首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A guinea pig model to assess the immunogenicity of a combination vaccine containing diphtheria, tetanus and acellular pertussis (DTaP) vaccine and Haemophilus influenzae type b (Hib) capsular polysaccharide conjugated to tetanus toxoid (HibT) was evaluated comparatively with the mouse immunogenicity test to study the effect of combining these antigens on the immunogenicity of various components. The immunogenicity test in mice was performed by subcutaneous injection of groups of 10 animals twice at an interval of four weeks with 1/10 of a single human dose of various formulations of combination vaccines, DTaP or HibT vaccine. The animals were bled at 4 and 6 weeks and IgG or total antibodies to various components were determined by ELISA or RIA. The guinea pig immunogenicity model included groups of animals injected subcutaneously twice at an interval of six weeks with 1.5 times the single human dose of various formulations. The animals were bled at 4, 6 and 8 weeks and serum samples were tested for antibodies to various components by ELISA, RIA and/or neutralization tests. Additionally, potency of tetanus and diphtheria components was assessed as per the US Food and Drug Administration's regulations. Aluminium phosphate (AIPO(4)) adsorbed HibT vaccine or HibT as a combination with AIPO(4)adsorbed DTaP vaccine showed significant increases in IgG antibodies to tetanus toxin in mice as well increased tetanus antitoxin levels in guinea pigs as compared to soluble HibT vaccine. In general, combining DTaP and HibT vaccines did not affect the antibody levels to tetanus and diphtheria toxoids whereas DTaP-HibT combination vaccine elicited significantly lower IgG antibodies to pertussis toxin and filamentous haemagglutinin than DTaP vaccine alone, particularly after first injection. Mice showed similar Hib antibody responses for the combination and HibT alone whereas guinea pigs consistently showed lower anamnestic responses to Hib for combination formulations than for HibT alone. Reducing the amount of HibT and/or tetanus toxoid in the combination formulations reduced this suppression of Hib antibody response in guinea pigs. Suppression of Hib antibody response in combination vaccines has also been reported from recent clinical trials. Based on the results from this study, it appears that the guinea pig model may be able to predict the human response to various components of combination vaccines.  相似文献   

2.
The use of potency control testing is a valuable tool for testing the actual relative strength of manufactured assembly lots of vaccine. Biological-based manufacturing methods are inherently variable and potency testing is a tool to ensure lot-to-lot consistency of commercial vaccines. A strong historical link to clinical efficacy has been established where correlation to efficacy and adequate test validation have been achieved. The link to immunogenicity and efficacy has traditionally been strongest with attenuated vaccines and toxoids. Control potency test failure does predict that a serial or batch of vaccine would most likely provide insufficient immunogenicity in typical field applications. Because of the complexity of pathogenic processes and associated immune responses, potency tests may not always directly predict the effectiveness of a vaccine. Thus, vaccines that pass control potency testing may not always provide adequate efficacy. This is particularly true of adjuvanted, inactivated vaccines. In the development of vaccine formulations and control tests for vaccines, the nature of the desired protective immune responses to the targeted pathogen (when known) should be considered. These considerations could provide better alternatives in the assays chosen as correlates of immunity and may more accurately predict efficacy and assure batch-to-batch consistency. Also, the effects of the dose and duration of antigen exposure as well as the nature of antigen presentation and generation of extrinsic cytokines could be characterised and correlated to vaccine potency as additional indicators of vaccine efficacy.  相似文献   

3.
Japanese encephalitis (JE) viruses are grouped into four genotypes. Although currently available vaccines are derived only from viruses in genotype III, vaccines are known to protect against naturally occurring strains. Studies were undertaken to assess the suitability of a freeze-dried pool of human anti-JE plasma, collected from recipients of Biken (Nakayama-NIH) killed vaccine, to serve as an International Standard for antibodies to JE virus. Five participants in five countries submitted data from 11 assays on the candidate International Standard and seven coded samples including sera from recipients of vaccines containing a range of virus strains. The results of the study indicated that the 50% plaque reduction neutralization test (PRNT(50)titres) obtained for serum from recipients of killed vaccines, including the candidate standard, vary depending on the virus strain used in the neutralization tests, namely higher PRNT(50)titres were obtained when the challenge virus was homologous to the vaccine strain compared to use of a heterologous virus. Potencies expressed relative to the candidate standard are therefore affected by the strain of virus used in assays and the use of a standard would therefore not facilitate direct comparison of data from laboratories that have used different challenge strains.  相似文献   

