首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physiopathology of neuronal voltage-operated calcium channels.   总被引:2,自引:0,他引:2  
Voltage-operated calcium channels are multimeric transmembrane proteins crucially involved in control of calcium homeostasis. Multiple types of voltage-operated calcium channels have been described in both the nervous system and peripheral tissues. Different channels can be classified according to either their biophysical properties or their pharmacology, biochemical and molecular structure, and localization and functional role. Concentrating on neuronal cells, this paper reviews the different properties of low- and high-voltage activated channels, as well as various attempts to subdivide high-voltage activated channels into different subtypes (L, N, omega, P, etc.). The availability of selective drugs (such as dihydropyridines) and natural toxins (such as omega-Conotoxin, omega-agatoxin, and funnel-web spider toxins), which bind to specific channel subtypes, has greatly helped in channel classification. The emerging view is that there are many members of the family of voltage-operated calcium channels, each with its own molecular structure, a different pharmacology, a different localization, and possibly a different physiological role. Different calcium subtypes are selectively affected in human and animal diseases. The use of omega-Conotoxin has led to identification of the channel subtype (omega) specifically affected in Lambert-Eaton myasthenic syndrome (a human disease of neurotransmission), and has permitted development of new diagnostic approaches to the disease.  相似文献   

2.
1. The effect of the benzodiazepines Ro5-4864, AHN 086 and clonazepam on the release of Ca2+ from rat heart and kidney mitochondria was studied. 2. The peripheral-type benzodiazepines Ro5-4864 and AHN 086 induced Ca2+ release which was blocked by Mg2+ whereas the central-type benzodiazepine clonazepam was ineffective. 3. An associated collapse of membrane potential and swelling were also induced by AHN 086 in the presence of Ca2+. 4. However, no oxidation of pyridine nucleotides or increased rate or respiration were observed. 5. Release of Sr2+ was induced by AHN 086 in the absence of inorganic phosphate but not in its presence. 6. These data are discussed in the context of the current hypotheses on the mechanism of mitochondrial Ca2+ release.  相似文献   

3.
4.
The sequencing of endopeptidase-generated peptides from the peripheral binding site (PBS) for benzodiazepines, purified from a Chinese hamster ovary (CHO) cell line, produced internal sequence information, and confirmed and extended the NH2-terminal PBS sequence that we previously reported. Since the sequences were highly similar to the corresponding rat PBS sequences, we investigated whether they were also conserved in human PBS. Scatchard analysis of [3H]PK11195 (a derivative of isoquinoline carboxamide) binding and photoaffinity labeling with [3H]PK14105 (a nitrophenyl derivative of PK11195) revealed that CHO PBS and human PBS are closely related. Furthermore a rabbit antiserum raised against three peptides synthesized on the basis of the CHO PBS sequence immunoprecipitate the solubilized U937 PBS and also recognize the human protein in an immunoblot analysis. Based on these results, we screened a U937 cell cDNA library with four oligonucleotide probes derived from the CHO sequence. Two of the probes hybridized with several clones that we isolated and sequenced. One of these, h-pPBS11, is 831 nucleotides and contains a full-length representation of human PBS mRNA. The amino acid sequence of human PBS deduced from the cDNA is 79% identical to that reported for rat PBS, however, human PBS contains two cysteines while rat PBS is characterized by the absence of this amino acid. Using the cDNA of human PBS as a probe, the PBS gene was located in the 22q13.3 band of the human genome.  相似文献   

5.
The mitochondrial peripheral benzodiazepine receptor (PBR) is involved in a functional structure designated as the mitochondrial permeability transition (MPT) pore, which controls apoptosis. PBR expression in nervous system has been reported in glial and immune cells. We now show expression of both PBR mRNA and protein, and the appearance of binding of a synthetic ligand fluo-FGIN-1-27 in mitochondria of rat cerebellar granule cells (CGCs). Additionally, the effect of PBR ligands on colchicine-induced apoptosis was investigated. Colchicine-induced neurotoxicity in CGCs was measured at 24 h. We show that, in vitro, PBR ligands 1-(2-chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195), 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4- benzodiazepin-2-one (Ro5-4864) and diazepam (25– 50 M) enhanced apoptosis induced by colchicine, as demonstrated by viability experiments, flow cytometry and nuclear chromatin condensation. Enhancement of colchicine-induced apoptosis was characterized by an increase in mitochondrial release of cytochrome c and AIF proteins and an enhanced activation of caspase-3, suggesting mitochondrion dependent mechanism that is involved in apoptotic process. Our results indicate that exposure of neural cells to PBR ligands generates an amplification of apoptotic process induced by colchicine and that the MPT pore may be involved in this process.  相似文献   

