首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Caenorhabditis elegans expresses a glutathione transferase (GST) belonging to the Pi class, for which we propose the name CeGSTP2-2. CeGSTP2-2 (the product of the gst-10 gene) has the ability to conjugate the lipid peroxidation product 4-hydroxynonenal (4-HNE). Transgenic C. elegans strains were generated in which the 5'-flanking region and promoter of gst-10 were placed upstream of gst-10 and mGsta4 cDNAs, respectively. mGsta4 encodes the murine mGSTA4-4, an enzyme with particularly high catalytic efficiency for 4-HNE. The localization of both transgenes was similar to that of native CeGSTP2-2. The 4-HNE-conjugating activity in worm lysates increased in the order: control相似文献   

2.
Acetyl coenzyme A (acetyl-CoA) carboxylase (ACC) catalyzes carboxylation of acetyl-CoA to form malonyl-CoA. In mammals, two isozymes exist with distinct physiological roles: cytosolic ACC1 participates in de novo lipogenesis (DNL), and mitochondrial ACC2 is involved in negative regulation of mitochondrial beta-oxidation. Since systemic ACC1 null mice were embryonic lethal, to clarify the physiological role of ACC1 in hepatic DNL, we generated the liver-specific ACC1 null mouse by crossbreeding of an Acc1(lox(ex46)) mouse, in which exon 46 of Acc1 was flanked by two loxP sequences and the liver-specific Cre transgenic mouse. In liver-specific ACC1 null mice, neither hepatic Acc1 mRNA nor protein was detected. However, to compensate for ACC1 function, hepatic ACC2 protein and activity were induced 1.4 and 2.2 times, respectively. Surprisingly, hepatic DNL and malonyl-CoA were maintained at the same physiological levels as in wild-type mice. Furthermore, hepatic DNL was completely inhibited by an ACC1/2 dual inhibitor, 5-tetradecyloxyl-2-furancarboxylic acid. These results strongly demonstrate that malonyl-CoA from ACC2 can access fatty acid synthase and become the substrate for the DNL pathway under the unphysiological circumstances that result with ACC1 disruption. Therefore, there does not appear to be strict compartmentalization of malonyl-CoA from either of the ACC isozymes in the liver.  相似文献   

3.
5'-AMP-activated protein kinase (AMPK), by way of its inhibition of acetyl-CoA carboxylase (ACC), plays an important role in regulating malonyl-CoA levels and the rate of fatty acid oxidation in skeletal and cardiac muscle. In these tissues, LKB1 is the major AMPK kinase and is therefore critical for AMPK activation. The purpose of this study was to determine how the lack of muscle LKB1 would affect malonyl-CoA levels and/or fatty-acid oxidation. Comparing wild-type (WT) and skeletal/cardiac muscle-specific LKB1 knockout (KO) mice, we found that the 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR)-stimulated decrease in malonyl-CoA levels in WT heart and quadriceps muscles was entirely dependent on the presence of LKB1, as was the AICAR-induced increase in fatty-acid oxidation in EDL muscles in vitro, since these responses were not observed in KO mice. Likewise, the decrease in malonyl-CoA levels after muscle contraction was attenuated in KO gastrocnemius muscles, suggesting that LKB1 plays an important role in promoting the inhibition of ACC, likely by activation of AMPK. However, since ACC phosphorylation still increased and malonyl-CoA levels decreased in KO muscles (albeit not to the levels observed in WT mice), whereas AMPK phosphorylation was entirely unresponsive, LKB1/AMPK signaling cannot be considered the sole mechanism for inhibiting ACC during and after muscle activity. Regardless, our results suggest that LKB1 is an important regulator of malonyl-CoA levels and fatty acid oxidation in skeletal muscle.  相似文献   

4.
The Fas (apo/CD95) receptor which belongs to the TNF-alpha family is a transmembrane protein involved in the signaling for apoptosis through the extrinsic pathway. During this study, we have examined a correlation between intracellular levels of 4-HNE and expression of Fas in human lens epithelial (HLE B-3) cells. Our results show that in HLE B-3 cells, Fas is induced by 4-HNE in a concentration- and time-dependent manner, and it is accompanied by the activation of JNK, caspase 3, and the onset of apoptosis. Fas induction and activation of JNK are also observed in various tissues of mGsta4 null mice which have elevated levels of 4-HNE. Conversely, when 4-HNE is depleted in HLE B-3 cells by a transient transfection with hGSTA4, Fas expression is suppressed. However, upon the cessation of hGSTA4 expression in these transiently transfected cells, Fas and 4-HNE return to their basal levels. Fas-deficient transformed HLE B-3 cells stably transfected with hGSTA4 show remarkable resistance to apoptosis. Also, the wild-type HLE B-3 cells in which Fas is partially depleted by siRNA acquire resistance to 4-HNE-induced apoptosis, suggesting an at least partial role of Fas in 4-HNE-induced apoptosis in HLE B-3 cells. We also demonstrate that during 4-HNE-induced apoptosis of HLE B-3 cells, Daxx is induced and it binds to Fas. Together, these results show an important role of 4-HNE in regulation of the expression and functions of Fas.  相似文献   

