共查询到20条相似文献,搜索用时 15 毫秒
1.
The possible location of RNA in the ribosomal attachment site for the eukaryotic elongation factor EF-2 was analysed. Stable EF-2 · ribosome complexes formed in the presence of the non-hydrolysable GTP analogue GuoPP[CH2]P were cross-linked with the short (4 Å between the reactive groups) bifunctional reagent, diepoxybutane. Non-cross-linked EF-2 was removed and the covalent factor-ribosome complex isolated. No interaction between EF-2 and 18 S or 28 S rRNA could be demonstrated. However, density gradient centrifugation of the cross-linked ribosomal complexes showed an increased density (1.25 g/cm3) of the factor, as expected from a covalent complex between EF-2 and a low-molecular-weight RNA species. Treatment of the covalent ribosome-factor complexes with EDTA released approx 50% of the cross-linked EF-2 from the ribosome together with the 5 S rRNA · protein L5 complex. Furthermore, the complex co-migrated with the 5S rRNA · L5 particle in sucrose gradients. Polyacrylamide gel electrophoresis showed that EF-2 was directly linked to 5 S rRNA in the 5 S rRNA · L5 complex, as well as in the complexes isolated by density gradient centrifugation. No traces of 5.8 S rRNA or tRNA could be demonstrated. The data indicate that the ribosomal binding domain for EF-2 contains the 5 S rRNA · protein L5 particle and that EF-2 is located in close proximity to 5 S rRNA within the EF-2 · GuoPP[CH2]P · ribosome complex. 相似文献
2.
Characterisation of the ribosomal binding site for eukaryotic elongation factor 2 by chemical cross-linking 总被引:1,自引:0,他引:1
Ribosomal complexes containing elongation factor 2 (EF-2) were formed by incubation of 80 S ribosomes in the presence of EF-2 and the non-hydrolysable GTP analogue GuoPP[CH2]P. The factor was covalently coupled to the ribosomal proteins located at the factor binding site, by treatment with bifunctional reagents. After isolation of the covalent EF-2.ribosomal protein complexes, the proteins were labelled with 125I and the introduced covalent links cleaved. The ribosomal proteins were identified by electrophoresis in two independent two-dimensional gel systems, followed by autoradiography. After cross-linking with bis(hydroxysuccinimidyl) tartrate (4 A between the reactive groups), protein S3/S3a, S7 and S11 were found as the major ribosomal proteins covalently linked to EF-2. The longer reagent, dimethyl 3,8-diaza-4,7-dioxo-5,6-dihydroxydecanbisimidate (11 A between the reactive groups), covalently coupled proteins S7, S11, L5, L13, L21, L23, L26, L27a and L32 to EF-2. After cross-linking with dimethyl suberimidate (9 A between the reactive groups) proteins S3/3a, S7, S11, L5, L8, L13, L21, L23, L26, L27a, L31 and L32 were identified as belonging to the EF-2-binding site. The results indicate that the ribosomal domain interacting with EF-2 is located on both the small and the large ribosomal subunit close to the subunit interface. 相似文献
3.