4.
Pittman, Margaret (National Institutes of Health, Bethesda, Md.), and Howard J. Bohner. Laboratory assays of different types of field trial typhoid vaccines and relationship to efficacy in man. J. Bacteriol. 91:1713-1723. 1966.-Antibody responses of rabbits to H, O, and Vi antigens did not differentiate vaccine K (acetone-killed and dried) from vaccine L (heat-phenolized and dried) relative to human efficacy. A mouse protection assay in which intraperitoneal vaccination and challenge suspended in mucin were used showed vaccine K to be 3.69 times more potent than vaccine L; with subcutaneous vaccination, vaccine K was only 0.78 as potent. With the challenge suspended in saline, the effect of the route of vaccination was accentuated. An old U.S. reference vaccine, heat-phenolized, induced the same types of response as vaccine L. In the assay with intraperitoneal vaccination and mucin-suspended challenge, the potency of vaccine K relative to vaccine L and the potencies of Polish vaccines, P, N, and T, relative to vaccine K were directly correlated with the efficacies of the vaccines for man, as reported for the recent World Health Organization cooperative field trials in British Guiana, Yugoslavia, and Poland. This assay gave a high potency for alcohol-treated vaccine V relative to vaccine L, but the values did not reflect relative efficacy in the USSR field trial; the subcutaneous vaccination assay more closely reflected their human efficacy. An analysis suggested that vaccine K had a mouse protective factor not present in vaccine L and that vaccine V may have had a third factor. The influence of a few variable factors on the assay with intraperitoneal vaccination and mucin-suspended challenge was studied briefly.  相似文献   

5.
Standard and stabilized yellow fever (YF) vaccines were compared on the basis of the serological responses of human volunteers to varying doses of vaccine measured as pfu or LD50. The addition of stabilizer substances to bulk vaccine did not affect the immunogenicity and stabilized vaccine gave a consistently good performance. The vaccine fulfilled WHO recommendations in inducing 100% serological conversion in volunteers given about 200 pfu or 600 LD50.  相似文献   

6.
Prior to Simian Immunodeficiency Virus (SIV)-infected macaques becoming the 'model of choice' in the 1990s, chimpanzees were widely used in AIDS vaccine research and testing. Faced with the continued failure to develop an effective human vaccine, some scientists are calling for a return to their widespread use. To assess the past and potential future contribution of chimpanzees to AIDS vaccine development, databases and published literature were systematically searched to compare the results of AIDS vaccine trials in chimpanzees with those of human clinical trials, and to determine whether the chimpanzee trials were predictive of the human response. Protective and/or therapeutic responses have been elicited in chimpanzees, via: passive antibody transfer; CD4 analogues; attenuated virus; many types and combinations of recombinant HIV proteins; DNA vaccines; recombinant adenovirus and canarypox vaccines; and many multi-component vaccines using more than one of these approaches. Immunogenicity has also been shown in chimpanzees for vaccinia-based and peptide vaccines. Protection and/or significant therapeutic effects have not been demonstrated by any vaccine to date in humans. Vaccine responses in chimpanzees and humans are highly discordant. Claims of the importance of chimpanzees in AIDS vaccine development are without foundation, and a return to the use of chimpanzees in AIDS research/vaccine development is scientifically unjustifiable.  相似文献   

