site (RBS) strengths, the optimal ratio of AvLOX:UtCAT(12.6:4127.3) in E. coli-AvLOX-(rbs3)UtCAT was finally achieved. Under the optimized transformation conditions, pyruvate was produced at a titer of 59.9 g/L and a yield of 90.8% in a substrate fed-batch process, promising an alternative route for the green production of pyruvate.  相似文献   

17.
 The interactions of five copper-containing amine oxidases with substrates and substrate analogues in the presence of the copper ligands cyanide, azide, chloride, and 1,10-phenanthroline have been investigated. While cyanide inhibits, to varying degrees, the reaction of phenylhydrazine with porcine kidney amine oxidase (PKAO), porcine plasma amine oxidase (PPAO), bovine plasma amine oxidase (BPAO), and pea seedling amine oxidase (PSAO), it enhances the reaction of Arthrobacter P1 amine oxidase (APAO) with this substrate analogue. This indicates that cyanide exerts an indirect effect on topa quinone (TPQ) reactivity via coordination to Cu(II) rather than through cyanohydrin formation at the TPQ organic cofactor. Moreover, cyanide binding to the mechanistically relevant TPQ semiquinone form of substrate-reduced APAO and PSAO was not observable by EPR or resonance Raman spectroscopy. Hence, cyanide most likely inhibits enzyme reoxidation by binding to Cu(I) and trapping the Cu(I)-TPQ form of amine oxidases, and thus preventing the reaction of O2 with Cu(I). In contrast, ligands such as azide, chloride, and 1,10-phenanthroline, which preferentially bind to Cu(II), inhibit by stabilizing the aminoquinol Cu(II)-TPQred redox state, which is in equilibrium with Cu(I)-TPQ. Received: 12 December 1996 / Accepted: 20 March 1997  相似文献   

18.
The gene encoding D-amino acid oxidase (DAAO) from Trigonopsis variabilis CBS 4095 has been cloned and expressed in Escherichia coli BL21 (DE3). Unfortunately, it was observed that the host cell was negatively affected by the expressed DAAO, resulting in a remarkable decrease in cell growth. To overcome this problem, we investigated several factors that affect cell growth rate and DAAO production such as addition time of inducer and dissolved oxygen (DO) concentration. The addition time of lactose, which was used as an inducer, and DO concentration appeared to be critical for the cell growth of E. coli BL21 (DE3)/pET-DAAO. A two-stage DO control strategy was developed, in which the DO concentration was controlled above 50% until specific stage of bacterial growth (OD600 30–40) and then downshifted to 30% by changing the agitation speed and aeration rate, and they remained at these rates until the end of fermentation. With this strategy, the maximum DAAO activity and cell growth reached 18.5 U/mL and OD600 81, respectively. By reproducing these optimized conditions in a 12-m3 fermentor, we were able to produce DAAO at a productivity of 19 U/mL with a cell growth of OD600 80.  相似文献   

19.
The aggregation of human blood platelets by thrombin, adenosine diphosphate, wheat germ agglutinin or ristocetin was inhibited by primary amines. In general, thrombin-induced platelet aggregation was strongly affected by the amines while the effect was weak on cell aggregation by ristocetin. Usually, the diamines were stronger inhibitors of aggregation than the monoamines with cadaverine as the strongest and ethylamine as the weakest inhibitor. At concentration where platelet aggregation was inhibited, the amines neither displaced serotonin from serotinin-loaded platelets nor caused lysis of human red cells. The lectin activity of wheat germ agglutinin on human red cells was not affected by the amines indicating that the amines probably acted on platelets and not on the agglutinin. The clotting activity of thrombin on fibrinogen was partially inhibited by the amines while its esterolytic activity remained unaltered. The inhibitory action of the amines on platelet aggregation could be overcome with small amounts of calcium while other divalent cations tested had little effect. It is suggested that the amines affect platelet aggregation by interfering with the actions of membrane-associated calcium.  相似文献   

20.
《Free radical research》2013,47(7):742-750
Abstract

4-Hydroxynonenal (HNE) mediates oxidative stress-linked pathological processes; however, its role in the generation of reactive oxygen species (ROS) in macrophages is still unclear. Thus, this study investigated the sources and mechanisms of ROS generation in macrophages stimulated with HNE. Exposure of J774A.1 cells to HNE showed an increased production of ROS, which was attenuated by NADPH oxidase as well as 5-lipoxygenase (5-LO) inhibitors. Linked to these results, HNE increased membrane translocation of p47phox promoting NADPH oxidase activity, which was attenuated in peritoneal macrophages from 5-LO-deficient mice as well as in J774A.1 cells treated with a 5-LO inhibitor, MK886 or 5-LO siRNA. In contrast, HNE-enhanced 5-LO activity was not affected by inhibition of NADPH oxidase. Furthermore, leukotriene B4, 5-LO metabolite, was found to enhance NADPH oxidase activity in macrophages. Altogether, these results suggest that 5-LO plays a critical role in HNE-induced ROS generation in murine macrophages through activation of NADPH oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号