6.
We have investigated the subcellular localization of the peripheral-type benzodiazepine receptor in rat adrenal gland using the high affinity ligand 3H-labeled 1-(2-chlorophenyl)-N-methyl-(1-methylpropyl)-3-isoquinoline carboxamide ([3H]PK11195). The autoradiographic pattern of [3H]PK11195 binding sites in tissue sections of adrenal gland is similar to the histochemical distribution of the mitochondrial marker enzymes, cytochrome oxidase and monoamine oxidase, which are present in high concentrations only in the cortex. Subcellular fractionation studies of homogenates of adrenal gland indicate that the recovery and enrichment of [3H]PK11195 binding sites in the nuclear, mitochondrial, microsomal, and soluble fractions correlate closely with cytochrome oxidase activity, but not with markers for the nuclei, lysosomes, peroxysomes, endoplasmic reticulum, plasma membrane, or cytoplasm, indicating an association of the peripheral-type benzodiazepine receptor with the mitochondrial compartment. Titration of isolated mitochondria with digitonin results in the simultaneous release of the peripheral-type benzodiazepine receptor and of monoamine oxidase, but not cytochrome oxidase, indicating association of the peripheral-type benzodiazepine receptor with the mitochondrial outer membrane. Scatchard analysis and drug displacement studies of the binding of [3H] PK11195 to intact mitochondria and to the outer membrane-enriched digitonin extract further confirm the localization of the peripheral-type benzodiazepine receptor to the mitochondrial outer membrane.  相似文献   

7.
The density of bovine peripheral-type benzodiazepine receptors (PBR) in four tissues was highest in adrenal cortex. The adrenal cortex PBR cofractionated with a mitochondrial membrane marker enzyme and could be solubilized with intact ligand binding properties using digitonin. The membrane bound and soluble mitochondrial receptors were pharmacologically characterized and showed the rank order of potency to inhibit [3H]PK 11195 binding was PK 11195 greater than protoporphyrin IX greater than benzodiazepines (clonazepam, diazepam, or Ro5-4864). [3H]PK 11195 binding to bovine adrenal mitochondria was unaffected by diethylpyrocarbonate, a histidine residue modifying reagent that decreased binding to rat liver mitochondria by 70%. [3H]PK 14105 photolabeled the bovine PBR and the Mr was estimated under nondenaturing (200 kDa) and denaturing (17 kDa) conditions. These results demonstrate the bovine peripheral-type benzodiazepine receptor is pharmacologically and biochemically distinct from the rat receptor, but the receptor component photolabeled by an isoquinoline ligand has a similar molecular weight.  相似文献   

8.
9.
Tobin VA  Douglas AJ  Leng G  Ludwig M 《PloS one》2011,6(10):e25366
Magnocellular neurons of the supraoptic nucleus (SON) secrete oxytocin and vasopressin from axon terminals in the neurohypophysis, but they also release large amounts of peptide from their somata and dendrites, and this can be regulated both by activity-dependent Ca(2+) influx and by mobilization of intracellular Ca(2+). This somato-dendritic release can also be primed by agents that mobilise intracellular Ca(2+), meaning that the extent to which it is activity-dependent, is physiologically labile. We investigated the role of different Ca(2+) channels in somato-dendritic release; blocking N-type channels reduced depolarisation-induced oxytocin release from SONs in vitro from adult and post-natal day 8 (PND-8) rats, blocking L-type only had effect in PND-8 rats, while blocking other channel types had no significant effect. When oxytocin release was primed by prior exposure to thapsigargin, both N- and L-type channel blockers reduced release, while P/Q and R-type blockers were ineffective. Using confocal microscopy, we found immunoreactivity for Ca(v)1.2 and 1.3 channel subunits (which both form L-type channels), 2.1 (P/Q type), 2.2 (N-type) and 2.3 (R-type) in the somata and dendrites of both oxytocin and vasopressin neurons, and the intensity of the immunofluorescence signal for different subunits differed between PND-8, adult and lactating rats. Using patch-clamp electrophysiology, the N-type Ca(2+) current density increased after thapsigargin treatment, but did not alter the voltage sensitivity of the channel. These results suggest that the expression, location or availability of N-type Ca(2+) channels is altered when required for high rates of somato-dendritic peptide release.  相似文献   

