共查询到20条相似文献,搜索用时 0 毫秒
1.
Bates PA 《International journal for parasitology》2007,37(10):1097-1106
A thorough understanding of the transmission mechanism of any infectious agent is crucial to implementing an effective intervention strategy. Here, our current understanding of the mechanisms that Leishmania parasites use to ensure their transmission from sand fly vectors by bite is reviewed. The most important mechanism is the creation of a "blocked fly" resulting from the secretion of promastigote secretory gel (PSG) by the parasites in the anterior midgut. This forces the sand fly to regurgitate PSG before it can bloodfeed, thereby depositing both PSG and infective metacyclic promastigotes in the skin of a mammalian host. Other possible factors in transmission are considered: damage to the stomodeal valve; occurrence of parasites in the salivary glands; and excretion of parasites from the anus of infected sand flies. Differences in the transmission mechanisms employed by parasites in the three subgenera, Leishmania, Viannia and Sauroleishmania are also addressed. 相似文献
2.
Dougall AM Alexander B Holt DC Harris T Sultan AH Bates PA Rose K Walton SF 《International journal for parasitology》2011,41(5):571-21
The first autochthonous Leishmania infection in Australia was reported by Rose et al. (2004) and the parasite was characterised as a unique species. The host was the red kangaroo (Macropus rufus) but the transmitting vector was unknown. To incriminate the biological vector, insect trapping by a variety of methods was undertaken at two field sites of known Leishmania transmission. Collected sand flies were identified to species level and were screened for Leishmania DNA using a semi-quantitative real-time PCR. Collections revealed four species of sand fly, with a predominance of the reptile biter Sergentomyia queenslandi (Hill). However, no Leishmania-positive flies were detected. Therefore, alternative vectors were investigated for infection, giving startling results. Screening revealed that an undescribed species of day-feeding midge, subgenus Forcipomyia (Lasiohelea) Kieffer, had a prevalence of up to 15% for Leishmania DNA, with high parasitemia in some individuals. Manual gut dissections confirmed the presence of promastigotes and in some midges material similar to promastigote secretory gel, including parasites with metacyclic-like morphology. Parasites were cultured from infected midges and sequence analysis of the Leishmania RNA polymerase subunit II gene confirmed infections were identical to the original isolated Leishmania sp. Phylogenetic analysis revealed the closest known species to be Leishmania enriettii, with this and the Australian species confirmed as members of Leishmania sensu stricto. Collectively the results strongly suggest that the day-feeding midge (F. (Lasiohelea) sp. 1) is a potential biological vector of Leishmania in northern Australia, which is to our knowledge the first evidence of a vector other than a phlebotomine sand fly anywhere in the world. These findings have considerable implications in the understanding of the Leishmania life cycle worldwide. 相似文献
3.
In order to simulate the natural long term parasitisms which may occur in mammals infected with Leishmania, cutaneous leishmaniases due to Leishmania major or Leishmania amazonensis were induced using a model based on the inoculation of 10-1000 metacyclic promastigotes into the ear dermis of BALB/c mice. The final outcome of these parasitisms was dependent upon the number of inoculated parasites. Only some of the mice inoculated with ten parasites displayed cutaneous lesions, whereas most mice infected with 100 metacyclics and all mice infected with 1000 metacyclics developed progressive lesions. We found, using the latter experimental conditions, that the onset of the pathology was associated with: (a) parasite multiplication in the inoculation site and the draining lymph node correlating with an increase of the lymph node cell number, especially in L. major-infected mice; and (b) the detection of lymph node cells, at least in part CD4(+) T lymphocytes, able to produce high levels of interferon-gamma, interleukin (IL)-4, IL-10 and IL-13. Thereafter, mice infected by L. major harboured few parasites in the ear and had a 100-fold reduction in lymph node parasite load between 23 and 40 weeks post-inoculation. In contrast, the parasite loads of L. amazonensis-infected mice remained stable in the ear and increased in nodes during the same period of time. Only L. major-infected mice that exhibited cutaneous lesions in the primary site were resistant to the re-inoculation of 1000 metacyclic promastigotes, whereas all L. amazonensis-primary infected mice remained susceptible to a second homologous challenge. These results are the first to document that a status of resistance to re-infection, referred to concomitant immunity, is coupled to the development of primary progressive lesions in L. major-infected BALB/c mice. Such a protective status is absent in L. amazonensis-infected BALB/c mice. 相似文献
4.
