首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen sulfide (H2S) is a major malodorous compound emitted from wastewater treatment plants. In this study, the performance of three pilot-scale immobilized-cell biotrickling filters (BTFs) spacked with combinations of bamboo charcoal and ceramsite in different ratios was investigated in terms of H2S removal. Extensive tests were performed to determine the removal characteristics, pressure drops, metabolic products, and removal kinetics of the BTFs. The BTFs were operated in continuous mode at low loading rates varying from 0.59 to 5.00 g H2S m−3 h−1 with an empty bed retention time (EBRT) of 25 s. The removal efficiency (RE) for each BTF was >99% in the steady-state period, and high standards were met for the exhaust gas. It was found that a multilayer BTF had a slight advantage over a perfectly mixed BTF for the removal of H2S. Furthermore, an impressive amount >97% of the H2S was eliminated by 10% of packing materials near the inlet of the BTF. The modified Michaelis–Menten equation was adopted to describe the characteristics of the BTF, and Ks and Vm values for the BTF with pure bamboo charcoal packing material were 3.68 ppmv and 4.26 g H2S m−3 h−1, respectively. Both bamboo charcoal and ceramsite demonstrated good performance as packing materials in BTFs for the removal of H2S, and the results of this study could serve as a guide for further design and operation of industrial-scale systems.  相似文献   

2.
The effect of hydroperiod on nutrient removal efficiency from simulated wastewater was investigated in replicate wetland mesocosms (area, 2 m2, planted with Scirpus californicus). Alternate draining and flooding of sediments (pulsed discharge) increased nutrient removal efficiency compared to the continuous-flow “control”. Average PO43− removal efficiency was 20–30% higher in wetland mesocosms that drained twice daily compared to the control. Inorganic N removal efficiency was less affected than phosphate removal by hydroperiod variation. At the higher NH4+ loading rate (1.83 g N m−2 day−1), inorganic N removal efficiency was consistently 5–20% higher in pulsed-discharge wetland mesocosms than in the control. At the lower NH4+ loading rate (0.9 g N m −2 day −1), pulsed-discharge hydrology had no effect on inorganic N removal efficiency. Twice-daily drainage exhibited average inorganic N removal efficiencies of 96% (lower N loading rate) and 87% (higher N loading) and average phosphate removal efficiencies of 81% (lower P loading) and 90% (higher P loading). Mass balance data from the continuous-flow treatment revealed that the aquatic macrophyte Scirpus californicus was the most important nutrient sink, assimilating 50% of the NH4+ and PO43− supply. The high plant productivity in the mesocosms (15.6 kg m−2 year−1) occurred under conditions of high light (high edge per mesocosm area) and high root contact with nutrient-rich influent (shallow, sandy substrate) and may overestimate plant uptake in larger wetlands. The addition of a nitrification-inhibitor (N-Serve) indicated that 34% of the NH4+ supply was transformed to NO3 by nitrifying bacteria.  相似文献   

3.
Wastewater treatment using laboratory scale waste stabilisation ponds enriched with activated sludge was studied. After enrichment, the efficiency of these ponds under high organic loading rates (i.e., up to 2800kg CODha–1day–1) reached a maximum COD removal rate of 970kg CODha–1day–1, which is from 2 to 10 times more than commonly reported values, and suggests that enrichment is an effective method to improve stabilisation ponds.  相似文献   

4.
A column reactor, in which the bottom two-thirds were occupied by a sludge blanket and the upper one-third by submerged clay rings, was evaluated using slaughterhouse wastewater as substrate. The reactor was operated at 35°C at loading rates varying from 5 g to 45 g chemical oxygen demand (COD) 1–1 × day–1 at an influent concentration of 2450 mg COD 1–1. A maximum substrate removal rate of 32 g COD 1–1 × day–1, coupled with a methane production rate of 6.91 × 1–1 × day–1 (STP), was obtained. This removal rate is significantly higher than those previously reported. The rate of substrate utilization by the biomass was 1.22 g COD (g volatile suspended solids)–1 day–1. COD removal was over 96% with loading rates up to 25 g COD 1–1 × day–1, at higher loading rates performance decreased rapidly. It was found that the filter element of the reactor was highly efficient in retaining biomass, leading to a biomass accumulation yield coefficient of 0.029 g volatile suspended solids g–1 COD, higher than reported previously for either upflow anaerobic sludge-blanket reactors or anaerobic filters operating independently.  相似文献   