10.
The recent discovery of pharmacologically relevant, high affinity, stereospecific binding sites for the benzodiazepines in the central nervous system (CNS) has rekindled investigations concerning the mechanism of action of these drugs. It has become increasingly clear that elucidation of benzodiazepine action will provide new and important insights into the neurochemical substances of seizure activity, centrally mediated muscle relaxation and anxiety, three major actions of this class of drugs.The existence of a functional receptor for the benzodiazepines, compounds not present in vivo, suggests that endogenous substances exist that serve as natural substrates for this receptor. Furthermore, the characterization of endogenous benzodiazepine receptor ligands affords an opportunity to determine the neurochemical mechanisms underlying the pharmacologic and behavioral effects manifested by the benzodiazepines.Using receptor binding methodology to assay tissue extracts for [3H] diazepam binding inhibitory activity, putative endogenous ligands for the benzodiazepine receptor have been isolated and identified as the purine nucleosides. Compounds such as inosine and hypoxanthine exhibit competitive inhibition of [3H] diazepam binding. The low affinity purinergic inhibition of diazepam binding is consistent with their in vivo concentrations. Distinct structure-activity relationships exist for the purines with subtle structural alterations having marked effects on diazepam binding inhibitory potency. The methylxanthine stimulants, caffeine, theophylline, and theobromine, also competitively inhibit diazepam binding, suggesting that some of their actions may be mediated by the benzodiazepine receptor.The purines also have “benzodiazepine-like” pharmacologic properties, since they have been shown to antagonize pentylenetetrazol induced seizures in mice in a dose dependent manner. Neurophysiologic studies have also shown that iontophoresis of inosine on cultured mouse primary neurons produce neurotransmitter like effects. Furthermore, these effects are similar to those observed with flurazepam, a finding that provides additional evidence for the “benzodiazepine-like” properties of the purines.The preliminary studies outlined below indicate that the purines are good candidates as putative endogenous ligands for the benzodiazepine receptor and provide a foundation for future studies that concern the homeostatic mediation of seizure activity and anxiety.  相似文献   

11.
High affinity binding of isoquinolines, such as PK 11195, is a conserved feature of peripheral-type benzodiazepine receptors (PBR) across species. However, species differences in PBR ligand binding have been described based on the affinity for N1-alkyl-1,4-benzodiazepines, such as Ro5-4864. Ro5-4864 binds with high affinity to the rat receptor but has low affinity for the bovine PBR. Photolabeling with an isoquinoline ligand, [3H]PK 14105, identifies a 17-kDa protein, the PBR isoquinoline binding protein (PBR/IBP), in both species. To further elucidate the role of the PBR/IBP in determining PBR benzodiazepine and isoquinoline binding characteristics, the bovine PBR/IBP was cloned and expressed. Using a cDNA encoding a rat PBR/IBP to screen a fetal bovine adrenal cDNA library, a bovine cDNA encoding a polypeptide of 169 residues was cloned. The bovine and rat PBR/IBPs had similar hydropathy profiles exhibiting five potential transmembrane domains. Transfecting the cloned bovine PBR/IBP cDNA into COS-7 cells resulted in an 11-fold increase in the density of high affinity [3H]PK 11195 binding sites which had only low affinity for Ro5-4864. Expression of the bovine PBR/IBP yields a receptor which is pharmacologically distinct from both endogenous COS-7 PBR and the rat PBR based on the affinity for several N1-alkyl-1,4-benzodiazepine ligands. These results suggest the PBR/IBP is the minimal functional component required for PBR ligand binding characteristics and the different protein sequences account for the species differences in PBR benzodiazepine ligand binding.  相似文献   

