首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replication of ribosomal DNA replicons in cells of Pisum sativum (cv. Alaska) occurs bidirectionally by displacement loops. Replication is initiated on opposite parental strands and nascent chains are elongated moving 5'----3' along each parental template. Replicative intermediates were analyzed by 2-dimensional agarose gel electrophoresis under neutral--neutral and neutral--alkaline conditions. Southern blots of ribosomal DNA fragments separated in the second dimension under neutral conditions show slowly migrating replicative fragments that hybridize with specific probes in a manner consistent with bidirectional replication. The replicative fragments are present in root meristems with cells in S phase; they are absent or few in number in meristems with cells in G2 phase. The following observations indicate that the replicative fragments are single stranded. The apparent length of the replicative fragments is not the same when separated under neutral and alkaline conditions. They contain rDNA without breaks and they do not exhibit the smaller nascent chains expected from replication bubbles and forks. They are not cleaved by restriction enzymes that require duplex DNA as substrate and they are digestible by S1 nuclease.  相似文献   

2.
Concatemeric DNA from T7-infected cells consists of phage genomes in a linear head-to-tail arrangement. Adjacent genomes within a concatemer overlap for the length of the terminal repetition. Fast-sedimenting T7 DNA contains single-stranded regions at roughly unit-lentth intervals but these interruptions are heterogeneously distributed and do not occur at the genetic termini. Mutations in either bacteriophage genes 9, 18, or 19 (required for DNA maturation and packaging) lead to the synthesis and persistence of DNA with fewer interruptions than normal.  相似文献   

3.
4.
A structurally novel set of inhibitors of bacterial type II topoisomerases with potent in vitro and in vivo antibacterial activity was developed. Dual-targeting ability, hERG inhibition, and pharmacokinetic properties were also assessed.  相似文献   

5.
DNA topology plays a crucial role in all living cells. In prokaryotes, negative supercoiling is required to initiate replication and either negative or positive supercoiling assists decatenation. The role of DNA knots, however, remains a mystery. Knots are very harmful for cells if not removed efficiently, but DNA molecules become knotted in vivo. If knots are deleterious, why then does DNA become knotted? Here, we used classical genetics, high-resolution 2D agarose gel electrophoresis and atomic force microscopy to show that topoisomerase IV (Topo IV), one of the two type-II DNA topoisomerases in bacteria, is responsible for the knotting and unknotting of sister duplexes during DNA replication. We propose that when progression of the replication forks is impaired, sister duplexes become loosely intertwined. Under these conditions, Topo IV inadvertently makes the strand passages that lead to the formation of knots and removes them later on to allow their correct segregation.  相似文献   

6.
The condensin complex and topoisomerase II (topo II) have different biochemical activities in vitro, and both are required for mitotic chromosome condensation. We have used Xenopus egg extracts to investigate the functional interplay between condensin and topo II in chromosome condensation. When unreplicated chromatin is directly converted into chromosomes with single chromatids, the two proteins must function together, although they are independently targeted to chromosomes. In contrast, the requirement for topo II is temporarily separable from that of condensin when chromosome assembly is induced after DNA replication. This experimental setting allows us to find that, in the absence of condensin, topo II becomes enriched in an axial structure within uncondensed chromatin. Subsequent addition of condensin converts this structure into mitotic chromosomes in an ATP hydrolysis-dependent manner. Strikingly, preventing DNA replication by the addition of geminin or aphidicolin disturbs the formation of topo II-containing axes and alters the binding property of topo II with chromatin. Our results suggest that topo II plays an important role in an early stage of chromosome condensation, and that this function of topo II is tightly coupled with prior DNA replication.  相似文献   