Carvalho LO Calabrese Kda S da Costa SC Mendes VG da Silva AP Barros AC Melo Sde A Abreu-Silva AL 《Experimental parasitology》2008,120(1):123-125
We infected Swiss and C57BL/6 female mice in the left hind footpad with 104Leishmania (L.) amazonensis promastigotes in stationary phase. The macroscopic examination showed a nodular non-ulcerated lesion at the site of inoculation and hepatic and spleenic enlargement. Histopathologically, the primary lesion showed an extensive liquefactive necrosis and inflammatory infiltrate, mainly consisting of macrophages filled with amastigotes, and rare lymphocytes. The inflammatory reaction in liver, spleen and kidney showed amyloid deposits. Additionally, C57BL/6 had accentuated amyloidosis in both ovarian cortical and medullar region and inflammatory infiltrates in the pancreas and adrenal gland. 相似文献
5.
The control of leishmaniasis in absence of vaccine solely depends on the choice of chemotherapy. The major hurdle in successful leishmanial chemotherapy is emergence of drug resistance. Miltefosine, the first orally administrable anti-leishmanial drug, has shown the potential against drug-resistant strains of Leishmania. However, there are discrepancies regarding the involvement of P-glycoprotein (Pgp) and sensitivity of miltefosine in multiple drug-resistant (MDR) cell lines that overexpress Pgp in Leishmania. To address this, the effect of miltefosine in arsenite-resistant Leishmania donovani (Ld-As20) promastigotes displaying an MDR phenotype and overexpressing Pgp-like protein was investigated in the current study. Results indicate that Ld-As20 is sensitive to miltefosine. Miltefosine induces process of programmed cell death in Ld-As20 in a time-dependent manner as determined by cell shrinkage, externalization of phosphatidylserine and DNA fragmentation. Miltefosine treatment leads to loss of mitochondrial membrane potential and the release of cytochrome C with consequent activation of cellular proteases. Activation of cellular proteases resulted in activation of DNase that damaged kinetoplast DNA and induced dyskinetoplasty. These data indicate that miltefosine causes apoptosis-like death in arsenite-resistant L. donovani. 相似文献
6.
Pinto-da-Silva LH Fampa P Soares DC Oliveira SM Souto-Padron T Saraiva EM 《International journal for parasitology》2005,35(7):757-764
In this work, we characterise metacyclic promastigotes of Leishmania amazonensis, the causative agent of cutaneous and diffuse cutaneous leishmaniasis in the New World. To purify metacyclics from stationary culture by negative selection, we used the monoclonal antibody 3A1-La produced against procyclic promastigotes. The purified forms named 3A1-La(-) promastigotes, present key metacyclic characteristics: slender cell body and long flagella, ultrastructural features, resistance to complement lysis, high infectivity for macrophages and mice and reduced capacity for binding to the sand fly midgut. Moreover, the epitope recognised by 3A1-La is important for the promastigote attachment to the insect vector midgut epithelium. These results further characterise 3A1-La(-) promastigotes as metacyclic forms of L. amazonensis. 相似文献
7.