7.
Virus-specific CD4(+) T cell responses have been shown to play a critical role in controlling HIV-1 replication. Candidate HIV-1 vaccines should therefore elicit potent CD4(+) as well as CD8(+) T cell responses. In this report we investigate the ability of plasmid GM-CSF to augment CD4(+) T cell responses elicited by an HIV-1 gp120 DNA vaccine in mice. Coadministration of a plasmid expressing GM-CSF with the gp120 DNA vaccine led to only a marginal increase in gp120-specific splenocyte CD4(+) T cell responses. However, immunization with a bicistronic plasmid that coexpressed gp120 and GM-CSF under control of a single promoter led to a dramatic augmentation of vaccine-elicited CD4(+) T cell responses, as measured by both cellular proliferation and ELISPOT assays. This augmentation of CD4(+) T cell responses was selective, since vaccine-elicited Ab and CD8(+) T cell responses were not significantly changed by the addition of GM-CSF. A 100-fold lower dose of the gp120/GM-CSF bicistronic DNA vaccine was required to elicit detectable gp120-specific splenocyte proliferative responses compared with the monocistronic gp120 DNA vaccine. Consistent with these findings, i.m. injection of the gp120/GM-CSF bicistronic DNA vaccine evoked a more extensive cellular infiltrate at the site of inoculation than the monocistronic gp120 DNA vaccine. These results demonstrate that bicistronic DNA vaccines containing GM-CSF elicit remarkably potent CD4(+) T cell responses and suggest that optimal Th cell priming requires the precise temporal and spatial codelivery of Ag and GM-CSF.  相似文献   

8.
It is known that targeting of antigen to antigen presenting cells (APC) increases immune responses. However, it is unclear if more than one APC-specific targeting unit in the antigenic molecule will increase responses. To address this issue, we have here made heterodimeric vaccine molecules that each express four different fusion subunits. The bacterial ribonuclease barnase and its inhibitor barstar interact with high affinity, and the barnase-barstar complex was therefore used as a dimerization unit. Barnase and barstar were fused N-terminally with single chain fragment variable (scFv)s targeting units specific for either MHC class II molecules on APC or the hapten 5-iodo-4-hydroxy-3-nitrophenylacetyl (NIP). C-terminal antigenic fusions were either the fluorescent protein mCherry or scFv315 derived from myeloma protein M315. The heterodimeric vaccine molecules were formed both in vitro and in vivo. Moreover, the four different fused moieties appeared to fold correctly since they retained their specificity and function. DNA vaccination with MHC class II-targeted vaccine induced higher mCherry-specific IgG1 responses compared to non-targeted control. Since mCherry and MHC class II are in trans in this heterodimer, this suggests that heterodimeric proteins are formed in vivo without prior protein purification. Surprisingly, one targeting moiety was sufficient for the increased IgG1 response, and addition of a second targeting moiety did not increase responses. Similar results were found in in vitro T cell assays; vaccine molecules with one targeting unit were as potent as those with two. In combination with the easy cloning strategy, the heterodimeric barnase-barstar vaccine molecule could provide a flexible platform for development of novel DNA vaccines with increased potency.  相似文献   

9.
Human papillomavirus is known to be the major pathogen of cervical cancer. Here, we report the efficacy of a bivalent human papillomavirus type 16 and 18 DNA vaccine system following repeated dosing in mice and pigs using a recombinant baculovirus bearing human endogenous retrovirus envelope protein (AcHERV) as a vector. The intramuscular administration of AcHERV-based HPV16L1 and HPV18L1 DNA vaccines induced antigen-specific serum IgG, vaginal IgA, and neutralizing antibodies to levels comparable to those achieved using the commercially marketed vaccine Cervarix. Similar to Cervarix, AcHERV-based bivalent vaccinations completely blocked subsequent vaginal challenge with HPV type-specific pseudovirions. However, AcHERV-based bivalent vaccinations induced significantly higher cell-mediated immune responses than Cervarix, promoting 4.5- (HPV16L1) and 3.9-(HPV18L1) fold higher interferon-γ production in splenocytes upon stimulation with antigen type-specific pseudovirions. Repeated dosing did not affect the immunogenicity of AcHERV DNA vaccines. Three sequential immunizations with AcHERV-HP18L1 DNA vaccine followed by three repeated dosing with AcHERV-HP16L1 over 11 weeks induced an initial production of anti-HPV18L1 antibody followed by subsequent induction of anti-HPV16L1 antibody. Finally, AcHERV-based bivalent DNA vaccination induced antigen-specific serum IgG immune responses in pigs. These results support the further development of AcHERV as a bivalent human papillomavirus DNA vaccine system for use in preventing the viral infection as well as treating the infected women by inducing both humoral and cell-mediated immune responses. Moreover, the possibility of repeated dosing indicates the utility of AcHERV system for reusable vectors of other viral pathogen vaccines.  相似文献   