The biological activity of elongation factor 2 (EF-2) following NAD+ - and diphtheria-toxin-dependent ADP-ribosylation was studied (i) in translation experiments using the reticulocyte lysate system and (ii) in ribosomal binding experiments using either reconstituted empty rat liver ribosomes or programmed reticulocyte polysomes. Treatment of the lysates with toxin and NAD+ at a NAD+/ribosome ratio of 4 resulted in a 90% inhibition of the amino acid incorporation rate. The inhibition was overcome by the addition of native EF-2. At this level of inhibition more than 90% of the EF-2 present in the lysates was ADP-ribosylated and the total ribosome association of EF-2 was reduced by approx. 50%. All of the remaining unmodified factor molecules were associated with the ribosomes, whereas only about 3% of the ribosylated factor was ribosome-associated. The nucleotide requirement for the binding of EF-2 to empty reconstituted rat liver ribosomes and programmed reticulocyte polysomes was studied together with the stability of the resulting EF-2 X ribosome complexes using purified 125I-labelled rat liver EF-2. With both types of ribosomes, the complex formation was strictly nucleotide-dependent. Stable, high-affinity complexes were formed in the presence of the non-hydrolysable GTP analogue guanosine 5'-(beta, gamma-methylene)triphosphate (GuoPP[CH2]P). In contrast to the reconstituted ribosomes, GTP stimulated the formation of high-affinity complexes in the presence of polysomes, albeit at a lower efficiency than GuoPP[CH2]P. The formation of high-affinity complexes was restricted to polysomes in the pretranslocation phase of the elongation cycle. Low-affinity post-translocation complexes, demonstrable after fixation, were formed in the presence of GTP, GuoPP[CH2]P and GDP. In polysomes, these complexes involved a different population of particles than did the high-affinity complexes. In the binding experiments using reconstituted or programmed ribosomes, the pretranslocation binding of EF-2 observed in the presence of GuoPP[CH2]P was reduced by approx. 50% after ADP-ribosylation, whereas the post-translocation binding in the presence of GDP was unaltered. The data indicate that the inhibition of translocation caused by diphtheria toxin and NAD+ is mediated through a reduced affinity of the ADP-ribosylated EF-2 for binding to ribosomes in the pretranslocation state. 相似文献
4.
5.
Free- and EF-2-bound 80 S ribosomes, within the high-affinity complex with the non-hydrolysable GTP analog: guanylylmethylenediphosphonate (GuoPP(CH2)P), and the low-affinity complex with GDP, were treated with trypsin under conditions that modified neither their protein synthesis ability nor their sedimentation constant nor the bound EF-2 itself. Proteins extracted from trypsin-digested ribosomes were unambiguously identified using three different two-dimensional gel electrophoresis systems and 5 S RNA release was checked by submitting directly free- and EF-2-bound 80 S ribosomes, incubated with trypsin, to two-dimensional gel electrophoresis. Our results indicate that the binding of (EF-2)-GuoPP[CH2]P to 80 S ribosomes modified the behavior of a cluster of five proteins which were trypsin-resistant within free 80 S ribosomes and trypsin-sensitive within the high-affinity complex (proteins: L3, L10, L13a, L26, L27a). As for the binding of (EF-2)-GDP to 80 S ribosomes, it induced an intermediate conformational change of ribosomes, unshielding only protein L13a and L27a. Quantitative release of free intact 5 S RNA which occurred in the first case but not in the second one, should be related to the trypsinolysis of protein(s) L3 and/or L10 and/or L26. Results were discussed in relation to structural and functional data available on the ribosomal proteins we found to be modified by EF-2 binding. 相似文献
6.
Characterization of the ribosomal properties required for formation of a GTPase active complex with the eukaryotic elongation factor 2 总被引:4,自引:0,他引:4
The binding stability of the different nucleotide-dependent and -independent interactions between elongation factor 2 (EF-2) and 80S ribosomes, as well as 60S subunits, was studied and correlated to the kinetics of the EF-2- and ribosome-dependent hydrolysis of GTP. Empty reconstituted 80S ribosomes were found to contain two subpopulations of ribosomes, with approximately 80% capable of binding EF-2.GuoPP[CH2]P with high affinity (Kd less than 10(-9) M) and the rest only capable of binding the factor-nucleotide complex with low affinity (Kd = 3.7 x 10(-7) M). The activity of the EF-2- and 80S-ribosome dependent GTPase did not respond linearly to increasing factor concentrations. At low EF-2/ribosome ratios the number of GTP molecules hydrolyzed/factor molecule was considerably lower than at higher ratios. The low response coincided with the formation of the high-affinity complex. At increasing EF-2/ribosome ratios, the ribosomes capable of forming the high-affinity complex was saturated with EF-2, thus allowing formation of the low-affinity ribosome.EF-2 complex. Simultaneously, the GTPase activity/factor molecule increased, indicating that the low-affinity complex was responsible for activating the GTP hydrolysis. The large ribosomal subunits constituted a homogeneous population that interacted with EF-2 in a low-affinity (Kd = 1.3 x 10(-6) M) GTPase active complex, suggesting that the ribosomal domain responsible for activating the GTPase was located on the 60S subunit. Ricin treatment converted the 80S particles to the type of conformation only capable of interacting with EF-2 in a low-affinity complex. The structural alteration was accompanied by a dramatic increase in the EF-2-dependent GTPase activity. Surprisingly, ricin had no effect on the factor-catalyzed GTP hydrolysis in the presence of 60S subunits alone. 相似文献
7.