We compared growth rate, cell glucose turnover and expression of ATP-binding-cassette (ABC) transporters in Leishmania amazonensis (LTB0016; LTB) versus LTB(160) selected for resistance against the ABC transporter blocker glibenclamide. Additionally, we evaluated the influence of drug-resistance on Leishmania sensitivity against 2-mercaptoacetate and 2-deoxyglucose. Our data demonstrate that (1) LTB(160) and LTB constitutively express ABC transporters for neutral substrates, (2) glibenclamide resistance induces the expression of organic anion ABC transporters, members of the drug resistance associated transporters subfamily, (3) LTB(160) parasites use less glucose as energy substrate and exhibit a slower glucose uptake than LTB cells, and (4) LTB(160) parasites are less sensitive to 2-mercaptoacetate and 2-deoxyglucose than the glibenclamide-sensitive Leishmania LTB. Together these and previous results indicate that the metabolic adaptations expressed in drug-resistant LTB(160) differ from those described for mammalian drug resistant cells and constitute general mechanisms that underlie drug resistance in Leishmania and may be helpful for identifying alternative strategies to circumvent drug resistance in leishmaniasis. 相似文献
8.
Telomeres are DNA-protein complexes that protect linear chromosomes from degradation and fusions. Telomeric DNA is repetitive and G-rich, and protrudes towards the end of the chromosomes as 3'G-overhangs. In Leishmania spp., sequences adjacent to telomeres comprise the Leishmania conserved telomere associated sequences (LCTAS) that are around 100 bp long and contain two conserved sequence elements (CSB1 and CSB2), in addition to non-conserved sequences. The aim of this work was to study the genomic organization of Leishmania (Leishmania) amazonensis telomeric/subtelomeric sequences. Leishmania amazonensis chromosomes were separated in a single Pulsed Field Gel Electrophoresis (PFGE) gel as 25 ethidium bromide-stained bands. All of the bands hybridized with the telomeric probe (5'-TTAGGG-3')3 and with probes generated from the conserved subtelomeric elements (CSB1, CSB2). Terminal restriction fragments (TRF) of L. amazonensis chromosomes were analyzed by hybridizing restriction digested genomic DNA and chromosomal DNA separated in 2D-PFGE with the telomeric probe. The L. amazonensis TRF was estimated to be approximately 3.3 kb long and the telomeres were polymorphic and ranged in size from 0.2 to 1.0 kb. Afa I restriction sites within the conserved CSB1 elements released the telomeres from the rest of the chromosome. Bal 31-sensitive analysis confirmed the presence of terminal Afa I restriction sites and served to differentiate telomeric fragments from interstitial internal sequences. The size of the L. amazonensis 3' G-overhang was estimated by non-denaturing Southern blotting to be approximately 12 nt long. Using similar approaches, the subtelomeric domains CSB1 and CSB2 were found to be present in a low copy number compared to telomeres and were organized in blocks of 0.3-1.5 kb flanked by Hinf I and Hae III restriction sites. A model for the organization of L. amazonensis chromosomal ends is provided. 相似文献
9.
The identification and characterization of antigens that elicit human T cell responses is an important step toward understanding of Leishmania major infection and ultimately in the development of a vaccine. Micropreparative SDS-PAGE followed by electrotransfer to a PVDF membrane and elution of proteins from the PVDF, was used to separate 2 novel proteins from L. major promastigotes, which can induce antibodies of the IgG2a isotype in mice and also are recognized by antisera of recovered human cutaneous leishmaniasis subjects. Fractionation of the crude extract of L. major revealed that all detectable proteins of interest were present within the soluble Leishmania antigens (SLA). Quantitation of these proteins showed that their expression in promastigotes is relatively very low. Considering the molecular weight, immunoreactivity, chromatographic and electrophoretic behavior in reducing and non-reducing conditions, these proteins are probably 2 isoforms of a single protein. A digest of these proteins was resolved on Tricine-SDS-PAGE and immunoreactive fragments were identified by human sera. Two immunoreactive fragments (36.4 and 34.8 kDa) were only generated by endoproteinase Glu-C treatment. These immunoreactive fragments or their parent molecules may be ideal candidates for incorporation in a cocktail vaccine against cutaneous leishmaniasis. 相似文献
10.