10.
汉滩病毒84Fli株DNA疫苗诱导小鼠免疫应答的初步研究   总被引:1,自引:0,他引:1  
为了加强我国病毒性出血热的防治,本研究将汉滩病毒84Fli株核蛋白S和糖蛋白M编码片段分别克隆至pcDNA3.0载体,构建了pcDNA3/84S和pcDNA3/84M重组质粒,等量混合采用肌肉注射途径免疫C57BL/6小鼠,免疫3次,每次间隔2周,同时与双价出血热病毒灭活疫苗进行对比。ELISA及免疫荧光(IFA)分别检测小鼠血清中汉滩病毒核蛋白及糖蛋白特异性抗体,流式细胞仪和ELISPOT方法分析小鼠免疫后的细胞免疫水平。微量中和试验检测小鼠血清抗体的的中和活性。结果显示,DNA疫苗免疫组C57BL/6小鼠在初次免疫2周后即能检测到汉滩病毒核蛋白与糖蛋白的特异性抗体,与灭活疫苗组相比,重组质粒诱导的抗体滴度高,产生时间早,产生的抗体具有中和活性;同时可诱导产生特异性细胞免疫应答。研究表明,汉滩病毒pcDNA3/84S和pcDNA3/84M重组质粒能有效刺激小鼠产生特异性体液免疫和细胞免疫应答。  相似文献   

11.
Advances in vaccine adjuvants.   总被引:21,自引:0,他引:21  
M Singh  D O'Hagan 《Nature biotechnology》1999,17(11):1075-1081
Currently, aluminum salts and MF59 are the only vaccine adjuvants approved for human use. With the development of new-generation vaccines (including recombinant subunit and mucosal vaccines) that are less immunogenic, the search for more potent vaccine adjuvants has intensified. Of the novel compounds recently evaluated in human trials, immunostimulatory molecules such as the lipopolysaccharide derived MPL and the saponin derivative QS21 appear most promising, although doubts have been raised as to their safety in humans. Preclinical work with particulate adjuvants, such as the MF59 microemulsion and lipid-particle immune-stimulating complexes (Iscoms), suggest that these molecules are also potent elicitors of humoral and cellular immune responses. In addition, preclinical data on CpG oligonucleotides appear to be encouraging, particularly with respect to their ability to selectively manipulate immune responses. While all these adjuvants show promise, further work is needed to better define the mechanisms of adjuvant action. Ultimately, the development of more potent adjuvants may allow vaccines to be used as therapeutic, rather than prophylactic, agents.  相似文献   

12.
Recently, self-replicating RNA vaccines (RNA replicons) have emerged as an effective strategy for nucleic acid vaccine development. Unlike naked DNA vaccines, RNA replicons eventually cause lysis of transfected cells and therefore do not raise the concern of integration into the host genome. We evaluated the effect of linking human papillomavirus type 16 E7 as a model Ag to Mycobacterium tuberculosis heat shock protein 70 (HSP70) on the potency of Ag-specific immunity generated by a Sindbis virus self-replicating RNA vector, SINrep5. Our results indicated that this RNA replicon vaccine containing an E7/HSP70 fusion gene generated significantly higher E7-specific T cell-mediated immune responses in vaccinated mice than did vaccines containing the wild-type E7 gene. Furthermore, our in vitro studies demonstrated that E7 Ag from E7/HSP70 RNA replicon-transfected cells can be processed by bone marrow-derived dendritic cells and presented more efficiently through the MHC class I pathway than can wild-type E7 RNA replicon-transfected cells. More importantly, the fusion of HSP70 to E7 converted a less effective vaccine into one with significant potency against E7-expressing tumors. This antitumor effect was dependent on NK cells and CD8(+) T cells. These results indicated that fusion of HSP70 to an Ag gene may greatly enhance the potency of self-replicating RNA vaccines.  相似文献   