Regulation of the activity of eukaryotic peptide elongation factor 1 by autocatalytic phosphorylation 总被引:4,自引:0,他引:4
Highly purified peptide elongation factor 1 from rabbit reticulocytes liberates the terminal phosphate from [gamma-32P]GTP and incorporates it into its own protein. Approximately one phosphate residue becomes bound by one molecule of the factor. Only the eEF-1 alpha subunit of the factor (Mr 53 000) becomes phosphorylated as revealed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate followed by autoradiography and by the incubation of [gamma-32P]GTP with individual subunits of the elongation factor separated by chromatofocusing in the presence of 5 M urea. The phosphorylation also takes place, though to a lesser extent, if the factor is incubated with Na2H32PO4, probably due to the presence of endogenous GTP bound in the molecule of the factor. The content of endogenous GTP in various factor preparations was 0.21-0.43 mol/mol factor. Phosphorylation of the peptide elongation factor is ribosome-independent, acid-labile and apparently autocatalytic since no other proteins are required for this reaction. Preincubation of the factor with GTP or with inorganic phosphate results in the phosphorylation of the factor and is followed by an enhanced binding of phenylalanyl-tRNA to 80S ribosomes in the presence of poly(U). This is accompanied by a dephosphorylation of the factor protein and thus the reversible autophosphorylation of the factor apparently activates its binding site for aminoacyl-tRNA. This is supported by the observation that sodium fluoride, which inhibits the dephosphorylation of the factor, blocks the factor-catalyzed binding of aminoacyl-tRNA to ribosomes. The incorporation of phosphate into factor protein also inhibits the formation of an eEF-1 X GDP complex, which is inactive in protein synthesis. Thus GDP liberated by the GTPase activity of the factor cannot affect its binding site for aminoacyl-tRNA. This may be the other reason for the enhanced activity of the phosphorylated factor. The autocatalytic GTP-dependent phosphorylation of the peptide elongation factor 1 apparently modifies its function and may thus play a regulatory role in protein synthesis. 相似文献
8.
Localization of the sites of ADP-ribosylation and GTP binding in the eukaryotic elongation factor EF-2 总被引:3,自引:0,他引:3
Tryptic cleavage of EF-2, molecular mass 93 kDa, produced an 82-kDa polypeptide and a 10-kDa fragment, which was further degraded. By a slower reaction the 82-kDa polypeptide was gradually split into a 48-kDa and a 34-kDa fragment. Similarly, treatment with chymotrypsin resulted in the formation of an 82-kDa polypeptide and a small fragment. In contrast to the tryptic 82-kDa polypeptide the corresponding chymotryptic cleavage product was relatively resistant to further attack. The degradation of the 82-kDa polypeptide with either trypsin or chymotrypsin was facilitated by the presence of guanosine nucleotides, indicating a conformational shift in native EF-2 upon nucleotide binding. No effect was observed in the presence of ATP, indicating that the effect was specific for guanosine nucleotides. After affinity labelling of native EF-2 with oxidized [3H]GTP and subsequent trypsin treatment the radioactivity was recovered in the 48-kDa polypeptide showing that the GTP-binding site was located within this part of the factor. Correspondingly, tryptic degradation of EF-2 labelled with [14C]NAD+ in the presence of diphtheria toxin showed that the site of ADP-ribosylation was within the 34-kDa polypeptide. By cleavage with the tryptophan-specific reagent N-chlorosuccinimide the site of ADP-ribosylation could be located at a distance of 40-60 kDa from the GTP-binding site and about 4-11 kDa from the nearest terminus. 相似文献
9.