5.
Laboratory scale tests on phytodepuration of raw and pre-treated leachate from municipal sanitary waste were carried out with four vegetable aquatic and terrestrial species at different organic loads. We used the terrestrial species Stenotaphrum secundatum and the free-floating aquatic species Lemna minor, Eichhornia crassipes and Myriophyllum verticellatum to purify leachate from municipal solid waste. The organic load characterized by COD varied from 2–30 g m−2 day−1. Blanks using tap water served as controls. Duration of the experiments varied from 9–90 days. Maximum concentrations in the experiments were 1600 mg l−1 COD and 300 mg l−1 NH4–N for S. secundatum. Best results in terms of COD, BOD, and ammonia removal were obtained for raw leachate with COD=2 g m−2 day−1 in free water surface (FWS) wetlands, and with 2 and 5 g m−2 day−1 in subsurface flow (SSF) wetlands. Results show that for pretreated leachate (labeled c) low in BOD and NH4–N, the aquatic species showed low removal and stress even at the lowest load of COD=2 g m−2 day−1. We cannot say if this is due to the pretreatment itself or the chemical or microbial composition of this leachate. The Stenotaphrum system operated well with this load of leachate c. For untreated leachate (type a and b) the removal and plant growing conditions seemed good at COD=2 g m−2 day−1. For S. secundatum a load of COD=5 g m−2 day−1 operated well. All loads above COD=5 g m−2 day−1 caused low removal and stress, and the green parts of the plants disappeared. Oxygen was, however, consumed throughout the experimental period. For pretreated leachate (type c), the removal of COD were low (−24 to 17%) but good for NH4–N (52–91%). This leachate also experienced high ammonia removal from the beginning of the experiments, probably due to existing consortia of nitrifying bacteria in it. Statistical analysis shows that the S. secundatum and L. minor systems maintained higher oxygen levels than the M. verticellatum and E. crassipes systems, when operated with tap water. For Lemna minor, this may be due to a better capacity for transporting oxygen into the water. With leachate all S. secundatum systems have higher oxygen levels than the aquatic systems, basically because the water content of the soil has been kept well below saturation. S. secundatum shows a significantly lower removal of COD than did the aquatic systems at a loading of COD=2 g m−2 day−1 of raw leachate. There is no significant difference between the systems in the removal of NH4–N at a loading of COD=2 g m−2 day−1 of both types of leachate. E. crassipes has a lower removal of NH4–N than M. verticellatum and S. secundatum at a loading of 5 g m−2 day−1 of COD of both types of leachate. In our experiments, it appears that the amount of free ammonia explains the toxicity of the leachate to the plants. This, however, does not exclude other possible toxic factors.  相似文献   

6.
Fluidized bed reactor (FBR) technology has emerged in recent years as an attractive approach for the biotreatment of chemical industry wastestreams. A laboratory-scale FBR study was conducted to investigate the feasibility of utilizing FBR technology for the biotreatment of maleic anhydride wastewater generated during manufacturing operations. The maleic anhydride wastestream contains a mixture of maleic acid, fumaric acid, phthalic acid and di-n-butylphthalate (DBP). The FBR removed >98% of chemical oxygen demand (COD) and total organic carbon (TOC) from the wastewater at a chemical loading rate of 4.86 kg of COD m–3 bed day–1. Maleic acid, fumaric acid or phthalic acid were not detected in the FBR effluent indicating removal of these diacids. Residues of DBP adsorbed to granular activated carbon (GAC) stabilized at low levels indicating that the >99% removal efficiency for DBP in the FBR resulted from microbial degradation. Solids measurements showed microbial biomass levels on the GAC ranging from 10500 to 32400 mg L–1 and effluent solids production ranged from 0.027 to 0.041 kg solids kg–1 COD treated. This laboratory-scale study demonstrated that FBR technology was highly effective for the biotreatment of the maleic anhydride wastestream and may offer several advantages over traditional activated sludge systems.  相似文献   

