首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkaline protease from alkaliphilic Bacillus sp. NPST-AK15 was immobilized onto functionalized and non-functionalized rattle-type magnetic core@mesoporous shell silica (RT-MCMSS) nanoparticles by physical adsorption and covalent attachment. However, the covalent attachment approach was superior for NPST-AK15 protease immobilization onto the activated RT-MCMSS-NH2 nanoparticles and was used for further studies. In comparison to free protease, the immobilized enzyme exhibited a shift in the optimal temperature and pH from 60 to 65 °C and pH 10.5–11.0, respectively. While free protease was completely inactivated after treatment for 1 h at 60 °C, the immobilized enzyme maintained 66.5 % of its initial activity at similar conditions. The immobilized protease showed higher k cat and K m , than the soluble enzyme by about 1.3-, and 1.2-fold, respectively. In addition, the results revealed significant improvement of NPST-AK15 protease stability in variety of organic solvents, surfactants, and commercial laundry detergents, upon immobilization onto activated RT-MCMSS-NH2 nanoparticles. Importantly, the immobilized protease maintained significant catalytic efficiency for ten consecutive reaction cycles, and was separated easily from the reaction mixture using an external magnetic field. To the best of our knowledge this is the first report about protease immobilization onto rattle-type magnetic core@mesoporous shell silica nanoparticles that also defied activity-stability tradeoff. The results clearly suggest that the developed immobilized enzyme system is a promising nanobiocatalyst for various bioprocess applications requiring a protease.  相似文献   

2.
Cross-linked magnetic chitosan beads were prepared in presence of epichlorohydrin under alkaline conditions, and subsequently incubated with glutaraldehyde in order to obtain an activated support for covalent attachment of nucleoside 2′-deoxyribosyltransferase from Lactobacillus reuteri (LrNDT). Changing the amount of magnetite (Fe3O4) and epichlorohydrin (EPI) led to different macroscopic beads to be used as supports for enzyme immobilization, whose morphology and properties were characterized by scanning electron microscopy, spin electron resonance (ESR), and vibrating sample magnetometry (VSM). Once activated with glutaraldehyde, the best support was chosen after evaluation of immobilization yield and product yield in the synthesis of thymidine from 2′-deoxyuridine and thymine. In addition, optimal conditions for highest activity of immobilized LrNDT on magnetic chitosan were determined by response surface methodology (RSM). Immobilized biocatalyst retained 50 % of its maximal activity after 56.3 h at 60 °C, whereas 100 % activity was observed after storage at 40 °C for 144 h. This novel immobilized biocatalyst has been successfully employed in the enzymatic synthesis of 2′-deoxyribonucleoside analogues as well as arabinosyl-nucleosides such as vidarabine (ara-A) and cytarabine (ara-C). Furthermore, this is the first report which describes the enzymatic synthesis of these arabinosyl-nucleosides catalyzed by an immobilized nucleoside 2′-deoxyribosyltransferase. Finally, the attached enzyme to magnetic chitosan beads could be easily recovered and recycled for 30 consecutive batch reactions with negligible loss of catalytic activity in the synthesis of 2,6-diaminopurine-2′-deoxyriboside and 5-trifluorothymidine.  相似文献   

3.
5α-Dihydrotestosterone (5α-DHT) was rendered antigenic by covalent attachment to bovine serum albumin (BSA) through position 1 of the steroid. Nucleophilic attack by β-mercaptopropionic acid on the 1,2-dehydro derivative of 5α-DHT yielded the corresponding 1α-thioether alkanoic acid which was coupled to bovine serum albumin by use of the carbodiimide reagent. The method should be generally applicable to 3-oxosteroids. Immunization of rabbits with 5α-DHT-1α-carboxyethyl-thioether-BSA gave rise to antisera of high affinity for 5α-DHT (Ka= 1.4 × 109 1/mol) that showed little cross reaction with 17β-hydroxy-5β-androstan-3-one (3%), and with a variety of 17-oxoandrostane compounds (≤0.5%). However the serum cross-reacted significantly with testosterone (10%) and with 5α-androstene-3α, 17β-diol (16%). A radioimmunoassay procedure for the determination of 5α-DHT in plasma is described. Chromatographic purification of the plasma extracts proved necessary for obtaining valid results. The plasma level of 5α-DHT(pg/ml; ean ± S.D.) was 364±79 (n = 7) in normal human adult males and 188 ± 62 (n = 5) in normal non-pregnant women.  相似文献   