12.
"Peripheral-type" benzodiazepine receptors (PTBRs) are highly expressed on the outer mitochondrial membrane of several types of glial cells. In order to further elucidate the nature of the early glial cell changes in thiamine deficiency, PTBR sites and PTBR mRNA were measured in thalamus, a brain structure which is particularly vulnerable to thiamine deficiency, of thiamine-deficient rats at presymptomatic and symptomatic stages of deficiency. PTBR sites were measured using an in vitro binding technique and the selective radio ligand [3H]-PK11195. PTBR gene expression was measured by RT-PCR using oligonucleotide primers based upon the published sequence of the cloned rat PTBR. Microglial and astrocytic changes in thalamus due to thiamine deficiency were assessed using immunohistochemistry and antibodies to specific microglial (ED-1) and astrocytic (GFAP) proteins respectively. Significant increases of [3H]-PK11195 binding sites and concomitantly increased PTBR mRNA were observed in thalamus at the symptomatic stage of thiamine deficiency, coincident with severe neuronal cell loss and increased GFAP-immunolabelling (indicative of reactive gliosis). Positron Emission Tomography using 11C-PK11195 could provide a novel approach to the diagnosis and assessment of the extent of thalamic damage due to thiamine deficiency in humans with Wernicke's Encephalopathy.  相似文献   

13.
Neurotransmitter release from synaptic vesicles is triggered by voltage-gated calcium influx through P/Q-type or N-type calcium channels. Purification of N-type channels from rat brain synaptosomes initially suggested molecular interactions between calcium channels and two key proteins implicated in exocytosis: synaptotagmin I and syntaxin 1. Co-immunoprecipitation experiments were consistent with the hypothesis that both N- and P/Q-type calcium channels, but not L-type channels, are associated with the 7S complex containing syntaxin 1, SNAP-25, VAMP and synaptotagmin I or II. Immunofluorescence confocal microscopy at the frog neuromuscular junction confirmed that calcium channels, syntaxin 1 and SNAP-25 are co-localized at active zones of the presynaptic plasma membrane where transmitter release occurs. Experiments with recombinant proteins were performed to map synaptic protein interaction sites on the alpha 1A subunit, which forms the pore of the P/Q-type calcium channel. In vitro-translated 35S-synaptotagmin I bound to a site located on the cytoplasmic loop linking homologous domains II and III of the alpha 1A subunit. This direct link would target synaptotagmin, a putative calcium sensor for exocytosis, to a microdomain of calcium influx close to the channel mouth. Cysteine string proteins (CSPs) contain a J-domain characteristic of molecular chaperones that cooperate with Hsp70. They are located on synaptic vesicles and thought to be involved in modulating the activity of presynaptic calcium channels. CSPs were found to bind to the same domain of the calcium channel as synaptotagmin, and also to associate with VAMP. CSPs may act as molecular chaperones in association with Hsp70 to direct assembly or dissociation of multiprotein complexes at the calcium channel.  相似文献   

14.
A new neuroactive protein, beta-leptinotarsin-h, has been purified to near-homogeneity from the hemolymph of the beetle Leptinotarsa haldemani by column chromatography. beta-Leptinotarsin-h has a molecular weight of 57 000. Rat brain synaptosomes incubated with appropriate radioactive precursors release acetylcholine (ACh), norepinephrine, and 4-aminobutyrate when exposed to beta-leptinotarin-h, but do not release lactate dehydrogenase. Release of ACh has been examined in some detail. Release of ACh varies with the concentration of beta-leptinotarsin-h in a rectangular hyperbolic fashion. Half-maximal release is stimulated by a concentration of 50 ng/mL. Altering the ionic composition of the bathing solution affects the release in a manner which suggests that neither Na+ channels nor K+ channels are affected by beta-leptinotarsin-h but that the beta-leptinotarsin-h acts to increase permeability to Ca2+. Varying the concentration of Ba2+, Sr2+, Co2+, and Cd2+ indicates that beta-leptinotarsin-h acts to open the voltage-sensitive presynaptic Ca2+ channel. beta-Leptinotarsin-h may be a useful tool for studying the Ca2+ channel associated with the release of neurotransmitters.  相似文献   