7.
A 20-l packed-bed reactor filled with foamed glass beads was tested for the treatment of acetonitrile HPLC wastes. Aeration was provided by recirculating a portion of the reactor liquid phase through an aeration tank, where the dissolved oxygen concentration was kept at 6 mg/l. At a feeding rate of 0.77 g acetonitrile l–1 reactor day–1, 99% of the acetonitrile was removed; and 86% of the nitrogen present in acetonitrile was released as NH3, confirming that acetonitrile volatilization was not significant. Increasing the acetonitrile loading resulted in lower removal efficiencies, but a maximum removal capacity of 1.0 g acetonitrile l–1 reactor day–1 was achieved at a feeding rate of 1.6 g acetonitrile l–1 reactor day–1. The removal capacity of the system was well correlated with the oxygenation capacity, showing that acetonitrile removal was likely to be limited by oxygen supply. Microbial characterization of the biofilm resulted in the isolation of a Comamonas sp. able to mineralize acetonitrile as sole carbon, nitrogen and energy source. This organism was closely related to C. testosteroni (91.2%) and might represent a new species in the Comamonas genus. This study confirms the potential of packed-bed reactors for the treatment of a concentrated mixture of volatile pollutants.  相似文献   

8.
A biotrickling filter (BTF) packed with porous polyurethane (PU) foam sheets was developed and operated for removal of gas-phase styrene. The specific surface area and void fraction of the PU foam sheet were determined to be 497 m2/m3 and 0.92, respectively, by using mathematical modeling and experimental measurement. The effects of gas flow direction (co-current and counter-current), styrene loading rate and empty bed residence time on the efficiency of the BTF were analyzed. The BTF achieved a high elimination capacity of 4.0 ∼ 5.0 kg styrene/m3 day due to the high specific surface area of the PU foam. The BTF could be operated repeatedly when excessively-grown biomass was periodically removed, using circulating NaOH solution for 2 h every four days.  相似文献   

9.
Short-term changes in phytoplankton and zooplankton biomass have occurred 1–3 times every summer for the past 5 years in the shallow and hypertrophic Lake Søbygård, Denmark. These changes markedly affected lake water characteristics as well as the sediment/water interaction. Thus during a collapse of the phytoplankton biomass in 1985, lasting for about 2 weeks, the lake water became almost anoxic, followed by rapid increase in nitrogen and phosphorus at rates of 100–400 mg N M–2 day–1 and 100–200 mg P m–1 day–1. Average external loading during this period was about 350 mg N m–2 day–1 and 5 mg P m–2 day–1, respectively.Due to high phytoplankton biomass and subsequently a high sedimentation and recycling of nutrients, gross release rates of phosphorus and nitrogen were several times higher than net release rates. The net summer sediment release of phosphorus was usually about 40 mg P m–2 day–1, corresponding to a 2–3 fold increase in the net phosphorus release during the collapse. The nitrogen and phosphorus increase during the collapse is considered to be due primarily to a decreased sedimentation because of low algal biomass. The nutrient interactions between sediment and lake water during phytoplankton collapse, therefore, were changed from being dominated by both a large input and a large sedimentation of nutrients to a dominance of only a large input. Nitrogen was derived from both the inlet and sediment, whereas phosphorus was preferentially derived from the sediment. Different temperature levels may be a main reason for the different release rates from year to year.  相似文献   

10.
The in situ rates of oxygen consumption by benthic nitrifiers were estimated at 11 study sites in 4 streams. Two methods were used: an in situ respiration chamber method and a method involving conversion of nitrifying potential measurements to in situ rates. Estimates of benthic nitrogenous oxygen consumption (BNOC) rate ranged from 0–380 mmol of O2 m–2·day–1, and BNOC contributed between 0–85% of the total benthic oxygen consumption rate. The activity of nitrifiers residing in the sediments was influenced by O2 availability, temperature, pH, and substrate. Depending upon site, nitrification could approximate either first-order or zero-order kinetics with respect to ammonium concentration. The source of ammonium for benthic nitrifiers could be either totally from within the sediment or totally from the overlying water. Nitrate produced in the sediments could flux to the water above or be lost within the sediment. The sediments could act as a source (positive flux) or sink (negative flux) for both ammonium (–185 mmol·m–2·day–1 to +195 mmol·m–2·day–1) and nitrate (–135 mmol·m–2·day–1 to +185 mmol·m–2·day–1).This study provides evidence to suggest that measurements of down-stream mass flow changes in inorganic nitrogen forms may give poor estimates of in situ rates of nitrification in flowing waters.  相似文献   