4.
A series of silica-based bifunctional adsorbents containing both metal-chelating groups and epoxy groups for the concomitant purification and immobilization of His-tagged protein switch RG13, a potential bioreceptor for developing maltose biosensors, were prepared by controlling the ratio of iminodiacetic acid-conjugated silane (GLYMO-IDA) and silane (GLYMO) used for surface modification. The bifunctional adsorbent prepared with a [GLYMO-IDA]/[GLYMO] ratio of 0.2, containing a [metal chelating group]/[epoxy group] ratio of 1.42, was shown to exhibit a metal chelating capacity of 88.42 ± 15.91 μmole Cu2+/g, a protein adsorption capacity of 1.81 ± 0.19 mg/g and a superior selectivity over the other bifunctional adsorbents. Results of kinetic studies showed that selective adsorption and covalent bond formation at 4 °C were achieved in 1 h and 15 h, respectively, which allowed the sequential adsorption and covalent immobilization of protein switch RG13. A protein immobilization yield of 94.6 % and a global activity yield of 63.4 % were obtained, giving an immobilized protein switch RG13 with an enzymatic activity of 4.57 ± 0.19 U/g, under optimal conditions at pH 8.0 and 40 °C. In the repeated-batch operation, the bifunctional adsorbent-immobilized RG13 retained 91 % of the original activity after 20 cycles, 39 % higher than the counterpart prepared with monofunctional metal chelate adsorbent mediated solely by coordinate linkages.  相似文献   

5.
This research describes the immobilization of Rhizomucor miehei lipase (RML) and chemically aminated RML (NH2-RML) on different supports including octyl-sepharose (octyl-RML), activated sepharose with cyanogen bromide (CNBr-RML and CNBr-NH2-RML), glyoxyl sepharose (Gx-RML and Gx-NH2-RML) and glyoxyl sepharose dithiothreitol (Gx-DTT-RML and Gx-DTT-NH2-RML). The highest immobilization yield was achieved for octyl-RML (>98%) followed by CNBr-RML (88%). Octyl-RML had the most specific activity (13.6) among all derivatives. The other preparations had moderate activities likely because of chemical reaction during covalent attachment of the enzyme. The catalytic behavior of lipase immobilized in hydrolysis reactions was investigated using methyl, ethyl, propyl, butyl and isobutyl-ibuprofen esters and the influence of the alkyl chain and the alcoholic residue of the ester were studied. Butyl ester was the most interesting ester for carrying out hydrolysis. The highest enantioselectivity of enzyme (E = 8.8) was obtained with isooctane/sodium phosphate buffer pH 7.0 at temperature of 40 °C. Increasing temperature from 40 to 50 °C caused decreasing in enantioselectivities and conversions. Also esterification of ibuprofen was carried out in solvent systems containing isooctane and two ionic liquids (ILs); [BMIM][PF6] and [BMIM][BF4]. Poor conversions and enantioselectivities were observed during esterification in all solvents.  相似文献   

6.
《Aquatic Botany》2007,86(1):89-92
The slope of the initial linear range of a photosynthesis–irradiance (PI) curve, alpha (α), is frequently, but often incorrectly, used to denote the maximal quantum yield (or the “efficiency” of photosynthesis) of higher plants and macroalgae under the conditions for which the PI curve was measured. When using the increasingly popular method of pulse amplitude modulated (PAM) fluorometry, the determination of α from so-called rapid light curves (RLC) may lead to misinterpretations when comparing photosynthetic efficiencies under different environmental conditions. Furthermore, since PAM fluorometry measures the quantum yield (Y) directly, there may be no need to estimate it from the initial slopes of RLCs.We compared photosynthetic parameters derived from RLCs of Ulva sp. measured during winter and summer, and show large differences in α when electron transport rates (ETR) were plotted against incident irradiance (Ii) [α = 0.26 ± 0.00 versus 0.08 ± 0.01 during the winter (November–December) and summer (July–August), respectively], as is usually done. On the other hand, no differences in the initial slopes of the RLCs were apparent when plotting ETR versus the absorbed irradiance (Ia) (initial slope = 0.75 ± 0.01 versus 0.62 ± 0.12 during the winter and summer, respectively); this is called for since also ETR is calculated using Ia. Using the Ia based RLCs, it was also found that the values of the initial slopes equalled those of the first Y-value measurements of the RLCs (Y0) (t-test, p > 0.05, r2 = 0.85). Therefore, when using PAM fluorometry, we suggest (a) to present the x-axis of RLCs as Ia (Ii × AF × 0.5), and ETR on the y-axis as Y × Ia, and (b) that Y0 can be taken as a correct measure of the maximal quantum yield instead of estimating it from an RLC.  相似文献   