7.
The normal sequence at which SV40 DNA replication terminates (TER) is unusual in that it promotes formation of catenated intertwines when two converging replication forks enter to complete replication (Weaver et al., 1985). Here we show that yeast centromeric sequences also exhibit this phenomenon. CEN3 caused accumulation of late replicating intermediates and catenated dimers in plasmids replicating in mammalian cells, but only when it was located in the termination region (180 degrees from ori), and only when cells were subjected to hypertonic shock to reduce topoisomerase II activity. Therefore, formation of catenated intertwines during termination of DNA replication was sequence dependent, suggesting that topoisomerase II acts behind replication forks in the termination region to remove intertwines generated by unwinding DNA rather than acting after replication is completed and catenates are formed. Under normal physiological conditions, CEN3 did not promote formation of catenated dimers in either mammalian or yeast cells. Therefore, CEN does not maintain association of sister chromatids during mitosis in yeast by introducing stable catenated intertwines during replication.  相似文献   

8.
Although the virulence plasmid of Salmonella typhimurium has a copy number of one to two per chromosome, plasmid-free segregants are produced at a rate less than 10(-7) per cell per generation. Three regions appear to be involved in the maintenance of this virulence plasmid. The first two, repB and repC, are functional replicons hybridizing with IncFII and IncFI plasmids, respectively, neither exhibiting the segregational stability of the parent virulence plasmid. The third region, par, cloned as a 3.9-kilobase Sau3A fragment, is not a functional replicon but exhibits incompatibility with the virulence plasmid. Subsequent tests revealed the ability of this 3.9-kilobase par insert to increase the stability of pACYC184 in S. typhimurium from less than 34% to 99% plasmid-containing cells after 50 generations. In addition, the par region increased the stability of oriC, R388, and repC replicons in both S. typhimurium and Escherichia coli hosts. The par region encodes 44,000- and 40,000-molecular-weight proteins essential for the Par+ phenotype but not for the Inc+ phenotype. Although actual sequestering of plasmids within the cell was not demonstrated, all results indicate that the par region described is an actual partitioning locus, similar in organization to those described for plasmids F, P1, and NR1.  相似文献   

9.
10.
The initiation of replication is the central event in the bacterial cell cycle. Cells control the rate of DNA synthesis by modulating the frequency with which new chains are initiated, like all macromolecular synthesis. The end of the replication cycle provides a checkpoint that must be executed for cell division to occur. This review summarizes recent insight into the biochemistry, genetics and control of the initiation of replication in bacteria, and the central role of the initiator protein DnaA.  相似文献   

11.
We have investigated the attachment of the DNA to the nuclear matrix during the division cycle of the plasmodial slime mold Physarum polycephalum. The DNA of plasmodia was pulse labelled at different times during the S phase and the label distribution was studied by graded DNase digestion of the matrix-DNA complexes prepared from nuclei isolated by extraction with 2 M NaCl. Pulse labelled DNA was preferentially recovered from the matrix bound residual DNA at any time of the S phase. Label incorporated at the onset of the S phase remained preferentially associated with the matrix during the G2 phase and the subsequent S phase. The occurrence of the pulse label in the matrix associated DNA regions was transiently elevated at the onset of the subsequent S phase. Label incorporated at the end of the S phase was located at DNA regions which, in the G2 phase, were preferentially released from the matrix by DNase treatment. From the results and previously reported data on the distribution of attachment sites it can be concluded that origins of replicons or DNA sites very close to them are attached to the matrix during the entire nuclear cycle. The data further indicate that initiations of DNA replication occur at the same origins in successive S phases. Replicating DNA is bound to the matrix, in addition, by the replication fork or a region close to it. This binding is loosened after completion of the replication.  相似文献   