11.
Urban development, primarily in the Atlanta, Georgia, metropolitan area, caused a significant rise in the volume of treated wastewater discharged into the Chattahoochee River from 1976 to 1985. West Point Lake, 109 km downstream from Atlanta, responded to the increased nutrient loading with an increase in mean annual phytoplankton primary productivity of from 550 mg C m–2 day–1 in 1976 to 1580 mg C m–2 day–1 in 1985, a move from mesotrophic to eutrophic status. Monthly water quality measurements in the lake headwaters failed to detect the trend of increasing enrichment. Phytoplankton chlorophyll a concentrations did not indicate a trend of increasing algal biomass. Increased productivity was caused by improved photosynthetic efficiency that resulted from a shift in the size distribution of algae comprising the phytoplankton community. Larger centric diatoms with relatively slow turnover rates that were dominant during the early years (1976–1980) of impoundment were replaced by smaller green and blue-green algal taxa with faster turnover rates during later years (1981–1985).  相似文献   

12.
The photosynthetic productivity of the filamentous cyanobacteriumSpirulina platensis was investigated in a cone-shaped helical tubular photobioreactor. A laboratory-scale photobioreactor was constructed with a 0.255-m2 basal area and a conical shape (0.64 m high × 0.57 m top diameter). The photostage comprised transparent reinforced polyvinyl chloride (PVC) tubing with spirally wound, metal-wire reinforcing in the tubing wall (31 m in length and 1.6 cm internal diameter with 0.25 cm wall thickness; total volume = 6.23 l). The inner surface of the photostage (0.651 m2) was illuminated with compact fluorescent cool white lamps; the photosynthetically active radiation (400–700 nm) energy input into the photobioreactor was 1249 KJ day–1 (12 h day/12 h night). The operation of an air-lift photobioreactor with CO2-enriched air (4%) at a flow rate of 0.3 l min–1 showed a maximum daily photosynthetic efficiency of 6.83% under batch-culture conditions. This corresponded to a production rate of 15.9 g dry biomass m–2(basal area) day–1 or 0.51 g dry biomass l medium–1 day–1.  相似文献   

13.
Submerged macrophytes are a major component of freshwater ecosystems, yet their net effect on water column phosphorus (P), algae, and bacterioplankton is not well understood. A 4-month mass-balance study during the summer quantified the net effect of a large (5.5 ha) undisturbed macrophyte bed on these water-column properties. The bed is located in a slow-flowing (0.05–0.1 cm s–1) channel between two lakes, allowing for the quantification of inputs and outputs. The P budget for the study period showed that, despite considerable short-term variation, the macrophyte bed was a negligible net sink for P (0.06 mg m–2 day–1, range from –0.76 to +0.79 mg m–2 day–1), demonstrating that loading and uptake processes in the weedbed roughly balance over the summer. Chlorophyll a was disproportionately retained relative to particulate organic carbon (POC), indicating that the algal component of the POC was preferentially trapped. However, the principal contribution of the weedbed to the open water was a consistent positive influence on bacterioplankton production over the summer. Conservative extrapolations based on measured August specific exports (m–2 day–1) of P and bacterial production exiting the weedbed applied to five regional lakes varying in lake morphometry and macrophyte cover suggest that even in the most macrophyte dominated of lakes (66% cover), P loading from submerged weedbeds never exceeds 1% day–1 of standing epilimnetic P levels, whereas subsidization of bacterioplankton production can reach upward of 20% day–1. The presence of submerged macrophytes therefore differentially modifies algae and bacteria in the water column, while modestly altering P dynamics over the summer.  相似文献   