5.
1. The effect of nutritional status on fatty acid synthesis in brown adipose tissue was compared with the effect of cold-exposure. Fatty acid synthesis was measured in vivo by 3H2O incorporation into tissue lipids. The activities of acetyl-CoA carboxylase and fatty acid synthetase and the tissue concentrations of malonyl-CoA and citrate were assayed. 2. In brown adipose tissue of control mice, the tissue content of malonyl-CoA was 13 nmol/g wet wt., higher than values reported in other tissues. From the total tissue water content, the minimum possible concentration was estimated to be 30 microM 3. There were parallel changes in fatty acid synthesis, malonyl-CoA content and acetyl-CoA carboxylase activity in response to starvation and re-feeding. 4. There was no correlation between measured rates of fatty acid synthesis and malonyl-CoA content and acetyl-CoA carboxylase activity in acute cold-exposure. The results suggest there is simultaneous fatty acid synthesis and oxidation in brown adipose tissue of cold-exposed mice. This is probably effected not by decreases in the malonyl-CoA content, but by increases in the concentration of free long-chain fatty acyl-CoA or enhanced peroxisomal oxidation, allowing shorter-chain fatty acids to enter the mitochondria independent of carnitine acyltransferase (overt form) activity.  相似文献   

6.
Obesity is a state of mild inflammation correlated with increased oxidative stress. In general, pro-oxidative conditions lead to production of reactive aldehydes such as trans-4-hydroxy-2-nonenal (4-HNE) and trans-4-oxo-2-nonenal implicated in the development of a variety of metabolic diseases. To investigate protein modification by 4-HNE as a consequence of obesity and its potential relationship to the development of insulin resistance, proteomics technologies were utilized to identify aldehyde-modified proteins in adipose tissue. Adipose proteins from lean insulin-sensitive and obese insulin-resistant C57Bl/6J mice were incubated with biotin hydrazide and detected using horseradish peroxidase-conjugated streptavidin. High carbohydrate, high fat feeding of mice resulted in a approximately 2-3-fold increase in total adipose protein carbonylation. Consistent with an increase in oxidative stress in obesity, the abundance of glutathione S-transferase A4 (GSTA4), a key enzyme responsible for metabolizing 4-HNE, was decreased approximately 3-4-fold in adipose tissue of obese mice. To identify specific carbonylated proteins, biotin hydrazide-modified adipose proteins from obese mice were captured using avidin-Sepharose affinity chromatography, proteolytically digested, and subjected to LC-ESI MS/MS. Interestingly enzymes involved in cellular stress response, lipotoxicity, and insulin signaling such as glutathione S-transferase M1, peroxiredoxin 1, glutathione peroxidase 1, eukaryotic elongation factor 1alpha-1 (eEF1alpha1), and filamin A were identified. The adipocyte fatty acid-binding protein, a protein implicated in the regulation of insulin resistance, was found to be carbonylated in vivo with 4-HNE. In vitro modification of adipocyte fatty acid-binding protein with 4-HNE was mapped to Cys-117, occurred equivalently using either the R or S enantiomer of 4-HNE, and reduced the affinity of the protein for fatty acids approximately 10-fold. These results indicate that obesity is accompanied by an increase in the carbonylation of a number of adipose-regulatory proteins that may serve as a mechanistic link between increased oxidative stress and the development of insulin resistance.  相似文献   

