首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In the wild type (Canton-S) and period mutant flies of Drosophila melanogaster, we examined the effects of light and temperature on the circadian locomotor rhythm. Under light dark cycles, the wild type and per(S) flies were diurnal at 25 degrees C. However, at 30 degrees C, the daytime activity commonly decreased to form a rather nocturnal pattern, and ultradian rhythms of a 2 approximately 4h period were observed more frequently than at 25 degrees C. The change in activity pattern was more clearly observed in per(0) flies, suggesting that these temperature dependent changes in activity pattern are mainly attributable to the system other than the circadian clock. In a 12h 30 degrees C:12h 25 degrees C temperature cycle (HTLT12:12), per(0) flies were active during the thermophase in constant darkness (DD) but during the cryophase in constant light (LL). The results of experiments with per(0);eya flies suggest that the compound eye is the main source of the photic information for this reversal. Wild type and per(0) flies were synchronized to HTLT12:12 both under LL and DD, while per(S) and per(L) flies were synchronized only in LL. This suggests that the circadian clock is entrainable to the temperature cycle, but the entrainability is reduced in the per(S) and per(L) flies to this particular thermoperiod length, and that temperature cycle forces the clock to move in LL, where the rhythm is believed to be stopped at constant temperature.  相似文献   

3.
Recent studies show that the timeless (tim) gene is not an essential component of the circadian clock in some insects. In the present study, we have investigated whether the tim gene was originally involved in the insect clock or acquired as a clock component later during the course of evolution using an apterygote insect, Thermobia domestica. A cDNA of the clock gene tim (Td'tim) was cloned, and its structural analysis showed that Td'TIM includes 4 defined functional domains, that is, 2 regions for dimerization with PERIOD (PER-1, PER-2), nuclear localization signal (NLS), and cytoplasmic localization domain (CLD), like Drosophila TIM. Td'tim exhibited rhythmic expression in its mRNA levels with a peak during late day to early night in LD, and the rhythm persisted in DD. A single injection of double-stranded RNA (dsRNA) of Td'tim (dstim) into the abdomen of adult firebrats effectively knocked down mRNA levels of Td'tim and abolished its rhythmic expression. Most dsRNA-injected firebrats lost their circadian locomotor rhythm in DD up to 30 days after injection. DsRNA of cycle (cyc) and Clock genes also abolished the rhythmic expression of Td'tim mRNA by knocking down Td'tim mRNA to its basal level of intact firebrats, suggesting that the underlying molecular clock of firebrats resembles that of Drosophila. Interestingly, however, dstim also reduced cyc mRNA to its basal level of intact animals and eliminated its rhythmic expression, suggesting the involvement of Td'tim in the regulation of cyc expression. These results suggest that tim is an essential component of the circadian clock of the primitive insect T. domestica; thus, it might have been involved in the clock machinery from a very early stage of insect evolution, but its role might be different from that in Drosophila.  相似文献   

4.
5.
Organisms are believed to have evolved circadian clocks as adaptations to deal with cyclic environmental changes, and therefore it has been hypothesized that evolution in constant environments would lead to regression of such clocks. However, previous studies have yielded mixed results, and evolution of circadian clocks under constant conditions has remained an unsettled topic of debate in circadian biology. In continuation of our previous studies, which reported persistence of circadian rhythms in Drosophila melanogaster populations evolving under constant light, here we intended to examine whether circadian clocks and the associated properties evolve differently under constant light and constant darkness. In this regard, we assayed activity-rest, adult emergence and oviposition rhythms of D. melanogaster populations which have been maintained for over 19 years (~330 generations) under three different light regimes – constant light (LL), light–dark cycles of 12:12 h (LD) and constant darkness (DD). We observed that while circadian rhythms in all the three behaviors persist in both LL and DD stocks with no differences in circadian period, they differed in certain aspects of the entrained rhythms when compared to controls reared in rhythmic environment (LD). Interestingly, we also observed that DD stocks have evolved significantly higher robustness or power of free-running activity-rest and adult emergence rhythms compared to LL stocks. Thus, our study, in addition to corroborating previous results of circadian clock evolution in constant light, also highlights that, contrary to the expected regression of circadian clocks, rearing in constant darkness leads to the evolution of more robust circadian clocks which may be attributed to an intrinsic adaptive advantage of circadian clocks and/or pleiotropic functions of clock genes in other traits.  相似文献   

