首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Our knowledge about 5-HT (serotonin, 5-hydroxytryptamine) receptors has gained significantly over the recent few years. The discovery of selective ligands and the use of new techniques have led to a significant increase in the number of recognised receptors subtypes. The present status of awareness is largely related to the use of radioligand binding studies, autoradiography, second messenger analysis and more recently, molecular biological techniques. Three main families of 5-HT receptors, of which subtypes have been described, are now accepted. This heterogeneity is further substantiated by the cloning of the cDNA's of three different 5-HT receptors. This article reviews some of the recent developments which led to the characterisation of 5-HT receptor subtypes.  相似文献   

2.
Among human serotonin (5-HT) receptor subtypes, each G protein-coupled receptor subtype is reported to have one G protein-signaling cascade. However, the signaling may not be as simple as previously thought to be. 5-HT5A receptors are probably the least well understood among the 5-HT receptors, but the authors found that 5-HT5A receptors couple to multiple signaling cascades. When the 5-HT5A receptors were expressed in undifferentiated C6 glioma cells, they modulated the level of second messengers. For example, activation of 5-HT5A receptors inhibited the adenylyl cyclase activity and subsequently reduced the cAMP level, as previously reported. In addition to this known signaling via Gi/Go, 5-HT5A receptors are coupled to the inhibition of ADP-ribosyl cyclase and cyclic ADP ribose formation. On the other hand, activation of 5-HT5A receptors transiently opened the K+ channels, presumably due to the increase in intracellular Ca2+ after formation of inositol (1,4,5) trisphosphate. The K+ currents were inhibited by both heparin and pretreatment with pertussis toxin, suggesting the cross-talk between Gi/Go protein and phopholipase C cascade. Thus, the authors results indicate that 5-HT5A receptors couple to multiple second messenger systems and may contribute to the complicated physiological and pathophysiological states. Although this multiple signaling has been reported only for 5-HT5A/5-HT1 receptors so far, it is possible that other 5-HT receptor subtypes bear similar complexity. As a result, in addition to the wide variety of expression patterns of each 5-HT receptor subtype, it is possible that multiple signal transduction systems may add complexity to the serotonergic system in brain function. The investigation of these serotonergic signaling and its impairment at cellular level may help to understand the symptoms of brain diseases.  相似文献   

3.
Recent progress in the molecular pharmacology of 5-HT receptors and the development of selective ligands for various 5-HT receptor subtypes has advanced our understanding of the role of 5-HT mechanisms in the control of food intake and body weight The most intensively investigated 5-HT receptor subtypes have been the 5-HT1A receptor, the 5-HT1B receptor andthe5-HT2C receptor. The overall pattern of results to date suggests that selective 5-HT2C agonists may be novel anorectic drugs and prove useful in the treatment of obesity. However, a number of issues remain unresolved, particularly regarding potential side-effects, as the 5-HT2C receptor agonist mCPP has been reported to induce anxiety and nausea in humans, actions that would clearly limit its therapeutic utility. In addition, the possible role of recently cloned 5-HT receptor subtypes such as 5-ht5,5-ht6 and 5-ht7 remains unexplored and the development of selective ligands for these sites has the potential to lead to new treatments for obesity .  相似文献   