T G Kinzy J P Freeman A E Johnson W C Merrick 《The Journal of biological chemistry》1992,267(3):1623-1632
Eukaryotic elongation factor 1 alpha (EF-1 alpha) binds all the aminoacyl-tRNAs except the initiator tRNA in a GTP-dependent manner. While the GTP binding site is delineated by the three GTP binding consensus elements, less is known about the aminoacyl-tRNA binding sites. In order to better understand this site, we have initiated cross-linking and protease mapping studies of the EF-1 alpha-GTP-aminoacyl-tRNA complex. Two different chemical cross-linking reagents, trans-diaminedichloroplatinum(II) and diepoxybutane, were used to cross-link four different aminoacyl-tRNA species to EF-1 alpha. A series of peptides were obtained, located predominantly in domains II and III. The ability of aminoacyl-tRNA to protect protease digestion sites was also monitored, and domain II was found to be protected from digestion by aminoacyl-tRNA. Last, an aminoacyl-tRNA analog with a reactive group on the aminoacyl side chain, N epsilon-bromoacetyl-Lys-tRNA, was cross-linked to EF-1 alpha. This reagent cross-liked to histidine 296 in a GTP-dependent manner and thus localizes the aminoacyl group adjacent to domain II. A model is developed for aminoacyl-tRNA binding to EF-1 alpha based on its similarity to the prokaryotic factor EF-Tu, for which an x-ray crystal structure is available. 相似文献
10.
11.
C Sanges C Scheuermann R P Zahedi A Sickmann A Lamberti N Migliaccio A Baljuls M Marra S Zappavigna U Rapp A Abbruzzese M Caraglia P Arcari 《Cell death & disease》2012,3(3):e276
We identified eukaryotic translation elongation factor 1A (eEF1A) Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and of apoptosis of human cancer cells. Mass spectrometry identified in vitro S21 and T88 as phosphorylation sites mediated by B-Raf but not C-Raf on eEF1A1 whereas S21 was phosphorylated on eEF1A2 by both B- and C-Raf. Interestingly, S21 belongs to the first eEF1A GTP/GDP-binding consensus sequence. Phosphorylation of S21 was strongly enhanced when both eEF1A isoforms were preincubated prior the assay with C-Raf, suggesting that the eEF1A isoforms can heterodimerize thus increasing the accessibility of S21 to the phosphate. Overexpression of eEF1A1 in COS 7 cells confirmed the phosphorylation of T88 also in vivo. Compared with wt, in COS 7 cells overexpressed phosphodeficient (A) and phospho-mimicking (D) mutants of eEF1A1 (S21A/D and T88A/D) and of eEF1A2 (S21A/D), resulted less stable and more rapidly proteasome degraded. Transfection of S21 A/D eEF1A mutants in H1355 cells increased apoptosis in comparison with the wt isoforms. It indicates that the blockage of S21 interferes with or even supports C-Raf induced apoptosis rather than cell survival. Raf-mediated regulation of this site could be a crucial mechanism involved in the functional switching of eEF1A between its role in protein biosynthesis and its participation in other cellular processes. 相似文献
12.