6.
7.
Significant progress has been made in our understanding of the neurogenetics of circadian clocks in fruit flies Drosophila melanogaster. Several pacemaker neurons and clock genes have now been identified and their roles in the cellular and molecular clockwork established. Some recent findings suggest that the basic architecture of the clock is multi-oscillatory; the clock mechanisms in the ventral lateral neurons (LN(v)s) of the fly brain govern locomotor activity and adult emergence rhythms, while the peripheral oscillators located in antennal cells regulate olfactory rhythm. Among circadian phenomena exhibited by Drosophila, the egg-laying rhythm is unique in many ways: (i) this rhythm persists under constant light (LL), while locomotor activity and adult emergence become arrhythmic, (ii) its circadian periodicity is much longer than 24h, and (iii) while egg-laying is rhythmic under constant darkness, the expression of two core clock genes period (per) and timeless (tim), is non-oscillatory in the ovaries. In this paper, we review our current knowledge of the circadian regulation of egg-laying behavior in Drosophila, and provide some possible explanations for its self-sustained nature. We conclude by discussing the existing limitations in our understanding of the regulatory mechanisms and propose few approaches to address them.  相似文献   

8.
9.
The central clock is generally thought to provide timing information for rest/activity but not to otherwise participate in regulation of these states. To test the hypothesis that genes that are components of the molecular clock also regulate rest, the authors quantified the duration and intensity of consolidated rest and activity for the four viable Drosophila mutations of the central clock that lead to arrhythmic locomotor behavior and for the pdf mutant that lacks pigment-dispersing factor, an output neuropeptide. Only the cycle (cyc01) and Clock (Clk(Jrk)) mutants had abnormalities that mapped to the mutant locus, namely, decreased consolidated rest and grossly extended periods of activity. All mutants with the exception of the cyc01 fly exhibited a qualitatively normal compensatory rebound after rest deprivation. This abnormal response in cyc01 was sexually dimorphic, being reduced or absent in males and exaggerated in females. Finally, the cyc01 mutation shortened the life span of male flies. These data indicate that cycle regulates rest and life span in male Drosophila.  相似文献   