12.
The subunits of topoisomerase IV (topo IV), the ParC and ParE proteins in Escherichia coli, were purified to near homogeneity from the respective overproducers. They revealed type II topoisomerase activity only when they were combined with each other. In the presence of Mg2+ and ATP, topo IV was capable of relaxing a negatively or positively supercoiled plasmid DNA or converting the knotted P4 phage DNA, whether nicked or ligated, to a simple ring. However, supercoiling activity was not detected. The topoisomerase activity was not detectable when the purified ParC and ParE proteins were combined with the purified GyrB and GyrA proteins, respectively. This is consistent with the result that neither a parC nor a parE mutation was compensated by transformation with a plasmid carrying either the gyrA or the gyrB gene. Simultaneous introduction of both the gyrA and gyrB plasmids corrected the phenotypic defect of parC and parE mutants. The results suggest that DNA gyrase can substitute for topo IV at least in some part of the function for chromosome partitioning. Antisera were prepared against the purified ParC, ParE, GyrA, and GyrB proteins and used to investigate cellular localization of these gene products. ParC protein was found to be specifically associated with inner membranes only in the presence of DNA. This result suggests that one of the functions of topo IV might be to anchor chromosomes on membranes as previously proposed for eukaryotic topoisomerase II.  相似文献   

13.
The rate of synthesis of cellular DNA is stimulated in stationary phase mouse embryo cells infected with polyoma virus. Nascent cellular DNA strands pulselabeled with [3H]thymidine in the presence of replicating viral DNA are smaller, by an average of 2·1 × 107 daltons, than DNA made under similar conditions in uninfected cells. Previous work (Cheevers et al., 1972) has indicated that this observation is the consequence of activation in infected cells of cellular DNA initiation sites not in operation during a similar pulse-labeling interval in uninfected cells. Similar results were obtained using cells infected with the temperature-sensitive Ts-a mutant of polyoma at 32 °C, which permits both the induction of cellular DNA synthesis and replication of viral DNA. However, at a temperature of 39 °C, which permits only the induction of cellular DNA replication in Ts-a-infected cells, the size of newly synthesized DNA is not different from that of uninfected cells. Similarly, in rat embryo cells abortively infected with polyoma (wild-type), stimulation of cellular DNA synthesis occurs but viral DNA replication is restricted, and no difference is apparent in the size of newly formed DNA as compared to uninfected cells. These results are interpreted to mean that in productively infected cells, polyoma DNA and some regions of the host genome may be co-ordinately replicated.  相似文献   

14.
In this study, we show that human cytomegalovirus DNA synthesis is inhibited in infected confluent human embryonic lung cells treated with the DNA-intercalative topoisomerase II inhibitor 4-9'-(acridinylamino)methanesulfon-m-anisidide (m-AMSA). Similar inhibitory effects were observed with VM-26, a nonintercalative topoisomerase II inhibitor. This antiviral effect is not attributable to cytotoxic effects per se. Furthermore, m-AMSA appears to have a notably irreversible inhibitory effect on human cytomegalovirus DNA replication. No inhibition of viral DNA synthesis was observed with o-AMSA, a DNA-intercalative isomer of m-AMSA that does not inhibit topoisomerase II.  相似文献   

15.
16.
We investigated, by density gradients and subsequent electron microscopy, vegetative T4 DNA after single or multiple infection of Escherichia coli with wild-type T4. Our results can be summarized as follows. (i) After single infection (i.e., when early intermolecular recombination could not occur), most, if not all, T4 DNA molecules initiated the first round of replication with a single loop. (ii) After multiple infection, recombinational intermediates containing label from both parents first appeared as early as 1 min after the onset of replication, long before all parental DNA molecules had finished their first round and before secondary replication was detectable. (iii) At the same time, in multiple infections only, complex, highly branched concatemeric T4 DNA first appeared. (iv) Molecules in which two loops or several branches were arranged in tandem were only found after multiple infections. (v) Secondary loops within primary loops were seen after both single and multiple infections, but they were rare and many appeared off center. Thus, recombination in wild-type T4-infected cells occurred very early, and the generation of multiple tandem loops or branches in vegetative T4 DNA depended on recombination. These results are consistent with the previous finding (A. Luder and G. Mosig, Proc. Natl. Acad. Sci. U.S.A. 79:1101-1105, 1982) that most secondary growing points of T4 are not initiated from origin sequences but from recombinational intermediates. By these and previous results, the various DNA molecules that we observed are most readily explained as intermediates in DNA replication and recombination according to a model proposed earlier to explain various other aspects of T4 DNA metabolism (Mosig et al., p. 277-295, in D. Ray, ed., The Initiation of DNA Replication, Academic Press, Inc., New York, 1981).  相似文献   