4.
In the last few years, molecular biology has led to the cloning and characterization of several 5-HT receptors (serotonin receptors) in vertebrates and in invertebrates. These studies have allowed identification not only of 5-HT receptors already described but also of novel subtypes. The molecular cloning of 13 different mammalian receptor subtypes revealed an unexpected heterogeneity among 5-HT receptors. Except for the 5-HT3 receptors which are ligand-gated ion channel receptors, all the other 5-HT receptors belong to the large family of receptors interacting with G proteins. Based on their amino acid sequence homology and coupling to second messengers these receptors can be divided into distinct families: the 5-HT1 family contains receptors that are negatively coupled to adenylate cyclase; the 5-HT1 family includes receptors that stimulate phospholipase C; the adenylyl cyclase stimulatory receptors are a heterogeneous group including the 5-HT4 receptor which has not yet been cloned, the Drosophila 5-HTdrol receptor and two mammalian receptors tentatively named 5-HT6 and 5-HT7 receptors. The 5-HT5A and 5-HT5B receptors might constitute a new family of 5-HT receptors whose effectors are unknown. This review focusses on the molecular characteristics of the cloned 5-HT receptors such as their structure, their effector systems and their distribution within the central nervous system. The existence of a large number of receptors with distinct signalling properties and expression patterns might enable a single substance like 5-HT to generate simultaneously a large panel of effects in many brain structures. The availability of the genes encoding these receptors has already allowed a partial characterization of their structure-function relationship and will probably allow in the future a dissection of the contribution of each of these receptor subtypes to physiology and behaviour.  相似文献   

5.
The most commonly prescribed antidepressants, the serotonin (5-HT) selective reuptake inhibitors, increase 5-HT without targeting specific receptors. Yet, little is known about the interaction of multiple receptor subtypes expressed by individual neurons. Specifically, the effect of increases in cAMP induced by Gs-coupled 5-HT receptor subtypes on the signaling pathways modulated by other receptor subtypes has not been studied. We have, therefore, examined the activation of the extracellular-regulated kinase (ERK) and Akt pathways by Gs-coupled 5-HT7A receptors and Gq-coupled 5-HT2A receptors, which are co-expressed in discrete brain regions. Agonists for both receptors were found to activate ERK and Akt in transfected PC12 cells. 5-HT2A receptor-mediated activation of the two pathways was found to be Ca2+-dependent. In contrast, 5-HT7A receptor-mediated activation of Akt required increases in both [cAMP] and intracellular [Ca2+], while activation of ERK was inhibited by Ca2+. The activation of ERK and Akt stimulated by simultaneous treatment of cells with 5-HT2A and 5-HT7A receptor agonists was found to be at least additive. Cell-permeable cAMP analogs mimicked 5-HT7A receptor agonists in enhancing 5-HT2A receptor-mediated activation of ERK and Akt. A role was identified for the cAMP-guanine exchange factor, Epac, in this augmentation of ERK, but not Akt, activation. Our finding of enhanced activation of neuroprotective Akt and ERK pathways by simultaneous occupancy of 5-HT2A and 5-HT7A receptors may also be relevant to the interaction of other neuronally expressed Gq- and Gs-coupled receptors.  相似文献   

6.
The frontal cortex is innervated by serotonergic terminals from the raphe nuclei and it expresses diverse 5-HT receptor subtypes. We investigated the effects of 5-HT and different 5-HT receptor subtype-selective agonists on spontaneous discharges which had developed in rat cortical slices perfused with a Mg2+-free medium and the GABA(A) receptor antagonist picrotoxin. The frequency of synchronous discharges, recorded extracellularly in superficial layers (II/III) of the frontal cortex, was dose-dependently enhanced by 5-HT (2.5-40 microM). That excitatory effect was blocked by the 5-HT2 receptor selective antagonist ketanserin. The 5-HT2A/2C receptor-selective agonist DOI and the 5-HT4 receptor agonist zacopride also increased the frequency of spontaneous discharges. In the presence of ketanserin, 5-HT decreased the discharge rate; a similar effect was observed when the 5-HT1A receptor agonist 8-OH-DPAT or the 5-HT1B receptor agonist CGS-12066B was applied. The 5-HT3 receptor agonist m-CPBG was ineffective. In conclusion, 5-HT produces multiple effects on epileptiform activity in the frontal cortex via activation of various 5-HT receptor subtypes. The excitatory action of 5-HT, which predominates, is mediated mainly by 5-HT2 receptors. The inhibitory effects can be attributed to activation of 5-HT1A and 5-HT1B receptors.  相似文献   