da Silva ER Castilho TM Pioker FC Tomich de Paula Silva CH Floeter-Winter LM 《International journal for parasitology》2002,32(6):727-737
The genomic organisation of the gene encoding Leishmania (Leishmania) amazonensis arginase as well as its flanking regions were characterised. The size of the transcribed RNA was determined, allowing us to map the genomic sites signalling for RNA trans-splicing and putative polyadenylation regions. The general organisation was compared with genes encoding other proteins already described in organisms of the Trypanosomatid family. The complete nucleotide sequence of the arginase open reading frame was obtained and the three-dimensional structure of the enzyme was inferred by a computational analysis of the deduced amino acid sequence, based on the established crystal structure described for Rattus norvergicus arginase. The human liver arginase sequence was analysed in the same way and the comparison of the presumed structure of both the Leishmania and human enzymes identified some differences that may be exploited in chemotherapeutic studies. 相似文献
11.
Allocco JJ Donald R Zhong T Lee A Tang YS Hendrickson RC Liberator P Nare B 《International journal for parasitology》2006,36(12):1249-1259
Casein kinase 1 (CK1) is a family of multifunctional Ser/Thr protein kinases that are ubiquitous in eukaryotic cells. Recent studies have demonstrated the existence of, and role for, CK1 in protozoan parasites such as Leishmania, Plasmodium and Trypanosoma. The value of protein kinases as potential drug targets in protozoa is evidenced by the successful exploitation of cyclic guanosine monophosphate-dependent protein kinase (PKG) with selective tri-substituted pyrrole and imidazopyridine inhibitors. These compounds exhibit in vivo efficacy against Eimeria tenella in chickens and Toxoplasma gondii in mice. We now report that both of these protein kinase inhibitor classes inhibit the growth of Leishmania major promastigotes and Trypanosoma brucei bloodstream forms in vitro. Genome informatics predicts that neither of these trypanosomatids codes for a PKG orthologue. Biochemical studies have led to the unexpected discovery that an isoform of CK1 represents the primary target of the pyrrole and imidazopyridine kinase inhibitors in these organisms. CK1 from extracts of L. major promastigotes co-fractionated with [(3)H]imidazopyridine binding activity. Further purification of CK1 activity from L. major and characterization via liquid chromatography coupled tandem mass spectrometry identified CK1 isoform 2 as the specific parasite protein inhibited by imidazopyridines. L. major CK1 isoform 2 expressed as a recombinant protein in Escherichia coli displayed biochemical and inhibition characteristics similar to those of the purified native enzyme. The results described here warrant further evaluation of the activity of these kinase inhibitors against mammalian stage Leishmania parasites in vitro and in animal models of infection, as well as studies to genetically validate CK1 as a therapeutic target in trypanosomatid parasites. 相似文献
12.
Two recombinant barley cystatins, HvCPI5 and HvCPI6, have been tested in vitro against promastigotes and intracellular amastigotes of Leishmania infantum in the J774 monocytic cell line. Toxicity of cystatins for J774 cells was also determined. In addition, a comparison between direct counts of intracellular amastigotes and quantitation of burden by Q-PCR was carried out. Low concentrations (2 μM) from both cystatins were unable to inhibit promastigote replication. HvCPI5 was toxic for mammalian cells; 0.1 μM reduced by more than 50% the cell viability. On the contrary, HvCPI6 did not exhibit any toxicity for J774 cells up to 6 μM and inhibited the intracellular amastigote multiplication. Dose-response analysis showed that 4.8 μM HvCPI6 reduced by >90% the intracellular parasite load and had an approximate IC50 value of 1.5 μM. Comparable results were obtained by direct counting of intracellular amastigotes and Q-PCR. Results point towards the direct inhibition of amastigote multiplication by HvCPI6 and the interest of this recombinant cystatin in the chemotherapy of leishmaniasis. 相似文献
13.
14.