7.
AMP-activated protein kinase (AMPK) has previously been demonstrated to phosphorylate and inactivate skeletal muscle acetyl-CoA carboxylase (ACC), the enzyme responsible for synthesis of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 and fatty acid oxidation. Contraction-induced activation of AMPK with subsequent phosphorylation/inactivation of ACC has been postulated to be responsible in part for the increase in fatty acid oxidation that occurs in muscle during exercise. These studies were designed to answer the question: Does phosphorylation of ACC by AMPK make palmitoyl-CoA a more effective inhibitor of ACC? Purified rat muscle ACC was subjected to phosphorylation by AMPK. Activity was determined on nonphosphorylated and phosphorylated ACC preparations at acetyl-CoA concentrations ranging from 2 to 500 microM and at palmitoyl-CoA concentrations ranging from 0 to 100 microM. Phosphorylation resulted in a significant decline in the substrate saturation curve at all palmitoyl-CoA concentrations. The inhibitor constant for palmitoyl-CoA inhibition of ACC was reduced from 1.7 +/- 0.25 to 0.85 +/- 0.13 microM as a consequence of phosphorylation. At 0.5 mM citrate, ACC activity was reduced to 13% of control values in response to the combination of phosphorylation and 10 muM palmitoyl-CoA. Skeletal muscle ACC is more potently inhibited by palmitoyl-CoA after having been phosphorylated by AMPK. This may contribute to low-muscle malonyl-CoA values and increasing fatty acid oxidation rates during long-term exercise when plasma fatty acid concentrations are elevated.  相似文献   

8.
The mammalian alpha-class glutathione S-transferase (GST) isozymes mGSTA4-4, rGSTA4-4, and hGSTA4-4 are known to utilize 4-hydroxynonenal (4HNE) as a preferred substrate. During the present studies, we have examined the effect of transfecting human myeloid HL-60 cells with mGSTA4, on 4-HNE-induced apoptosis and the associated signaling mechanisms. Results of these studies show that treatment of the wild-type or vector-only-transfected HL-60 cells with 20 microM 4-HNE caused apoptosis within 2 h. The cells transfected with mGSTA4 did not undergo apoptosis under these conditions even after 4 h. In the wild-type and vector-transfected cells, apoptosis was preceded by JNK activation and c-Jun phosphorylation within 30 min, and an increase in AP-1 binding within 2 h of treatment with 20 microM 4-HNE. In mGSTA4-transfected cells, JNK activation and c-Jun phosphorylation were observed after 1 h, and increased AP-1 binding was observed after 8 h under these conditions. In the control cells, 20 microM 4-HNE caused caspase 3 activation and poly(ADP-ribose) polymerase cleavage within 2 h, while in mGSTA4-transfected cells, a lesser degree of these effects was observed even after 8 h. Transfection with mGSTA4 also provided protection to the cells from 4-HNE and doxorubicin cytotoxicity (1.6- and 2.6-fold, respectively). These results show that 4-HNE mediates apoptosis through its effects on JNK and caspase 3, and that 4-HNE metabolizing GST isozyme(s) may be important in the regulation of this pathway of oxidative-stress-induced apoptosis.  相似文献   

9.
Inhibition of acetyl-CoA carboxylase (ACC), with its resultant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation, has the potential to favorably affect the multitude of cardiovascular risk factors associated with the metabolic syndrome. To achieve maximal effectiveness, an ACC inhibitor should inhibit both the lipogenic tissue isozyme (ACC1) and the oxidative tissue isozyme (ACC2). Herein, we describe the biochemical and acute physiological properties of CP-610431, an isozyme-nonselective ACC inhibitor identified through high throughput inhibition screening, and CP-640186, an analog with improved metabolic stability. CP-610431 inhibited ACC1 and ACC2 with IC50s of approximately 50 nm. Inhibition was reversible, uncompetitive with respect to ATP, and non-competitive with respect to bicarbonate, acetyl-CoA, and citrate, indicating interaction with the enzymatic carboxyl transfer reaction. CP-610431 also inhibited fatty acid synthesis, triglyceride (TG) synthesis, TG secretion, and apolipoprotein B secretion in HepG2 cells (ACC1) with EC50s of 1.6, 1.8, 3.0, and 5.7 microm, without affecting either cholesterol synthesis or apolipoprotein CIII secretion. CP-640186, also inhibited both isozymes with IC50sof approximately 55 nm but was 2-3 times more potent than CP-610431 in inhibiting HepG2 cell fatty acid and TG synthesis. CP-640186 also stimulated fatty acid oxidation in C2C12 cells (ACC2) and in rat epitrochlearis muscle strips with EC50s of 57 nm and 1.3 microm. In rats, CP-640186 lowered hepatic, soleus muscle, quadriceps muscle, and cardiac muscle malonyl-CoA with ED50s of 55, 6, 15, and 8 mg/kg. Consequently, CP-640186 inhibited fatty acid synthesis in rats, CD1 mice, and ob/ob mice with ED50s of 13, 11, and 4 mg/kg, and stimulated rat whole body fatty acid oxidation with an ED50 of approximately 30 mg/kg. Taken together, These observations indicate that isozyme-nonselective ACC inhibition has the potential to favorably affect risk factors associated with the metabolic syndrome.  相似文献   