7.
Recent advances in peripheral taste physiology now suggest that the classic linear view of information processing within the taste bud is inadequate and that paracrine processing, although undemonstrated, may be an essential feature of peripheral gustatory transduction. Taste receptor cells (TRCs) express multiple neurotransmitters of unknown function that could potentially participate in a paracrine role. Serotonin is expressed in a subset of TRCs with afferent synapses; additionally, TRCs respond physiologically to serotonin. This study explored the expression and cellular localization of serotonin receptor subtypes in TRCs as a possible route of paracrine communication. RT-PCR was performed on RNA extracted from rat posterior taste buds with 14 prime sets representing 5-HT(1) through 5-HT(7) receptor subtype families. Data suggest that 5-HT(1A) and 5-HT(3) receptors are expressed in taste buds. Immunocytochemistry with a 5-HT(1A)-specific antibody demonstrated that subsets of TRCs were immunopositive for 5-HT(1A). With the use of double-labeling, serotonin- and 5-HT(1A)-immunopositive cells were observed exclusively in nonoverlapping populations. On the other hand, 5-HT(3)-immunopositive taste receptor cells were not observed. This observation, combined with other data, suggests 5-HT(3) is expressed in postsynaptic neural elements within the bud. We hypothesize that 5-HT release from TRCs activates postsynaptic 5-HT(3) receptors on afferent nerve fibers and, via a paracrine route, inhibits neighboring TRCs via 5-HT(1A) receptors. The ole of the 5-HT(1A)-expressing TRC within the taste bud remains to be explored.  相似文献   

8.
9.
Serotonin, 5-hydroxytryptamine (5-HT), plays various roles in the fruit fly, Drosophila melanogaster. Previous studies have shown that 5-HT modulates the heart rate in third instar larvae. However, the receptor subtypes that mediate 5-HT action in larval cardiac tissue had yet to be determined. In this study, various 5-HT agonists and antagonists were employed to determine which 5-HT receptor subtypes are responsible for the positive chronotropic effect by 5-HT. The pharmacological results demonstrate that a 5-HT2B agonist significantly increases the heart rate; however, 5-HT1A, 5-HT1B, and 5-HT7 agonists do not have a significant effect on the heart rate. Furthermore, 5-HT2 antagonist, ketanserin, markedly reduces the positive chronotropic effect of 5-HT in a dose–response manner. Furthermore, we employed genetic approaches to confirm the pharmacological results. For this purpose, we used RNA interference line to knock down 5-HT2ADro and also used 5-HT2ADro and 5-HT2BDro insertional mutation lines. The results show that 5-HT2ADro or 5-HT2BDro receptor mutations reduce the response of the heart to 5-HT. Given these results, we conclude that these 5-HT2 receptor subtypes are involved in the action of 5-HT on the heart rate in the larval stage.  相似文献   

10.
1. Intracellular recordings were made from identified neurones in the central nervous system of Helix aspersa. Two types of cell were used, those excited by 5-hydroxytryptamine (5-HT) and acetylcholine and those inhibited by 5-HT and dopamine. The actions of a range of 5-HT agonists and antagonists were tested for their ability to interact with 5-HT receptors.2. 5-Carboxyamidotryptamine, α-methyl-5-HT and N-methyl-5-HT were active on cells excited by 5-HT, with similar potencies to 5-HT. Only 5-carboxyamidotryptamine and 5-methoxytryptamine were equiactive with 5-HT on cells inhibited by 5-HT. Most of the non-indole analogues were inactive or very weak agonists on both receptors.3. MDL 72222 was the most active antagonist tested against 5-HT excitation, showing some selectivity for 5-HT over acetylcholine. Cinanserin and ketanserin also showed selectivity for 5-HT over acetylcholine.4. Tryptamine was inhibitory on both cell types and was a potent antagonist of 5-HT excitation, showing selectivity for 5-HT over acetylcholine.5. It is concluded that the 5-HT excitatory receptor recognizes the indole nucleus with substitution on position 5, save for 5-fluorotryptamine which was inhibitory. It does not appear that these 5-HT receptors can be classified in terms of the vertebrate subtypes of 5-HT receptor. However, it should be noted that only two receptor subtypes located on a small number of neurones were studied in these experiments and other 5-HT receptor subtypes may be located on other groups of neurones and peripheral tissues. These receptors may recognize other 5-HT receptor ligands including non-indoles.  相似文献   