Studies in mammalian systems have shown specific affinity of arsenite for tubulin proteins. The sodium m-arsenite (NaAsO2) resistant Leishmania donovani used in this study is resistant to 20 microM NaAsO2, which is a 13-fold increase in resistance compared to the wild type. Data presented in this study shows decreased expression of alpha- and beta-tubulin in wild type L. donovani promastigotes on exposure to NaAsO2 from 0.0016 to 5.0 microM (IC50 in the wild type strain) in a dose-dependent manner. alpha- and beta-tubulins in the resistant strain show decreased expression levels only at 65.0 microM NaAsO2 (IC50 in the resistant strain). Treatment with respective IC50 concentrations of NaAsO2 caused alterations in tubulin polymerisation dynamics and deregulated the cellular distribution of the microtubules in wild type and resistant strains. The NaAsO2-induced cell death exhibited characteristics of apoptosis-like DNA laddering and fragmentation in both the affected wild type and resistant cells. However, poly(ADP-ribose)polymerase cleavage was evident in the wild type strain but not in the resistant strain. 相似文献
15.
In Central America, apparently genetically identical Leishmania chagasi/infantum parasites cause cutaneous (CL) and visceral leishmaniasis (VL), the latter being more frequent in young children. The present study investigated if there were pathology-related differences in virulence between Honduran CL and VL strains using Mediterranean L. infantum strains as a reference. Macrophage infectivity and serum sensitivity, properties thought to be associated with virulence, were similar between CL and VL strains from both regions. Attention focused on the genome organisation of genes for two candidate virulence factors: Leishmania mitogen activated protein kinase (LMPK) and cysteine proteinase b (Cpb). Interestingly, the Mediterranean strains exhibited restriction enzyme polymorphisms associated with tropism for both LMPK and Cpb genes whereas no differences were observed for the Honduran strains. We also report relative genetic homogeneity of the Honduran strains as compared to the Mediterranean strains and discuss it in terms of the probable origin for the Central American L. chagasi/infantum. 相似文献
16.
Transport mechanisms involved in pH homeostasis are relevant for the survival of Leishmania parasites. The presence of chloride conductive pathways in Leishmania has been anticipated since anion channel inhibitors limit the proton extrusion mediated by the H+ATPase, which is the major regulator of intracellular pH in amastigotes. In this study, we used Xenopus laevis oocytes as a heterologous expression system in which to study the expression of ion channels upon microinjection of polyA mRNA from Leishmania amazonensis. After injection of polyA mRNA into the oocytes, we measured three different types of currents. We discuss the possible origin of each, and propose that Type 3 currents could be the result of the heterologous expression of proteins from Leishmania since they show different pharmacological and biophysical properties as compared to endogenous oocyte currents. 相似文献
17.
Isaza CE Zhong X Rosas LE White JD Chen RP Liang GF Chan SI Satoskar AR Chan MK 《Biochemical and biophysical research communications》2008,373(1):25-29
Leishmaniasis is a tropical disease caused by Leishmania, eukaryotic parasites transmitted to humans by sand flies. Towards the development of new chemotherapeutic targets for this disease, biochemical and in vivo expression studies were performed on one of two M32 carboxypeptidases present within the Leishmania major (LmaCP1) genome. Enzymatic studies reveal that like previously studied M32 carboxypeptidases, LmaCP1 cleaves substrates with a variety of C-terminal amino acids—the primary exception being those having C-terminal acidic residues. Cleavage assays with a series of FRET-based peptides suggest that LmaCP1 exhibits a substrate length restriction, preferring peptides shorter than 9-12 amino acids. The in vivo expression of LmaCP1 was analyzed for each major stage of the L. major life cycle. These studies reveal that LmaCP1 expression occurs only in procyclic promastigotes—the stage of life where the organism resides in the abdominal midgut of the insect. The implications of these results are discussed. 相似文献
18.