10.
The relationship between circadian rhythms in the blood plasma concentrations of melatonin and rhythms in locomotor activity was studied in adult male sheep (Soay rams) exposed to 16-week periods of short days (8 hr of light and 16 hr of darkness; LD 8:16) or long days (LD 16:8) followed by 16-week periods of constant darkness (dim red light; DD) or constant light (LL). Under both LD 8:16 and LD 16:8, there was a clearly defined 24-hr rhythm in plasma concentrations of melatonin, with high levels throughout the dark phase. Periodogram analysis revealed a 24-hr rhythm in locomotor activity under LD 8:16 and LD 16:8. The main bouts of activity occurred during the light phase. A change from LD 8:16 to LD 16:8 resulted in a decrease in the duration of elevated melatonin secretion (melatonin peak) and an increase in the duration of activity corresponding to the changes in the ratio of light to darkness. In all rams, a significant circadian rhythm of activity persisted over the first 2 weeks following transfer from an entraining photoperiod to DD, with a mean period of 23.77 hr. However, the activity rhythms subsequently became disorganized, as did the 24-hr melatonin rhythms. The introduction of a 1-hr light pulse every 24 hr (LD 1:23) for 2 weeks after 8 weeks under DD reinduced a rhythm in both melatonin secretion and activity: the end of the 1-hr light period acted as the dusk signal, producing a normal temporal association of the two rhythms. Under LL, the 24-hr melatonin rhythms were disrupted, though several rams still showed periods of elevated melatonin secretion. Significant activity rhythms were either absent or a weak component occurred with a period of 24 hr. The introduction of a 1-hr dark period every 24 hr for 2 weeks after 8 weeks under LL (LD 23:1) failed to induce or entrain rhythms in either of the parameters. The occurrence of 24-hr activity rhythm in some rams under LL may indicate nonphotoperiodic entrainment signals in our experimental facility. Reproductive responses to the changes in photoperiod were also monitored. After pretreatment with LD 8:16, the rams were sexually active; exposure to LD 16:8, DD, or LL resulted in a decline in all measures of reproductive function. The decline was slower under DD than LD 16:8 or LL.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Dual-oscillator systems that control morning and evening activities can be found in a wide range of animals. The two coupled oscillators track dawn and dusk and flexibly adapt their phase relationship to seasonal changes. This is also true for the fruit fly Drosophila melanogaster that serves as model organism to understand the molecular and anatomical bases of the dual-oscillator system. In the present study, the authors investigated which temperature parameters are crucial for timing morning and evening activity peaks by applying natural-like temperature cycles with different daylengths. The authors found that the morning peak synchronizes to the temperature increase in the morning and the evening peak to the temperature decrease in the afternoon. The two peaks did not occur at fixed absolute temperatures, but responded flexibly to daylength and overall temperature level. Especially, the phase of the evening peak clearly depended on the absolute temperature level: it was delayed at high temperatures, whereas the phase of the M peak was less influenced. This suggests that the two oscillators have different temperature sensitivities. The bimodal activity rhythm was absent in the circadian clock mutants Clk(Jrk) and cyc(01) and reduced in per(01) and tim(01) mutants. Whereas the activity of Clk(Jrk) mutants just followed the temperature cycles, that of per(01) and tim(01) mutants did not, suggesting that these mutants are not completely clockless. This study revealed new characteristics of the dual-oscillator system in Drosophila that were not detected under different photoperiods.  相似文献   

12.
13.
The locomotor activities of individual specimens of Uca subcylindrica (Stimpson) collected from semi-arid, supratidal habitats in south Texas and northeastern Mexico were studied in the laboratory using periodogram analysis. When crabs were placed under constant darkness (DD) or constant illumination (LL), free-running circadian rhythms were observed in the activity recordings. The locomotor activity of strongly rhythmic crabs in LL has an average period length of 24.4 h. Crabs held in DD express motor rhythms with periods of approximately 24.0 h. In LL the most common wave form for activity is unimodal, while under DD it is bimodal. Recordings under natural illumination (NL) revealed that both period length and the time of maximum activity (phasing) varied through the year. During winter months, the crabs are primarily diurnal with peaks in activity occurring between 0900 and 2100 h and possess a circadian rhythm with a 23.9 h period. During summer, crabs were nocturnal with maximal activity between 1300 and 0600 and a circadian period closer to 24.0 h. In these experiments, the rhythmic locomotor activities of U. subcylindrica are best described as “circadian”. This is unusual for a genus known for its expression of circatidal and circalunidian rhythms.  相似文献   

14.
The locomotor activities of individual specimens of Uca subcylindrica (Stimpson) collected from semi-arid, supratidal habitats in south Texas and northeastern Mexico were studied in the laboratory using periodogram analysis. When crabs were placed under constant darkness (DD) or constant illumination (LL), free-running circadian rhythms were observed in the activity recordings. The locomotor activity of strongly rhythmic crabs in LL has an average period length of 24.4 h. Crabs held in DD express motor rhythms with periods of approximately 24.0 h. In LL the most common wave form for activity is unimodal, while under DD it is bimodal. Recordings under natural illumination (NL) revealed that both period length and the time of maximum activity (phasing) varied through the year. During winter months, the crabs are primarily diurnal with peaks in activity occurring between 0900 and 2100 h and possess a circadian rhythm with a 23.9 h period. During summer, crabs were nocturnal with maximal activity between 1300 and 0600 and a circadian period closer to 24.0 h. In these experiments, the rhythmic locomotor activities of U. subcylindrica are best described as “circadian”. This is unusual for a genus known for its expression of circatidal and circalunidian rhythms.  相似文献   