7.
Nanogels are promising materials as supports for enzyme immobilization. A new hydrogel comprising of methacrylic acid (MAAc) and N-vinyl pyrrolidone (N-VP) and ethyleneglycol dimethacrylate (EGDMA) was synthesized and converted to nanogel by an emulsification method. Nanogel was further functionalized by Curtius azide reaction for use as support for the covalent immobilization of invertase (Saccharomyces cerevisiae). As-prepared or invertase-immobilized nanogel was characterized by FTIR, XRD, TEM and nitrogen analysis. The characterization of both free and the immobilized-invertase were performed using a spectrophotometric method at 540 nm. The values of Vmax, maximum reaction rate, (0.123 unit/mg), km, Michaelis constant (7.429 mol/L) and Ea, energy of activation (3.511 kj/mol) for the immobilized-invertase are comparable with those of the free invertase at optimum conditions (time 70 min, pH 6.0 and temperature 45 °C). The covalent immobilization enhanced the pH and thermal stability of invertase. The immobilized biocatalyst was efficiently reused up to eight cycles.  相似文献   

8.
Lipase from Rhizomucor miehei (RML) and Thermomyces lanuginosa lipase (TLL) were immobilized on silica core-shell magnetic nanoparticles (Fe3O4@SiO2) produced by coating Fe3O4 core with silica shell. The nanoparticles were functionalized with aldehyde groups followed by immobilization of RML and TLL by using a multi-component reaction in an extremely mild condition. Rapid immobilization of both enzymes (1.5−12 h) with high immobilization yields (81–100%) was observed. The maximum loading capacity of the support was determined to be 81 mg for RML and 97 mg for TLL. The thermal stability of the immobilized derivatives of RML and TLL were greatly improved by retaining 54 and 97 % of their initial activities at 65 °C, respectively. The immobilized preparations were used to produce biodiesel by transesterification of waste cooking oil. In an optimization study, Response Surface Methodology (RSM) and a central composite rotatable design (CCRD) were used to study the effect of amount of biocatalyst, temperature, reaction time, water adsorbent (wt.%) and ratio of t-butanol to oil (wt.%) on the yield of biodiesel production. Biodiesel production yield by immobilized TLL reached 93.1 % under optimal conditions while the maximum yield for RML was 57.5 %. Both immobilized derivatives showed high reusability after 5 cycles of the reaction.  相似文献   

9.
《Inorganica chimica acta》1988,144(2):275-280
The fragmentation patterns of yttrium oxide cluster species YO+, Y2O2+, Y2O3+, Y3O4+, Y4O6+, Y5O7+, Y6O8+ and Y7O10+ were investigated at collision energies 30–110 and 170 eV by fast atom bombardment tandem mass spectrometry. The collision activated dissociation (CAD) spectra obtained revealed higher thermodynamic stability for the clusters of general formula YαO(3α−1)/2+, where a is an odd number (e.g. YO+, Y3O4+, Y5O7+, Y7O10+) which are also the preferred CAD products for all oxide clusters studied. These most stable oxides are constituted by trivalent yttrium only whereas those containing formally tetravalent yttrium YaO3a/2+, (where a is even) e.g. Y2O3+ and Y4O6+, are extremely unstable. The clusters YaO(3a−2)/2+, (where a is even) containing divalent yttrium, e.g. Y2O2+ and Y6O8+, have considerable stability but their CAD products are again the thermodynamic products YaO(3a−1)/2+. Electronic structures appear to have overriding significance in determining the thermo- dynamic stabilities of the oxide cluster species.  相似文献   