Antiparasitic effect of a lectin isolated from Synadenium carinatum latex (ScLL) was evaluated against Leishmania (Leishmania) amazonensis promastigotes/amastigotes. Pretreatment of murine inflammatory peritoneal macrophages with ScLL reduced by 65.5% the association index of macrophages and L. (L) amazonensis promastigotes. Expression of cytokines (IL-12, IL-1 and TNF-α) was detected in infected macrophages pretreated with ScLL (10 μg/mL). ScLL also reduced the growth of L. (L) amazonensis amastigote intracellular forms, showing no in vitro cytotoxic effects in mammalian host cells. ScLL treatment in infected murine inflammatory peritoneal macrophages did not induce nitric oxide production, suggesting that a nitric oxide independent pathway is activated to decrease the number of intracellular Leishmania. 相似文献
19.
de Almeida-Amaral EE Belmont-Firpo R Vannier-Santos MA Meyer-Fernandes JR 《Experimental parasitology》2006,114(4):334-340
We have characterized a phosphatase activity present on the external surface of Leishmania amazonensis, using intact living parasites. This enzyme hydrolyzes the substrate p-nitrophenylphosphate (p-NPP) at the rate of 25.70+/-1.17 nmol Pi x h(-1) x 10(-7)cells. The dependence on p-NPP concentration shows a normal Michaelis-Menten kinetics for this ecto-phosphatase activity present a V(max) of 31.93+/-3.04 nmol Pi x h(-1) x 10(-7)cells and apparent K(m) of 1.78+/-0.32 mM. Inorganic phosphate inhibited the ecto-phoshatase activity in a dose-dependent manner with the K(i) value of 2.60 mM. Experiments using classical inhibitor of acid phosphatase, such as ammonium molybdate, as well as inhibitors of phosphotyrosine phosphatase, such as sodium orthovanadate and [potassiumbisperoxo(1,10-phenanthroline)oxovanadate(V)] (bpV-PHEN), inhibited the ecto-phosphatase activity, with the K(i) values of 0.33 microM, 0.36 microM and 0.25 microM, respectively. Zinc chloride, another classical phosphotyrosine phosphatase inhibitor, also inhibited the ecto-phosphatase activity in a dose-dependent manner with K(i) 2.62 mM. Zinc inhibition was reversed by incubation with reduced glutathione (GSH) and cysteine, but not serine, showing that cysteine residues are important for enzymatic activity. Promastigote growth in a medium supplemented with 1mM sodium orthovanadate was completely inhibited as compared to the control medium. Taken together, these results suggest that L. amazonensis express a phosphohydrolase ectoenzyme with phosphotyrosine phosphatase activity. 相似文献
20.
Parasites of the Leishmania genus require for the growth and viability the de novo synthesis of specific sterols as such as episterol and 5-dehydroepisterol because cholesterol, which is abundant in their mammalian hosts, does not fulfill the parasite sterol requirements. Squalene synthase catalyzes the first committed step in the sterol biosynthesis and has been studied as a possible target for the treatment of high cholesterol levels in humans. In this work we investigated the antiproliferative and ultrastructural effects induced by 3-(biphenyl-4-yl)-3-hydroxyquinuclidine (BPQ-OH), a specific inhibitor of squalene synthase, on promastigote and amastigote forms of Leishmania amazonensis. BPQ-OH had a potent dose-dependent growth inhibitory effect against promastigotes and amastigotes, with IC(50) values 0.85 and 0.11 microM, respectively. Ultrastructural analysis of the treated parasites revealed several changes in the morphology of promastigote forms. The main ultrastructural change was found in the plasma membrane, which showed signs of disorganization, with the concomitant formation of elaborated structures. We also observed alterations in the mitochondrion-kinetoplast complex such as mitochondrial swelling, rupture of its internal membrane and an abnormal compaction of the kinetoplast. Other alterations included the appearance of multivesicular bodies, myelin-like figures, alterations of the flagellar membrane and presence of parasites with two or more nuclei and kinetoplasts. We conclude that the BPQ-OH was a potent growth inhibitor of L. amazonensis, which led to profound changes of the parasite's ultrastructure and might be a valuable lead compound for the development of novel anti-Leishmania agents. 相似文献