Periodate-oxidized guanine nucleotides (GTPox and GDPox) were shown to bind stoichiometrically to rat liver elongation factor 2 (EF-2). This binding was quantitatively inhibited in the presence of GTP. After binding, oxidized nucleotides remained on EF-2 despite extensive dialysis. They exchanged, however, with free quanine nucleotides in the course of prolonged (greater than 1 h) incubations. The prior reduction EF-2.GTPox with NaBH4 abolished, to a large extent, this slow exchange. Thus, a Schiff's base was implicated to be formed between EF-2 and oxidized guanine nucleotides. Mg2+ increased the GTPox concentration necessary for a stoichiometric binding to EF-2. EF-2-oxidized nucleotide conjugates bound in the presence of ribosomes a second molecule of GTP (or GTPox). GTPox bound to EF-2 in the presence of ribosomes appeared to exchange readily with free GTP. Moreover, GTPox proved to be active as substrate in EF-2 and ribosome-dependent GTPase reaction: Km values found for GTPox and GTP were 7.7 and 3.4 microM, respectively. The binding of GTPox to EF-2 inhibited only partially the subsequent ribosome-dependent GTP binding, and GTPase reaction or polyphenylalanine (polyPhe) synthesis. On the other hand, the binding of GuoPP[CH2]Pox to EF-2 inhibited all of these reactions strongly. The nature of the binding site involved in the direct interactions of EF-2 with guanine nucleotides is discussed in the light of these results. 相似文献
13.
Satoshi Kameshima Muneyoshi Okada Shiro Ikeda Yuki Watanabe Hideyuki Yamawaki 《Biochemistry and Biophysics Reports》2016
Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) is one of the Ca2+/calmodulin-dependent protein kinases. Activated eEF2K phosphorylates its specific substrate, eEF2, which results in inhibition of protein translation. We have recently shown that protein expression of eEF2K was specifically increased in hypertrophied left ventricles (LV) from spontaneously hypertensive rats (SHR). However, phosphorylation state of eEF2K and eEF2 in hypertrophied LV is not determined. In the present study, we examined expression and phosphorylation of eEF2K and eEF2 in LV from SHR as well as the pressure overload (transverse aortic constriction: TAC)- and isoproterenol (ISO)-induced cardiac hypertrophy model. In LV from TAC mice, eEF2K expression was increased as determined by Western blotting. In LV from TAC mice and SHR, eEF2K phosphorylation at Ser366 (inactive site) was decreased. Consistently, eEF2 phosphorylation at Thr56 was increased. In LV from ISO rats, while eEF2K phosphorylation was decreased, eEF2K expression and eEF2 phosphorylation were not different as determined by Western blotting. In the results obtained from immunohistochemistry, however, total eEF2K and phosphorylated eEF2 (at Thr56) localized to cardiomyocytes were increased in LV cardiomyocytes from ISO rats. Accordingly, the increased expression and the decreased phosphorylation of eEF2K and the increased phosphorylation of eEF2 in hypertrophied LV were common to all models in this study. The present results thus suggest that cardiac hypertrophy may be regulated at least partly via eEF2K-eEF2 signaling pathway. 相似文献
14.
Ethanol decreases protein synthesis in cells, although the underlying regulatory mechanisms of this process are not fully established. In the present study incubation of C2C12 myocytes with 100 mm EtOH decreased protein synthesis while markedly increasing the phosphorylation of eukaryotic elongation factor 2 (eEF2), a key component of the translation machinery. Both mTOR and MEK pathways were found to play a role in regulating the effect of EtOH on eEF2 phosphorylation. Rapamycin, an inhibitor of mammalian target of rapamycin, and the MEK inhibitor PD98059 blocked the EtOH-induced phosphorylation of eEF2, whereas the p38 MAPK inhibitor SB202190 had no effect. Unexpectedly, EtOH decreased the phosphorylation and activity of the eEF2 upstream regulator eEF2 kinase. Likewise, treatment of cells with the inhibitor rottlerin did not block the stimulatory effect of EtOH on eEF2, suggesting that eEF2 kinase (eEF2K) does not play a role in regulating eEF2. In contrast, increased eEF2 phosphorylation was correlated with an increase in AMP-activated protein kinase (AMPK) phosphorylation and activity. Compound C, an inhibitor of AMPK, suppressed the effects of EtOH on eEF2 phosphorylation but had no effect on eEF2K, indicating that AMPK regulates eEF2 independent of eEF2K. Finally, EtOH decreased protein phosphatase 2A activity when either eEF2 or AMPK was used as the substrate. Thus, this later action may partially account for the increased phosphorylation of eEF2 in response to EtOH and the observed sensitivity of AMPK to rapamycin and PD98059 treatments. Collectively, the induction of eEF2 phosphorylation by EtOH is controlled by an increase in AMPK and a decrease in protein phosphatase 2A activity. 相似文献
15.