10.
Lactose percentage (LP) in milk is currently determined in most herd-testing schemes, and globally, it is usually routinely recorded in the framework of the official milk recording procedures. However, few studies have investigated the phenotypic and genetic variability of this component. Data used in the present paper consisted of 59 811 test-day records from 4355 Holstein cows in 266 herds. Heritabilities of LP and lactose yield (LY) were estimated through single-trait repeatability animal models, whereas genetic and phenotypic correlations of LP and LY with milk composition and production traits, somatic cell score and milk freezing point were estimated using bivariate models. Fixed effects included in the analyses were herd-test-date, season of calving, parity, stage of lactation and the interaction between parity and stage of lactation. Random effects were animal additive genetic, within and across lactation permanent environment and the residual. Lactation curves of LP and LY increased from parturition to the peak of lactation and decreased thereafter, mirroring the typical curve of milk yield. Lactose percentage was greater in first- than later-parity cows. Heritabilities of LP and LY were 0.43±0.03 and 0.14±0.02, respectively, and LP and protein percentage were the most repeatable traits. Genetic correlations (ra) of LP with somatic cell score, LY and milk freezing point were −0.22±0.08, 0.28±0.08 and −0.46±0.05, respectively. Genetic relationships of LY with milk yield (ra=0.97±0.00), fat percentage (ra=−0.71±0.06), protein percentage (ra=−0.57±0.06) and protein yield (ra=0.64±0.06) were moderate to strong. Results suggest that milk LP could be considered in breeding strategies to accelerate the gain of correlated low heritable traits. Further research is needed to evaluate the feasibility of including LP in the selection index of Italian Holstein population to address country-specific needs and market demands.  相似文献   

11.
Glucoamylase (exo-1,4-α-d-glucosidase, EC 3.2.3.1) was coupled to several porous silica matrices by an improved metal-link/chelation process using alkylamine derivatives of titanium(IV)-activated supports. In order to select the titanium activation procedure which gave stable enzyme preparations, long-term stability tests were performed. The immobilized glucoamylase preparations, in which the carrier was activated to dryness with a 15% w/v TiCl4 solution, displayed very stable behaviour, with half-lives of ~60 days. The optimum operating conditions were determined for these preparations. There are significant differences between the behaviour of the immobilized enzyme and the free enzyme. The apparent Km increased on immobilization due to diffusional resistances. The pH optimum for the immobilized preparation showed a slight shift to acid pH relative to that of the soluble enzyme. Also, the optimum temperature descreased to 60°C after immobilization. In order to test Michaelis-Menten kinetics at high degrees of conversion, time-course analysis of soluble starch hydrolysis was performed. It was observed that simple Michaelis-Menten kinetics are not applicable to the free/immobilized glucoamylase-starch system at high degrees of conversion.  相似文献   

12.
In this study, the combined use of the selectivity of metal chelate affinity chromatography with the capacity of epoxy supports to immobilize poly‐His‐tagged recombinant benzoylformate decarboxylase from Pseudomonas putida (BFD, E.C. 4.1.1.7) via covalent attachment is shown. This was achieved by designing tailor‐made magnetic chelate–epoxy supports. In order to selectively adsorb and then covalently immobilize the poly‐His‐tagged BFD, the epoxy groups (300 µmol epoxy groups/g support) and a very small density of Co2+‐chelate groups (38 µmol Co2+/g support) was introduced onto magnetic supports. That is, it was possible to accomplish, in a simple manner, the purification and covalent immobilization of a histidine‐tagged recombinant BFD. The magnetically responsive biocatalyst was tested to catalyze the carboligation reactions. The benzoin condensation reactions were performed with this simple and convenient heterogeneous biocatalyst and were comparable to that of a free‐enzyme‐catalyzed reaction. The enantiomeric excess (ee) of (R)‐benzoin was obtained at 99 ± 2% for the free enzyme and 96 ± 3% for the immobilized enzyme. To test the stability of the covalently immobilized enzyme, the immobilized enzyme was reused in five reaction cycles for the formation of chiral 2‐hydroxypropiophenone (2‐HPP) from benzaldehyde and acetaldehyde, and it retained 96% of its original activity after five reaction cycles. Chirality 27:635–642, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Objective of this study was to estimate genetic parameters of milk coagulation properties (MCPs) and individual laboratory cheese yield (ILCY) in a sample of 1018 Sarda breed ewes farmed in 47 flocks. Rennet coagulation time (RCT), curd-firming time (k20) and curd firmness (a30) were measured using Formagraph instrument, whereas ILCY were determined by a micromanufacturing protocol. About 10% of the milk samples did not coagulate within 30 min and 13% had zero value for k20. The average ILCY was 36%. (Co)variance components of considered traits were estimated by fitting both single- and multiple-trait animal models. Flock-test date explained from 13% to 28% of the phenotypic variance for MCPs and 26% for ILCY, respectively. The largest value of heritability was estimated for RCT (0.23±0.10), whereas it was about 0.15 for the other traits. Negative genetic correlations between RCT and a30 (−0.80±0.12), a30 and k20 (−0.91±0.09), and a30 and ILCY (−0.67±0.08) were observed. Interesting genetic correlations between MCPs and milk composition (rG>0.40) were estimated for pH, NaCl and casein. Results of the present study suggest to use only one out of three MCPs to measure milk renneting ability, due to high genetic correlations among them. Moreover, negative correlations between ILCY and MCPs suggest that great care should be taken when using these methods to estimate cheese yield from small milk samples.  相似文献   