13.
《Biologicals》2014,42(1):48-51
Photobacterium damselae subsp. piscicida is an infectious pathogen that causes Pseudotuberculosis in Yellowtail fish. In Japan, several oil-adjuvant vaccines for Pseudotuberculosis have been approved for control of infectious diseases in aquaculture. Before distribution of an approved fish vaccine, an artificial challenge test for quality control is performed by the manufacturer and National Veterinary Assay Laboratory under Pharmaceutical Law of Japan to confirm potency. In this study, artificial challenge tests with a range of five diluted or undiluted approved vaccines was performed to determine the relationship between antigen levels and vaccine efficacy. Immunization of fish with the undiluted vaccine prevented Pseudotuberculosis. Results of artificial challenge tests demonstrated vaccine efficiency was dose dependent. Agglutination assays using immune sera were performed to determine agglutination titers, which were also dose dependent. These results suggest a link between survival rate in the artificial challenge tests and agglutination titers. Western blotting analysis identified a specific protein approximately 37 kDa in size in vaccinated fish. We confirmed antibodies were produced in vaccinated fish by immunoreactions with the approved vaccine. An agglutination assay based on humoral immunoreactions would be a useful alternative to the artificial challenge test for quality control of vaccines for aquaculture.  相似文献   

14.

Background

Serum antibody responses in humans to inactivated influenza A (H5N1), (H9N2) and A (H7) vaccines have been varied but frequently low, particularly for subunit vaccines without adjuvant despite hemagglutinin (HA) concentrations expected to induce good responses.

Design

To help understand the low responses to subunit vaccines, we evaluated influenza A (H5N1), (H9N2), (H7N7) vaccines and 2009 pandemic (H1N1) vaccines for antigen uptake, processing and presentation by dendritic cells to T cells, conformation of vaccine HA in antibody binding assays and gel analyses, HA titers with different red blood cells, and vaccine morphology in electron micrographs (EM).

Results

Antigen uptake, processing and presentation of H5, H7, H9 and H1 vaccine preparations evaluated in humans appeared normal. No differences were detected in antibody interactions with vaccine and matched virus; although H7 trimer was not detected in western blots, no abnormalities in the conformation of the HA antigens were identified. The lowest HA titers for the vaccines were <1∶4 for the H7 vaccine and 1∶661 for an H9 vaccine; these vaccines induced the fewest antibody responses. A (H1N1) vaccines were the most immunogenic in humans; intact virus and virus pieces were prominent in EM. A good immunogenic A (H9N2) vaccine contained primarily particles of viral membrane with external HA and NA. A (H5N1) vaccines intermediate in immunogenicity were mostly indistinct structural units with stellates; the least immunogenic A (H7N7) vaccine contained mostly small 5 to 20 nm structures.

Summary

Antigen uptake, processing and presentation to human T cells and conformation of the HA appeared normal for each inactivated influenza A vaccine. Low HA titer was associated with low immunogenicity and presence of particles or split virus pieces was associated with higher immunogenicity.  相似文献   

15.
Quality control of recombinant Hepatitis B vaccines performed by National Control Laboratories prior to marketing vaccine batches requires in vivo and or a well validated in vitro potency assays as recommended by WHO technical series. The in vitro test must also demonstrate its suitability for monitoring the consistency of the vaccine manufacturer. The aim of this study was to establish the relationship between both in vitro potency tests performed by Cuban manufacturer and National Control Laboratory for Hepatitis B vaccine and the suitability of our method for monitoring the manufacturer's test results and consistency. We also intended to contribute to the standardisation process consisting of in vitro methods for this vaccine.  相似文献   

16.
17.
The cellular immunogenicity of formulated plasmid DNA and replication-defective human adenovirus serotype 5 (Ad5) vaccine vectors expressing a codon-optimized human immunodeficiency virus type 1 gag gene was examined in baboons. The Ad5 vaccine was capable of inducing consistently strong, long-lived CD8(+)-biased T-cell responses and in vitro cytotoxic activities. The DNA vaccine-elicited immune responses were weaker than those elicited by the Ad5 vaccine and highly variable; formulation with chemical adjuvants led to moderate increases in the levels of Gag-specific T cells. Increasing the DNA-primed responses with booster doses of either Ad5 or modified vaccinia virus Ankara vaccines suggests a difference in the relative levels of cytotoxic and helper responses. The implications of these results are discussed.  相似文献   