10.
11.
12.
Malonyl-CoA acutely regulates fatty acid oxidation in liver in vivo by inhibiting carnitine palmitoyltransferase. Thus rapid increases in the concentration of malonyl-CoA, accompanied by decreases in long-chain fatty acyl carnitine (LCFA-carnitine) and fatty acid oxidation have been observed in liver of fasted-refed rats. It is less clear that it plays a similar role in skeletal muscle. To examine this question, whole body respiratory quotients (RQ) and the concentrations of malonyl-CoA and LCFA-carnitine in muscle were determined in 48-h-starved rats before and at various times after refeeding. RQ values were 0.82 at baseline and increased to 0.93, 1. 0, 1.05, and 1.09 after 1, 3, 12, and 18 h of refeeding, respectively, suggesting inhibition of fat oxidation in all tissues. The increases in RQ at each time point correlated closely (r = 0.98) with increases (50-250%) in the concentration of malonyl-CoA in soleus and gastrocnemius muscles and decreases in plasma FFA and muscle LCFA-carnitine levels. Similar changes in malonyl-CoA and LCFA-carnitine were observed in liver. The increases in malonyl-CoA in muscle during refeeding were not associated with increases in the assayable activity of acetyl-CoA carboxylase (ACC) or decreases in the activity of malonyl-CoA decarboxylase (MCD). The results suggest that, during refeeding after a fast, decreases in fatty acid oxidation occur rapidly in muscle and are attributable both to decreases in plasma FFA and increases in the concentration of malonyl-CoA. They also suggest that the increase in malonyl-CoA in this situation is not due to changes in the assayable activity of either ACC or MCD or an increase in the cytosolic concentration of citrate.  相似文献   

13.
During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   

14.
Mammalian isoforms of acetyl-CoA carboxylase (ACC-1 and ACC-2) play important roles in synthesis, elongation, and oxidation of long-chain fatty acids, and the possible significance of ACC in the development of obesity has led to interest in the development of inhibitors. Here, we demonstrate that pyridoxal phosphate (PLP) is a linear and reversible inhibitor of ACC-1 and ACC-2. ACC from rat liver and white adipose tissue (largely ACC-1) exhibited an IC50 of approximately 200 microm, whereas ACC-2 from heart or skeletal muscle exhibited an IC50 exceeding 500 microm. ACC from rat liver was equally sensitive to PLP following extensive purification by avidin affinity chromatography. When added before citrate, PLP inhibited ACC with a Ki of approximately 100 microm, reducing maximal activity >90% and increasing the Ka for citrate approximately 5-fold but having little effect on substrate Km values. Pre-treatment with citrate increased the apparent Ki for ACC inhibition by PLP by approximately 4-fold. Inhibition of ACC was reversed by removal of PLP, either by washing or by reaction with hydroxylamine or amino-oxyacetate. ACC was irreversibly inhibited and radiolabeled, to a stoichiometry of approximately 0.4 mol[H]/mol subunit, in the presence of PLP plus [3H]borohydride. Studies with structurally related compounds demonstrated that the reactive aldehyde and negatively charged substituents of PLP contribute importantly to ACC inhibition. The studies reported here suggest a rationale to develop ACC inhibitors that are not structurally related to the substrates or products of the reaction and an approach to probe the citrate-binding site of the enzyme.  相似文献   