15.
Mutations in the disconnected (disco) gene act to disrupt neural cell patterning in the Drosophila visual system. These mutations also affect adult locomotor activity rhythms, as disco flies are arrhythmic under conditions of constant darkness (DD). To determine the state of the circadian pacemaker in disco mutants, we constructed with pers double mutants (a short period allele of the period gene) and assayed their behavioral rhythms in light-dark cycles (LD), and their biochemical rhythms of period gene expression under both LD and DD conditions. The results demonstrate that disco flies are rhythmic, indicating that they have an active circadian pacemaker that can be entrained by light. They also suggest that disco mutants block or interfere with elements of the circadian system located between the central pacemaker and its outputs that mediate overt rhythms.  相似文献   

16.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757-765, 2000)  相似文献   

17.
18.

Background

Although much is known about how circadian systems control daily cycles in the physiology and behavior of Drosophila and several vertebrate models, marine invertebrates have often been overlooked in circadian rhythms research. This study focuses on the starlet sea anemone, Nematostella vectensis, a species that has received increasing attention within the scientific community for its potential as a model research organism. The recently sequenced genome of N. vectensis makes it an especially attractive model for exploring the molecular evolution of circadian behavior. Critical behavioral data needed to correlate gene expression patterns to specific behaviors are currently lacking in N. vectensis.

Methodology/Principal Findings

To detect the presence of behavioral oscillations in N. vectensis, locomotor activity was evaluated using an automated system in an environmentally controlled chamber. Animals exposed to a 24 hr photoperiod (12 hr light: 12 hr dark) exhibited locomotor behavior that was both rhythmic and predominantly nocturnal. The activity peak occurred in the early half of the night with a 2-fold increase in locomotion. Upon transfer to constant lighting conditions (constant light or constant dark), an approximately 24 hr rhythm persisted in most animals, suggesting that the rhythm is controlled by an endogenous circadian mechanism. Fourier analysis revealed the presence of multiple peaks in some animals suggesting additional rhythmic components could be present. In particular, an approximately 12 hr oscillation was often observed. The nocturnal increase in generalized locomotion corresponded to a 24 hr oscillation in animal elongation.

Conclusions/Significance

These data confirm the presence of a light-entrainable circadian clock in Nematostella vectensis. Additional components observed in some individuals indicate that an endogenous clock of approximately 12 hr frequency may also be present. By describing rhythmic locomotor behavior in N. vectensis, we have made important progress in developing the sea anemone as a model organism for circadian rhythm research.  相似文献   

19.
Circadian (approximately 24-hr) rhythms in Drosophila melanogaster depend upon cyclic expression of the period (per) and timeless (tim) genes, which encode interacting components of the endogenous clock. The per gene has been isolated from other insects and, more recently, a per ortholog was found in mammals where its expression oscillates in a circadian fashion. We report here the complete sequence of a tim gene from another species, Drosophila virilis. TIM is better conserved than the PER protein is between these two species (76 vs. 54% overall amino acid identity), and putative functional domains, such as the PER interaction domains and the nuclear localization signal, are highly conserved. The acidic domain and the cytoplasmic localization domain, however, are within the least conserved regions. In addition, the initiating methionine in the D. virilis gene lies downstream of the proposed translation start for the original D. melanogaster tim cDNA and corresponds to the one used by D. simulans and D. yakuba. Among the most conserved parts of TIM is a region of unknown function near the N terminus. We show here that deletion of a 32 amino acid segment within this region affects rescue of rhythms in arrhythmic tim01 flies. Flies carrying a full-length tim transgene displayed rhythms with approximately 24-hr periods, indicating that a fully functional clock can be restored in tim01 flies through expression of a tim transgene. Deletion of the segment mentioned above resulted in very long activity rhythms with periods ranging from 30.5 to 48 hr.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号