15.
Steroidogenesis begins with the metabolism of cholesterol to pregnenolone by the inner mitochondrial membrane cytochrome P450 side-chain cleavage (P450scc) enzyme. The rate of steroid formation, however, depends on the rate of (i) cholesterol transport from intracellular stores to the inner mitochondrial membrane and (ii) loading of P450scc with cholesterol. We demonstrated that a key element in the regulation of cholesterol transport is the mitochondrial peripheral-type benzodiazepine receptor (PBR) and that the presence of the polypeptide diazepam binding inhibitor (DBI) was vital for steroidogenesis. We also showed that DBI, as the endogenous PBR ligand, stimulates cholesterol transport. In addition, DBI directly promotes loading of cholesterol to P450scc. We review herein our studies on the structure, function, topography and hormonal regulation of PBR and DBI in steroidogenic cells. Based on these data we propose a model where the interaction of DBI with PBR, at the outer/inner membrane contact sites, is the signal transducer of hormone-stimulated and constitutive steroidogenesis at the mitochondrial level. Hormone-induced changes in PBR microenvironment/structure regulate the affinity of the receptor. PBR ligand binding to a higher affinity receptor results in increased cholesterol transport. In addition, hormone-induced release (processing?) of a 30,000 MW DBI-immunoreactive protein from the inner mitochondrial membrane may result to the intramitochondrial production of DBI which directly stimulates loading of P450scc with cholesterol. Thus, in vivo, hormonal activation of these two mechanisms results in efficient cholesterol delivery and utilization and thus high levels of steroid synthesis.  相似文献   

16.
The characteristics of [3H]Ro 5-4864 binding to "peripheral" benzodiazepine receptors (PBR) in the central nervous system and peripheral tissues were examined after chemical sympathectomy with 6-hydroxydopamine (6-OHDA). One week after the intracisternal administration of 6-OHDA, the number of [3H]Ro 5-4864 binding sites (Bmax) in the hypothalamus and striatum increased 41 and 50%, respectively, concurrent with significant reductions in catecholamine content. An increase (34%) in the Bmax of [3H]Ro 5-4864 to cardiac ventricle was observed one week after parenteral 6-OHDA administration. In contrast, the Bmax of [3H]Ro 5-4864 to pineal gland decreased 48% after 6-OHDA induced reduction in norepinephrine content. The Bmax values for [3H]Ro 5-4864 binding to other tissues (including lung, kidney, spleen, cerebral cortex, cerebellum, hippocampus and olfactory bulbs) were unaffected by 6-OHDA administration. The density of pineal, but not cardiac PBR was also reduced after reserpine treatment, an effect reversed by isoproterenol administration. These findings demonstrate that alterations in sympathetic input may regulate the density of PBR in both the central nervous system and periphery in a tissue specific fashion.  相似文献   

17.
In vitro studies using isolated cells, mitochondria and submitochondrial fractions demonstrated that in steroid synthesizing cells, the peripheral-type benzodiazepine receptor (PBR) is an outer mitochondrial membrane protein, preferentially located in the outer/inner membrane contact sites, involved in the regulation of cholesterol transport from the outer to the inner mitochondrial membrane, the rate-determining step in steroid biosynthesis. Mitochondrial PBR ligand binding characteristics and topography are sensitive to hormone treatment suggesting a role of PBR in the regulation of hormone-mediated steroidogenesis. Targeted disruption of the PBR gene in Leydig cells in vitro resulted in the arrest of cholesterol transport into mitochondria and steroid formation; transfection of the mutant cells with a PBR cDNA rescued steroidogenesis demonstrating an obligatory role for PBR in cholesterol transport. Molecular modeling of PBR suggested that it might function as a channel for cholesterol. This hypothesis was tested in a bacterial system devoid of PBR and cholesterol. Cholesterol uptake and transport by these cells was induced upon PBR expression. Amino acid deletion followed by site-directed mutagenesis studies and expression of mutant PBRs demonstrated the presence in the cytoplasmic carboxy-terminus of the receptor of a cholesterol recognition/interaction amino acid consensus sequence. This amino acid sequence may help for recruiting the cholesterol coming from intracellular sites to the mitochondria.  相似文献   