11.
12.
1. Intracellular recordings were made from identified neurones in the central nervous system of Helix aspersa. Two types of cell were used, those excited by 5-hydroxytryptamine (5-HT) and acetylcholine and those inhibited by 5-HT and dopamine. The actions of a range of 5-HT agonists and antagonists were tested for their ability to interact with 5-HT receptors. 2. 5-Carboxyamidotryptamine, alpha-methyl-5-HT and N-methyl-5-HT were active on cells excited by 5-HT, with similar potencies to 5-HT. Only 5-carboxyamidotryptamine and 5-methoxytryptamine were equiactive with 5-HT on cells inhibited by 5-HT. Most of the non-indole analogues were inactive or very weak agonists on both receptors. 3. MDL 72222 was the most active antagonist tested against 5-HT excitation, showing some selectivity for 5-HT over acetylcholine. Cinanserin and ketanserin also showed selectivity for 5-HT over acetylcholine. 4. Tryptamine was inhibitory on both cell types and was a potent antagonist of 5-HT excitation, showing selectivity for 5-HT over acetylcholine. 5. It is concluded that the 5-HT excitatory receptor recognizes the indole nucleus with substitution on position 5, save for 5-fluorotryptamine which was inhibitory. It does not appear that these 5-HT receptors can be classified in terms of the vertebrate subtypes of 5-HT receptor. However, it should be noted that only two receptor subtypes located on a small number of neurones were studied in these experiments and other 5-HT receptor suptypes may be located on other groups of neurones and peripheral tissues. These receptors may recognize other 5-HT receptor ligands including non-indoles.  相似文献   

13.
The review concentrates on the role of different types and subtypes of 5-HT receptors in physiological and behavioural effects of the brain neurotransmitter serotonin. Specifically it describes: 1) the effects of 5-HT1A and 5-HT1B receptors on aggressive behavior, sexual arousal, food and water consumption; 2) the data showing reciprocal effect of 5-HT2A, 5-HT2C receptor agonists; 3) interaction of 5-HT3 and 5-HT1A-receptors in 5-HT3-induced hypothermia. The review provides converging lines of evidence that: different types and subtypes of 5-HT receptors are involved in the regulation of various kinds of behavior as additive as well as opposite factors providing neuroplasticity, compensatory and adaptive mechanism.  相似文献   

14.
A series of 1-(1-pyrrolo(iso)quinolinyl)-2-propylamines was synthesised and evaluated as 5-HT(2C) receptor agonists for the treatment of obesity. The general methods of synthesis of the precursor indoles are described. The functional efficacy and radioligand binding data for the compounds at 5-HT(2) receptor subtypes are reported. The analogue which showed the highest 5-HT(2C) binding affinity (27, 1.6nM) was found to be successful in reducing food intake in rats.  相似文献   

15.
Many cellular functions are carried out by multiprotein complexes. The last five years of research have revealed that many G-protein coupled receptor (GPCR) functions that are not mediated by G proteins involve protein networks, which interact with their intracellular domains. This review focuses on one family of GPCRs activated by serotonin, the 5-HT(2) receptor family, which comprises three closely related subtypes, the 5-HT(2A), the 5-HT(2B) and the 5-HT(2c) receptors. These receptors still raise particular interest, because a large number of psychoactive drugs including hallucinogens, anti-psychotics, anxiolytics and anti-depressants, mediate their action, at least in part, through activation of 5-HT(2) receptors. Recent studies based on two-hybrid screens, proteomic, biochemical and cell biology approaches, have shown that the C-terminal domains of 5-HT(2) receptors interact with intracellular proteins. To date, the protein network associated with the C-terminus of the 5-HT(2C) receptor has been the most extensively characterized, using a proteomic approach combining affinity chromatography, mass spectrometry and immunoblotting. It includes scaffolding proteins containing one or several PDZ domains, signalling proteins and proteins of the cytoskeleton. Data indicating that the protein complexes interacting with 5-HT(2) receptor C-termini tightly control receptor trafficking and receptor-mediated signalling will also be reviewed.  相似文献   