14.
Responses of photosystem I and II activities of Microcystis aeruginosa to various concentrations of Cu2+ were simultaneously examined using a Dual-PAM-100 fluorometer. Cell growth and contents of chlorophyll a were significantly inhibited by Cu2+. Photosystem II activity [Y(II)] and electron transport [rETRmax(II)] were significantly altered by Cu2+. The quantum yield of photosystem II [Y(II)] decreased by 29 % at 100 μg L?1 Cu2+ compared to control. On the contrary, photosystem I was stable under Cu2+ stress and showed an obvious increase of quantum yield [Y(I)] and electron transport [rETRmax(I)] due to activation of cyclic electron flow (CEF). Yield of cyclic electron flow [Y(CEF)] was enhanced by 17 % at 100 μg L?1 Cu2+ compared to control. The contribution of linear electron flow to photosystem I [Y(II)/Y(I)] decreased with increasing Cu2+ concentration. Yield of cyclic electron flow [Y(CEF)] was negatively correlated with the maximal photosystem II photochemical efficiency (F v/F m). In summary, photosystem II was the major target sites of toxicity of Cu2+, while photosystem I activity was enhanced under Cu2+ stress.  相似文献   

15.
Biosensors for organophosphates in solution may be constructed by monitoring the activity of acetylcholinesterase (AChE) or organophosphate hydrolase (OPH) immobilized to a variety of microsensor platforms. The area available for enzyme immobilization is small (< 1 mm2) for microsensors. In order to construct microsensors with increased surface area for enzyme immobilization, we used a sol-gel process to create highly porous and stable silica matrices. Surface porosity of sol-gel coated surfaces was characterized using scanning electron microscopy; pore structure was found to be very similar to that of commercially available porous silica supports. Based upon this analysis, porous and non-porous silica beads were used as model substrates of sol-gel coated and uncoated sensor surfaces. Two different covalent chemistries were used to immobilize AChE and OPH to these porous and non-porous silica beads. The first chemistry used amine-silanization of silica followed by enzyme attachment using the homobifunctional linker glutaraldehyde. The second chemistry used sulfhydryl-silanization followed by enzyme attachment using the heterobifunctional linker N-gamma-maleimidobutyryloxy succinimide ester (GMBS). Surfaces were characterized in terms of total enzyme immobilized, total and specific enzyme activity, and long term stability of enzyme activity. Amine derivitization followed by glutaraldehyde linking yielded supports with greater amounts of immobilized enzyme and activity. Use of porous supports not only yielded greater amounts of immobilized enzyme and activity, but also significantly improved long term stability of enzyme activity. Enzyme was also immobilized to sol-gel coated glass slides. The mass of immobilized enzyme increased linearly with thickness of coating. However, immobilized enzyme activity saturated at a porous silica thickness of approximately 800 nm.  相似文献   