Bektaş M Günçer B Güven C Nurten R Bermek E 《Biochemical and biophysical research communications》2004,317(4):1061-1066
An inhibitor of diphtheria toxin- and endogenous transferase-dependent ADP-ribosylation of eukaryotic elongation factor 2 (eEF2) has been found in the cytoplasmic fraction from rat liver. We provide evidence that this cytoplasmic inhibitor corresponds to actin, which gives rise also to inhibition of polyphenylalanine (polyPhe) synthesis. Both globular monomeric (G-actin) and filamentous (F-actin) forms of actin appear to be inhibitory on the action of elongation factors 1 and 2 (eEF1 and eEF2) in polyPhe synthesis with the inhibitory effect of G-actin proving to be stronger. Some component(s) in the postribosomal supernatant (S-130) fraction and also DNase I prevent actin-promoted inhibition of polyPhe synthesis. 相似文献
16.
Cross-linking of elongation factor 2 to rat-liver ribosomal proteins by 2-iminothiolane 总被引:9,自引:0,他引:9
Complexes containing rat liver 80S ribosomes treated with puromycin and high concentrations of KCl, elongation factor 2 (EF-2) from pig liver, and guanosine 5'-[beta, gamma-methylene]triphosphate were prepared. Neighboring proteins in the complexes were cross-linked with the bifunctional reagent 2-iminothiolane. Proteins were extracted and then separated into 22 fractions by chromatography on carboxymethylcellulose of which seven fractions were used for further analyses. Each protein fraction was subjected to diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Nine cross-linked protein pairs between EF-2 and ribosomal proteins were shifted from the line formed with monomeric proteins. The spots of ribosomal proteins cross-linked to EF-2 were cut out from the gel plate and labelled with 125I. The labelled protein was extracted from the gel and identified by three kinds of two-dimensional gel electrophoresis, followed by autoradiography. The following proteins of both large and small subunits were identified: L9, L12, L23, LA33 (acidic protein of Mr 33000), P2, S6 and S23/S24, and L3 and L4 in lower yields. The results are discussed in relation to the topographies of ribosomal proteins in large and small subunits. Furthermore we found new neighboring protein pairs in large subunits, LA33-L11 and LA33-L12. 相似文献
17.
In this article we report the identification of the sites which are involved in the binding of the GDP-exchange factor EF-1 beta and aminoacyl tRNA to the alpha-subunit of the eukaryotic elongation factor 1 (EF-1) from Artemia. For this purpose the polypeptide chain of EF-1 alpha, having 461 amino acid residues, was proteolytically cleaved into large fragments by distinct proteases. Under well defined conditions, a mixture of two large fragments, free from intact EF-1 alpha and with molecular masses of 37 kDa and 43 kDa, was obtained. The 37-kDa and 43-kDa fragments comprise the residues 129-461 and 69-461, respectively. However, in aqueous solution and under non-denaturing conditions, the mixture still contained a short amino-terminal peptide, encompassing the residues 1-36, that remained tightly bound. The ability of the mixture of the 37+43-kDa fragments, including this amino-terminal peptide 1-36, to bind GDP or to facilitate aminoacyl tRNA binding to salt-washed ribosomes was severely reduced, compared to intact EF-1 alpha. However, both of these complexes were able to bind to the GDP-exchange-stimulating subunit EF-1 beta. A 30-kDa fragment, comprising the residues 1-287, was generated after treatment of the protein with endoproteinase Glu-C. This fragment contained the complete guanine nucleotide binding pocket. Although it was able to bind GDP and to transport aminoacyl tRNA to the ribosome, no affinity towards EF-1 beta was observed. We propose that the guanine-nucleotide-exchange stimulation by EF-1 beta is induced through binding of this factor to the carboxy-terminal part of EF-1 alpha. As a result, a decreased susceptibility towards trypsin of the guanine-nucleotide-binding pocket of EF-1 alpha, especially in the region of its presumed effector loop is induced. 相似文献
18.