15.
B Xiao  S P Singh  B Nanduri  Y C Awasthi  P Zimniak  X Ji 《Biochemistry》1999,38(37):11887-11894
mGSTA4-4, a murine glutathione S-transferase (GST) exhibiting high activity in conjugating the lipid peroxidation product 4-hydroxynon-2-enal (4-HNE) with glutathione (GSH), was crystallized in complex with the GSH conjugate of 4-HNE (GS-Hna). The structure has been solved at 2.6 A resolution, which reveals that the active site of one subunit of the dimeric enzyme binds GS-Hna, whereas the other binds GSH. A marked asymmetry between the two subunits is evident. Most noticeable are the differences in the conformation of arginine residues 69 and 15. In all GST structures published previously, the guanidino groups of R69 residues from both subunits stack at the dimer interface and are related by a (pseudo-) 2-fold axis. In the present structure of mGSTA4-4, however, the two R69 side chains point in opposite directions, although their guanidino groups remain in contact. In the subunit with bound GSH, R69 also interacts with R15, and the guanidino group of R15 points away from the active site, whereas in the subunit that binds GS-Hna, R15 pivots into the active site, which breaks its interaction with R69. According to our previous results [Nanduri et al. (1997) Arch. Biochem. Biophys. 335, 305-310], the availability of R15 in the active site assists the conjugation of 4-HNE with GSH. We propose a model for the catalytic mechanism of mGSTA4-4 in conjugating 4-HNE with GSH-i.e., the guanidino group of R15 is available in the active site of only one subunit at any given time and the stacked pair of R69 residues act as a switch that couples the concerted movement of the two R15 side chains. The alternate occupancy of 4-HNE in the two subunits has been confirmed by our kinetic analysis that shows the negative cooperativity of mGSTA4-4 for 4-HNE. Disruption of the signaling between the subunits by mutating the R69 residues released the negative cooperativity with 4-HNE.  相似文献   

16.
Changes in the concentration of malonyl-CoA in many tissues have been related to alterations in the activity of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in its formation. In contrast, little is known about the physiological role of malonyl-CoA decarboxylase (MCD), an enzyme responsible for malonyl-CoA catabolism. In this study, we examined the effects of voluntary exercise on MCD activity in rat liver, skeletal muscle, and adipose tissue. In addition, the activity of sn-glycerol-3-phosphate acyltransferase (GPAT), which like MCD and ACC can be regulated by AMP-activated protein kinase (AMPK), was assayed. Thirty min after the completion of a treadmill run, MCD activity was increased approximately 2-fold, malonyl-CoA levels were reduced, and ACC and GPAT activities were diminished by 50% in muscle and liver. These events appeared to be mediated via activation of AMPK since: 1) AMPK activity was concurrently increased by exercise in both tissues; 2) similar findings were observed after the injection of 5-amino 4 imidazole carboxamide, an AMPK activator; 3) changes in the activity of GPAT and ACC paralleled that of MCD; and 4) the increase in MCD activity in muscle was reversed in vitro by incubating immunoprecipitated enzyme from the exercised muscle with protein phosphatase 2A, and it was reproduced by incubating immunopurified MCD from resting muscle with purified AMPK. An unexpected finding was that exercise caused similar changes in the activities of ACC, MCD, GPAT, and AMPK and the concentration of malonyl-CoA in adipose tissue. In conclusion: MCD, GPAT, and ACC are coordinately regulated by AMPK in liver and adipose tissue in response to exercise, and except for GPAT, also in muscle. The results suggest that AMPK activation plays a major role in regulating lipid metabolism in many cells following exercise. They also suggest that in each of them, it acts to increase fatty acid oxidation and decrease its esterification.  相似文献   

17.
Protein carbonylation is the covalent modification of proteins by α,β-unsaturated aldehydes produced by nonenzymatic lipid peroxidation of polyunsaturated fatty acids. The most widely studied aldehyde product of lipid peroxidation, trans-4-hydroxy-2-nonenal (4-HNE), is associated with obesity-induced metabolic dysfunction and has demonstrated reactivity toward key proteins involved in cellular function. However, 4-HNE is only one of many lipid peroxidation products and the lipid aldehyde profile in adipose tissue has not been characterized. To further understand the role of oxidative stress in obesity-induced metabolic dysfunction, a novel LC–MS/MS method was developed to evaluate aldehyde products of lipid peroxidation and applied to the analysis of adipose tissue. 4-HNE and trans-4-oxo-2-nonenal (4-ONE) were the most abundant aldehydes present in adipose tissue. In high fat-fed C57Bl/6J and ob/ob mice the levels of lipid peroxidation products were increased 5- to 11-fold in epididymal adipose, unchanged in brown adipose, but decreased in subcutaneous adipose tissue. Epididymal adipose tissue of high fat-fed mice also exhibited increased levels of proteins modified by 4-HNE and 4-ONE, whereas subcutaneous adipose tissue levels of these modifications were decreased. High fat feeding of C57Bl/6J mice resulted in decreased expression of a number of genes linked to antioxidant biology selectively in epididymal adipose tissue. Moreover, TNFα treatment of 3T3-L1 adipocytes resulted in decreased expression of GSTA4, GPx4, and Prdx3 while upregulating the expression of SOD2. These results suggest that inflammatory cytokines selectively downregulate antioxidant gene expression in visceral adipose tissue, resulting in elevated lipid aldehydes and increased protein carbonylation.  相似文献   