16.
5-HT(五羟色胺)能神经元是起源最早的神经元之一,在传统的神经元形成前,成长中的轴突就可释放5-HT,并且通过5-HT的各种亚型受体来实现不同的功能。近年来,随着5-HT、5-HTRs(五羟色胺受体)的基因克隆及5-HT受体选择性激动剂和拮抗剂的研究发展,5-HT系统在学习记忆中的作用越发明确,许多研究结果表明:5-HT系统在记忆的巩固、短时程记忆(STM)及长时程记忆(LTM)中起重要作用,5-HT1A受体更是在非脊椎动物及哺乳动物的脑中都高度表达,并通过相似的信号转导途径参与学习与记忆的形成和巩固。本文将介绍5-HT1A受体、5-HT1A受体激动剂、5-HT1A受体拮抗剂及其与学习记忆的联系,重点综述5-HT1A受体参与学习记忆的信号转导途径研究进展,讨论5-HT1A受体参与学习记忆的可能性分子神经生物学机制。  相似文献   

17.
In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT2 receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT2A and 5-HT2C receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT2A receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT2A receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.  相似文献   

18.
19.
The neurotransmitter serotonin (5-HT) induces rhythmic motor patterns (fictive locomotion) of the neonatal rat spinal cord in vitro; this is a useful experimental model to study the generation of a motor programme at exclusively spinal level. Nevertheless, 5-HT slows down the fictive locomotion typically elicited by activation of NMDA glutamate receptors, suggesting a complex action of this monoamine. By means of electrophysiological recordings from multiple ventral roots we demonstrated that the decrease caused by 5-HT in NMDA-induced periodicity was dose-dependent, enhanced after pharmacological blocking of 5-HT2 excitatory receptors, and imitated by pharmacological agonists of the 5-HT1 receptor family. Selective blockers of the 5-HT1A or 5-HT1B/D receptor classes, either alone or in combination, largely (but not completely) attenuated this inhibitory action of 5-HT. It is concluded that the principal inhibitory action of 5-HT on the spinal locomotor network was mediated by certain subtypes of the 5-HT1 receptor class, which tends to oppose the 5-HT2 receptor-mediated excitation of the same network.  相似文献   

20.
Efforts to develop ligands that distinguish between clinically relevant 5-HT2A and 5-HT2C serotonin receptor subtypes have been challenging, because their sequences have high homology. Previous studies reported that a novel aplysinopsin belonging to a chemical class of natural products isolated from a marine sponge was selective for the 5-HT2C over the 5-HT2A receptor subtype. Our goal was to explore the 5-HT2A/2C receptor structure–affinity relationships of derivatives based on the aplysinopsin natural product pharmacophore. Twenty aplysinopsin derivatives were synthesized, purified and tested for their affinities for cloned human serotonin 5-HT1A, 5-HT2A, and 5-HT2C receptor subtypes. Four compounds in this series had >30-fold selectivity for 5-HT2A or 5-HT2C receptors. The compound (E)-5-((5,6-dichloro-1H-indol-3-yl)methylene)-2-imino-1,3-dimethylimidazolidin-4-one (UNT-TWU-22, 16) had approximately 2100-fold selectivity for the serotonin 5-HT2C receptor subtype: an affinity for 5-HT2C equal to 46 nM and no detectable affinity for the 5-HT1A or 5-HT2A receptor subtypes. The two most important factors controlling 5-HT2A or 5-HT2C receptor subtype selectivity were the combined R1,R3-alkylation of the imidazolidinone ring and the type and number of halogens on the indole ring of the aplysinopsin pharmacophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号