19.
P Bargis-Surgey J P Lavergne P Gonzalo C Vard O Filhol-Cochet J P Reboud 《European journal of biochemistry》1999,262(2):606-611
The eukaryotic P1 and P2 ribosomal proteins which constitute, with P0, a pentamer forming the lateral stalk of the 60 S ribosomal subunit, exhibit several differences from their prokaryotic equivalents L7 and L12; in particular, P1 does not have the same primary structure as P2 and both of them are phosphorylated, the significance of the latter remaining unclear. Rat liver P1 and P2 were overproduced in Escherichia coli cells and their interaction with elongation factor eEF-2 was studied. Both recombinant proteins were found to be required for the ribosome-dependent GTPase activity of eEF-2, with P2 in the phosphorylated form. The surface plasmon resonance technique revealed that, in vitro, both proteins interact specifically with eEF-2, with a higher affinity for P1 (Kd = 3.8 x 10-8 m) than for P2 (Kd = 2.2 x 10-6 m). Phosphorylation resulted in a moderate increase (two- to four-fold) in these affinities. The interaction of both P1 and P2 (phosphorylated or not) with eEF-2 resulted in a conformational change in the factor, revealed by an increase in the accessibility of Glu554 to proteinase Glu-C. This increase was observed in both the presence and absence of GTP and GDP, which themselves produced marked opposite effects on the conformation of eEF-2. Our results suggest that the two proteins P1 and P2 both interact with eEF-2 inducing a conformational transition of the factor, but have acquired some specific properties during evolution. 相似文献
20.
Myocardial ischemia and increased heart work modulate the phosphorylation state of eukaryotic elongation factor-2 总被引:11,自引:0,他引:11
Horman S Beauloye C Vertommen D Vanoverschelde JL Hue L Rider MH 《The Journal of biological chemistry》2003,278(43):41970-41976
Protein synthesis, in particular peptide chain elongation, is an energy-consuming biosynthetic process. AMP-activated protein kinase (AMPK) is a key regulatory enzyme involved in cellular energy homeostasis. Therefore, we tested the hypothesis that, as in liver, it could mediate the inhibition of protein synthesis by oxygen deprivation in heart by modulating the phosphorylation of eukaryotic elongation factor-2 (eEF2), which becomes inactive in its phosphorylated form. In anoxic cardiomyocytes, AMPK activation was associated with an inhibition of protein synthesis and an increase in phosphorylation of eEF2. Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), did not mimic the effect of oxygen deprivation to inhibit protein synthesis in cardiomyocytes or lead to eEF2 phosphorylation in perfused hearts, suggesting that AMPK activation did not inhibit mTOR/p70 ribosomal protein S6 kinase (p70S6K) signaling. Human recombinant eEF2 kinase (eEF2K) was phosphorylated by AMPK in a time- and AMP-dependent fashion, and phosphorylation led to eEF2K activation, similar to that observed in extracts from ischemic hearts. In contrast, increasing the workload resulted in a dephosphorylation of eEF2, which was rapamycin-insensitive, thus excluding a role for mTOR in this effect. eEF2K activity was unchanged by increasing the workload, suggesting that the decrease in eEF2 phosphorylation could result from the activation of an eEF2 phosphatase. 相似文献