17.
Novel (non-fluoroquinolone) inhibitors of bacterial type II topoisomerases (NBTIs) are an emerging class of antibacterial agents. We report an optimized series of cyclobutylaryl-substituted NBTIs. Compound 14 demonstrated excellent activity both in vitro (S. aureus MIC90 = 0.125 μg/mL) and in vivo (systemic and tissue infections). Enhanced inhibition of Topoisomerase IV correlated with improved activity in S. aureus strains with mutations conferring resistance to NBTIs. Compound 14 also displayed an improved hERG IC50 of 85.9 μM and a favorable profile in the anesthetized guinea pig model.  相似文献   

18.
Most bacteria possess two type IIA topoisomerases, DNA gyrase and topo IV, that together help manage chromosome integrity and topology. Gyrase primarily introduces negative supercoils into DNA, an activity mediated by the C-terminal domain of its DNA binding subunit (GyrA). Although closely related to gyrase, topo IV preferentially decatenates DNA and relaxes positive supercoils. Here we report the structure of the full-length Escherichia coli ParC dimer at 3.0 A resolution. The N-terminal DNA binding region of ParC is highly similar to that of GyrA, but the ParC dimer adopts a markedly different conformation. The C-terminal domain (CTD) of ParC is revealed to be a degenerate form of the homologous GyrA CTD, and is anchored to the top of the N-terminal domains in a configuration different from that thought to occur in gyrase. Biochemical assays show that the ParC CTD controls the substrate specificity of topo IV, likely by capturing DNA segments of certain crossover geometries. This work delineates strong mechanistic parallels between topo IV and gyrase, while explaining how structural differences between the two enzyme families have led to distinct activity profiles. These findings in turn explain how the structures and functions of bacterial type IIA topoisomerases have evolved to meet specific needs of different bacterial families for the control of chromosome superstructure.  相似文献   

19.
The rate of DNA replication and the distances between initiation sites (size of replicons) have been studied in human cultured fibroblasts. The modified Huberman and Riggs technique of DNA fiber autoradiography has been used: the pulse-labelled regions were analysed in DNA fibers preliminarily labelled along the whole length. This enabled us: a) to analyse the arrangement of replicons along the length of labelled DNA fibers with the lengths of 200-750 micron, reaching 2700 micron in some cases; b) to select only single DNA molecules for the analysis. This technique decreases the danger of a mistake when minor labelled regions belonging to different DNA molecules are referred to the same one. The rate of DNA replication varies from 0.2 to 1.2 micron/min, the average of 0.6 micron/min. This conforms with findings of other authors. The distances between initiation sites vary from 15 to 140 micron with the modal interval of 50-60 micron. This value is twice higher than those obtained by other authors. The possible reasons for such difference are discussed.  相似文献   

20.
H Ariga 《Nucleic acids research》1984,12(15):6053-6062
The soluble replication system is which the exogenously added simian virus 40 (SV40) DNA can be replicated semiconservatively in vitro, has been developed (Ariga and Sugano, J.Virol. 48, 481, 1983). This paper further characterized the in vitro products synthesized on the cloned DNA containing the origin of SV40 DNA replication. The time course and pluse-chase experiments showed that the in vitro products were converted from the open circle to closed circles having the various superhelical densities, and finally to the twisted formI DNA seen in vivo by the analysis of agarose gel electrophoresis, alkaline sucrose gradient centrifugation, and density-transfer in isopycnic centrifugation. The replicative intermediates isolated after the short term incubation had replicated strands of the size smaller than the full length, most of which correspond to that of the putative Okazaki fragment. These and the previous results indicate that this in vitro system should be useful to investigate the molecular mechanism of SV40 DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号