18.
In view of the use of potentially contaminated foetal calf serum (FCS) in cell cultures pestiviruses may be present in live viral vaccines. Thirty-six lots of human live viral vaccines produced by three manufacturers were tested for the presence of pestiviruses. Bovine viral diarrhoea virus (BVDV) RNA was detected in 33% of the vaccine lots. All positive results were caused by the mumps component of a single manufacturer. Partial sequences of the 5' untranslated region of BVD viral RNA were determined. The sequences were closely related to that of the NADL strain of BVDV. The amount of BVDV RNA in the vaccines was determined by real-time RT-PCR using the LightCycler. Between 3.3*10(2) and 6.2*10(5) RNA copies per dose were found to be present in the vaccine samples.Additionally, culture tests were done with FCS and human diploid cells used in the vaccine production of the manufacturer whose vaccines were positive by PCR. All attempts to detect virus antigen in MRC-5 human diploid cells or to infect these cells with BVDV failed. This suggests that BVDV RNA detected in human live viral vaccines represents passive carry over of BVDV from contaminated FCS rather than active virus replication in human diploid cells. Our results indicate that contamination with BVDV of FCS used in vaccine production does not appear to be of immediate concern to human health. Furthermore, our results indicate that gamma-irradiation of FCS destroys BVDV particles and is also effective in preventing the presence of BVDV RNA in the vaccines.  相似文献   

19.
A non-competitive enzyme-linked immunoassay (ELISA) has been standardized to supplement the in vivo potency test used for the quality control of inactivated tissue culture vaccines against rabies. The essentials of the ELISA were: fixation of the virus in different dilutions of vaccine on the surface of microtitre plates; testing of the reference and up to six test vaccines on one plate; incubation with polyclonal antisera to rabies virus glycoprotein containing an excess of antibody; further incubation with a species-specific anti-IgG coupled to peroxidase; a final incubation with a substrate. The incubation periods were 1 h, 1 h and 30 min both at +37 degrees C. The relative potency determinations were made graphically or by a computer using a parallel line bioassay in which the potencies of the vaccines of unknown potency were tested against the reference preparation on a single microtitre plate. Under these conditions inactivated rabies vaccines of different types (virus strains, cell substrates, inactivation and concentration procedures) were tested for potency. Furthermore, it was possible with this in vitro method to assay adjuvanted vaccines, in process samples such as tissue culture supernatants with live or inactivated rabies virus, concentrates, and vaccines undergoing thermal stability tests. The rabies glycoprotein antigen-antibody reaction was highly specific according to the results and the glycoprotein content was measured quantitatively. The potency determined by the in vitro ELISA correlated with the in vivo NIH protection potency test. The lower limit of detection of the ELISA was 0.015 IU/ml. Quantitative antigen determination was possible with both homologous and heterologous antisera to rabies virus glycoprotein when vaccines of the same virus strain were tested. When the potencies of vaccines of different virus strain specificity were calculated, it was necessary to take into account the strain-specific antigenicity. Even so vaccines of high potency were found to give a stronger reaction with a heterologous serum than did weak vaccines with a homologous antiserum. Stability tests made on inactivated tissue culture vaccines such as vaccine from the human diploid cell strain (HDCS), from purified chicken embryo cell (PCEC) or from purified Vero cell rabies vaccine (PVRV), showed high stability of the glycoprotein antigen even after four months of storage at +37 degrees C or 24 h at +56 degrees C, provided that the vaccines were stored in a lyophilized state. The antigenicity of liquid vaccines was inactivated after a few hours at +56 degrees C. For tropical areas, therefore, only lyophilized vaccines should be considered.  相似文献   

20.
The potent protective immunity against malaria induced by immunization of mice and humans with radiation-attenuated Plasmodium spp. sporozoites is thought to be mediated primarily by T-cell responses directed against infected hepatocytes. This has led to considerable efforts to develop subunit vaccines that duplicate this protective immunity, but a universally effective vaccine is still not available and in vitro correlates of protective immunity have not been established. Contributing to this delay has been a lack of understanding of the mechanisms responsible for the protection. There are now data indicating that CD8+ T cells, CD4+ T cells, cytokines, and nitric oxide can all mediate the elimination of infected hepatocytes in vitro and in vivo. By dissecting the protection induced by immunization with irradiated sporozoite, DNA and synthetic peptide-adjuvant vaccines, we have demonstrated that different T-cell-dependent immune responses mediate protective immunity in the same inbred strain of mouse, depending on the method of immunization. Furthermore, the mechanism of protection induced by a single method of immunization may vary among different strains of mice. These data have important implications for the development of pre-erythrocytic-stage vaccines designed to protect a heterogeneous human population, and of assays that predict protective immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号