18.
There is a growing body of evidence to suggest that peripheral-type benzodiazepine receptors (PTBRs) and their endogenous ligands are implicated in the pathogenesis of end-organ failure in chronic liver disease. Portal-systemic encephalopathy, a major neuropsychiatric complication associated with chronic liver disease, results in activation of brain PTBR and probably in peripheral organs. In order to address these issues, PTBR mRNA was measured using semi-quantitative RT-PCR in extracts of cerebral cortex, kidney and testis of rats four weeks after end-to-side portacaval anastomosis and sham-operation (controls). Densities of PTBR sites were measured concomitantly by in vitro receptor binding using the selective PTBR ligand [3H]PK11195. Portacaval shunting resulted in a 2 to 3-fold increase in expression of PTBR in brain and kidney and a 37% reduction in expression in testis. Densities of [3H]PK11195 sites changed in parallel with the alterations of gene expression. These findings suggest that selective alterations of PTBR expression are implicated in the pathogenesis of peripheral tissue hypertrophy (kidney) and/or atrophy (testis) which accompanies portal-systemic shunting in chronic liver failure. In brain, activation of PTBR could result in an increase in the production of neurosteroids with potent inhibitory action in the CNS, which could contribute to the pathogenesis of portal-systemic encephalopathy.  相似文献   

19.
Chloroplast transit peptides from the green alga Chlamydomonas reinhardtii have been analyzed and compared with chloroplast transit peptides from higher plants and mitochondrial targeting peptides from yeast, Neurospora and higher eukaryotes. In terms of length and amino acid composition, chloroplast transit peptides from C. reinhardtii are more similar to mitochondrial targetting peptides than to chloroplast transit peptides from higher plants. They also contain the potential amphiphilic -helix characteristic of mitochondrial presequences. However, in similarity with chloroplast transit peptides from higher plants, they contain a C-terminal region with the potential to form an amphiphilic β-strand. As in higher plants, transit peptides that route proteins to the thylakoid lumen consist of an N-tenninal domain similar to stroma-targeting transit peptides attached to a C-terminal apolar domain that share many characteristics with secretory signal peptides.  相似文献   

20.
Pregnancy is associated with decreased vascular responsiveness to vasopressor stimuli. We have tested the involvement of Ca2+ mobilization in myotropic responses of aortic rings obtained from pregnant and virgin rats. Contractions of the rings to phenylephrine, in the absence of calcium in the bathing medium, were lower in tissues from virgin than from pregnant rats. Concentration-response curves to CaCl2 that were measured after stimulation by phenylephrine in the absence of Ca2+ were shifted to higher levels of contraction. This was not observed when KCl was used to prestimulate the aorta. D-600, a phenylalkylamine calcium channel blocker, similarly inhibited these responses to CaCl2 in tissues from both pregnant and virgin animals. D-600 exerted a concentration-dependent inhibition of responses to phenylephrine and KCl. However, the calcium antagonist was less effective in aortic rings of pregnant than of virgin rats. Basal 45Ca2+ uptake was lower in aortic rings from pregnant than from virgin rats, and Bay K 8644 was unable to reverse this difference. The time course of basal and stimulated (KCl) 45Ca2+ influx was lower in aorta of pregnant rats at all times studied. Moreover, when the intracellular calcium pools were emptied with phenylephrine, the refilling of these pools was delayed in aortic rings of pregnant rats. These results indicate an altered extracellular calcium mobilization of aortic rings from pregnant rats. These changes may be due to a functional alteration of the voltage-operated calcium channels during pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号