16.
This paper reports covalent immobilization of xylanase by response surface methodology on glutaraldehyde-activated aluminum oxide pellets. The optimization of process parameters gave an immobilization yield of 83.65%. The bound enzyme displayed increase in optimum temperature (from 50 to 60 °C) and Vmax (from 3333.33 to 5000 IU/mL) in comparison with free enzyme. The pH and temperature stability were also enhanced. An observed increase in half-lives and D-values resulted in improved thermostability. Thermodynamically, increase in enthalpy and free energy change after covalent immobilization could be credited to the enhanced stability. Immobilized xylanase could be reused for 10 consecutive cycles retaining 60% of its initial activity. It was found to be effective in releasing reducing sugar from poultry feed. Immobilization on aluminum oxide pellets is important due to their mechanical resistance at high pH and temperature. So, considerable stability and reusability of bound enzyme may be advantageous for its industrial application.  相似文献   

17.
Dextransucrase from Leuconostoc mesenteroides NRRL B-512F was immobilized using two different methods: covalent attachment to activated silica and entrapment in calcium alginate. For immobilization on silica, native enzyme and dextran-free enzyme were compared. However, the entrapment in calcium alginate beads gave the best results in terms of immobilization yield and stability. This biocatalyst was employed in the acceptor reaction with maltose showing similar glucooligosaccharide production than the native enzyme but increased operational stability.  相似文献   

18.
A novel 5,6-diaryl-1,2,4-triazine thiazole derivatives (7a-7q) were synthesized and characterized by 1H NMR and 13C NMR and evaluated for their α-glucosidase inhibitory activity. All tested compounds displayed good α-glucosidase inhibitory activity with IC50 values ranging between 2.85 ± 0.13 and 14.19 ± 0.23 μM when compared to the standard drug acarbose (IC50 = 817.38 ± 6.27 μM). Compound 7i (IC50 = 2.85 ± 0.13 μM) exhibited the highest activity among this series of compounds. Molecular docking studies were carried out in order to investigate the binding mode of this class of compounds to α-glucosidase. This study showed that these 5,6-diaryl-1,2,4-triazine thiazole derivatives are a new class of α-glucosidase inhibitors.  相似文献   

19.
The attachment of enzymes, through their amino groups, to CNBr activated agarose gels has been tested as an immobilization stabilization system. By using this system, the development of a strategy to immobilize enzymes through multipoint covalent attachment has been studied. We have prepared different staphylococcal nuclease-Agarose derivatives by using Sepharose 2B gels previously activated with CNBr. Activity and stability of the derivatives obtained were very dependent on the degree of activation of the support. The most stable derivatives, prepared with the most activated supports, were 700 fold more stable than the soluble enzyme in irreversible thermal inactivation experiments, at 40d`C. In contrast, a significant loss of catalytic activity (kcat decreases down to 40%) was associated with the increase in stability. Colorimetric titration of amine groups in the stabilized derivatives suggested that enzyme-support multipoint attachment was the main reason for the observed stabilizing effect.

Index Entries: micrococcal nuclease immobilization enzyme stabilization enzyme-support multipoint attachment  相似文献   

20.
Ultrasound sonication has been utilized to produce fragmentation of chitosan polymer and hence increase the chitosan surface area, making it more accessible to interactions with proteins. In this context, we have investigated the catalytic properties of lipases from different sources immobilized onto ultrasound-treated chitosan (ChiS) pre-activated with glutaraldehyde (ChiS-G). Atomic force microscopy indicated that ChiS-G displays a more cohesive frame without the presence of sheared/fragmented structures when compared with ChiS, which might be attributed to the cross-linking of the polysaccharide chains. The immobilization efficiency onto ChiS-G and ChiS were remarkably higher than using conventional beads. In comparison with the free enzymes, lipases immobilized onto ChiS show a slight increase of apparent Km and decrease of apparent Vmax. On the other hand, immobilization onto ChiS-G resulted in an increase of Vmax, even though a slight increase of Km was also observed. These data suggest that the activation of chitosan with glutaraldehyde has beneficial effects on the activity of the immobilized lipases. In addition, the immobilization of the lipases onto ChiS-G displayed the best reusability results: enzymes retained more than 50% of its initial activity after four reuses, which might be attributed to the covalent attachment of enzyme to activated chitosan. Overall, our findings demonstrate that the immobilization of lipases onto ultrasound-treated chitosan supports is an effective and low-cost procedure for the generation of active immobilized lipase systems, being an interesting alternative to conventional chitosan beads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号