18.
4-Hydroxynonenal (4-HNE) has been suggested to be involved in stress-induced signaling for apoptosis. In present studies, we have examined the effects of 4-HNE on the intrinsic apoptotic pathway associated with p53 in human retinal pigment epithelial (RPE and ARPE-19) cells. Our results show that 4-HNE causes induction, phosphorylation, and nuclear accumulation of p53 which is accompanied with down regulation of MDM2, activation of the pro-apoptotic p53 target genes viz. p21 and Bax, JNK, caspase3, and onset of apoptosis in treated RPE cells. Reduced expression of p53 by an efficient silencing of the p53 gene resulted in a significant resistance of these cells to 4-HNE-induced cell death. The effects of 4-HNE on the expression and functions of p53 are blocked in GSTA4-4 over expressing cells indicating that 4-HNE-induced, p53-mediated signaling for apoptosis is regulated by GSTs. Our results also show that the induction of p53 in tissues of mGsta4 (−/−) mice correlate with elevated levels of 4-HNE due to its impaired metabolism. Together, these studies suggest that 4-HNE is involved in p53-mediated signaling in in vitro cell cultures as well as in vivo that can be regulated by GSTs.  相似文献   

19.
We have identified a novel omega-hydroxy-alkanedicarboxylic acid, ESP 55016, that favorably alters serum lipid variables in obese female Zucker (fa/fa) rats. ESP 55016 reduced serum non-HDL-cholesterol (non-HDL-C), triglyceride, and nonesterified fatty acid levels while increasing serum HDL-C and beta-hydroxybutyrate levels in a dose-dependent manner. ESP 55016 reduced fasting serum insulin and glucose levels while also suppressing weight gain. In primary rat hepatocytes, ESP 55016 increased the oxidation of [(14)C]palmitate in a dose- and carnitine palmitoyl transferase-I (CPT-I)-dependent manner. Furthermore, in primary rat hepatocytes and in vivo, ESP 55016 inhibited fatty acid and sterol synthesis. The "dual inhibitor" activity of ESP 55016 was unlikely attributable to the activation of the AMP-activated protein kinase (AMPK) pathway because AMPK and acetyl-CoA carboxylase (ACC) phosphorylation states as well as ACC activity were not altered by ESP 55016. Further studies indicated the conversion of ESP 55016 to a CoA derivative in vivo. ESP 55016-CoA markedly inhibited the activity of partially purified ACC. The activity of partially purified HMG-CoA reductase was not altered by the xenobiotic-CoA. These data suggest that ESP 55016-CoA favorably alters lipid metabolism in a model of diabetic dyslipidemia in part by initially inhibiting fatty acid and sterol synthesis plus enhancing the oxidation of fatty acids through the ACC/malonyl-CoA/CPT-I regulatory axis.  相似文献   

20.
Pathogenic mycobacteria prevent maturation of the phagosomes in which they reside inside macrophages and this is thought to be a major strategy allowing them to survive and multiply within macrophages. The molecular basis for this inhibition is only now beginning to emerge with the molecular characterization of the phagosome membrane enclosing these pathogens. We have used here several electron microscopy approaches in combination with counts of bacterial viability to analyse how expression of Nramp1 at the phagosomal membrane may influence survival of Mycobacterium avium and affect its ability to modulate the fusogenic properties of the phagosome in which it resides. The experiments were carried out in bone marrow-derived macrophages from wild-type 129sv (Nramp1(G169)) mice and from isogenic 129sv carrying a null mutation at Nramp1 (Nramp(1-/-)) following infection with a virulent strain of M. avium. We show here that Nramp1 expression has a bacteriostatic effect and that abrogation of Nramp1 restores the bacteria's capacity to replicate within macrophages. The combined analyses of the acquisition of endocytic contents markers delivered to early endosomes and/or lysosomes either prior to or after phagocytic uptake showed that in Nramp1-positive macrophages, M. avium was unable to prevent phagosome maturation and fusion with lysosomes but that in Nramp1-negative macrophages this capacity was restored. Several hypotheses are proposed to explain how Nramp1 could affect survival of M. avium. We also propose how the present observations could relate to the model according to which mycobacteria can prevent phagosome maturation by establishing a tight interaction with constituents of the phagosome membrane. Furthermore, these results show the importance of the choice of macrophages used as a model to study intracellular survival strategies of pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号