14.
Summary A stepped-loading start-up regime utilising variable organic influent concentrations in the range 1650–11600 mgCOD1–1 was applied to an anaerobic fluidised bed bioreactor at 37°C. The reactor was sensitive to variable influent COD concentrations, but the stepped-loading aided rapid recovery from transient organic loading shocks. Variable effluent COD levels were produced but a COD removal efficiency of 76% was obtained at a final HRT of 0.5 d and an organic loading rate of 5.3 kg COD m–3 d–1.  相似文献   

15.
Nannochloropsis sp. was grown semicontinuously with a rate of daily renewal of the culture media of 40% of the volume of the culture under different irradiances (40, 60, 80, 220 and 480 mol quanta m–2 s–1). Under the conditions tested, light saturation was achieved at 220 mol quanta m–2 s–1 with no significant increase in steady-state cell density or of dry weight productivity with higher irradiance, reaching values of 115 × 106 cells ml–1 and 375 mg l–1 day–1 respectively. C/N ratios clearly indicated the point of light saturation, decreasing with increasing irradiance for light-limited conditions and increasing for light-saturated conditions. Under light-limited conditions, an increase in the irradiance produced an increase in the protein percentage of the organic fraction to the detriment of lipids and carbohydrates, while small changes were recorded under light-saturated conditions. The degree of unsaturation of fatty acids was lower with increasing irradiance, with a three-fold decrease of the percentage of total n–3 fatty acids, from 29 to 8% of total fatty acids, caused mainly by a decrease of eicosapentaenoic acid (EPA) (20:5n–3). The microalga reached its maximal value of dry weight productivity (375 mg l–1 day–1), EPA productivity (3.2 mg l–1 day–1) and maximal protein content (36% of the organic content) at the point at which light saturation was achieved. Results demonstrate the efficiency of the use of the irradiance for the modification of the biochemical composition of Nannochloropsis sp.  相似文献   

16.
Li J  Ye G  Sun D  An T  Sun G  Liang S 《Biodegradation》2012,23(1):177-187
The performance of a field-scale biotrickling filter (BTF) in the removal of waste gases containing low concentrations of mixed volatile organic compounds was evaluated. Results showed that acetone and methyl ethyl ketone (MEK) were more easily removed than toluene and styrene. The removal efficiency for acetone and MEK reached over 99% on days 28 and 25 of the operation, whereas those for toluene and styrene were 80 and 63% on day 38. The maximum individual elimination capacities for styrene, toluene, acetone, and MEK were 10.2, 2.7, 4.7, and 8.4 g/m3 h, respectively. These values were achieved at inlet loading rates of 13.9, 3.3, 4.8, and 8.5 g/m3 h, respectively, at an empty bed retention time of 14 s. the removal efficiency for styrene and toluene rapidly increased from 67% and 83% to 86% and over 99%, respectively, when the concentration of ammonia nitrogen (N–NH4 +) and phosphates (P) in the nutrients increased from 350 to 840 mg/l and 76 to 186 mg/l. When the BTF was restarted after a four-day shutdown, the removal efficiency for toluene was restored to over 99% within a week. However, that for styrene was not restored to its previous level before the shutdown. No noticeable adverse effect on acetone and MEK removal was observed. Denaturing gradient gel electrophoresis results for the bacterial community in the BTF during VOC removal showed that proteobacterial phylum was dominant, and the changes of nutrient concentration and shutdown periods may have played a role in the community structure differences.  相似文献   

17.
Summary The effects of immobilizing materials on the activity of nitrifying bacteria and removal of ammonium nitrogen (NH4-N) from waste-water by immobilized nitrifying bacteria were investigated using six urethane prepolymers. With a urethane prepolymer containing 2.27% free isocyanate, a high activity yield of nitrifying bacteria was obtained. There was a drastic improvement over the conventional method of immobilization by acrylamide in the activity yield. Inorganic synthetic waste-water was treated at a high loading rate of 0.24 kg N·m–3·day–1. The NH4-N concentration of the effluent could be reduced to 2 mg·1–1 or less and the removal was 90%. The life of the pellets in terms of activity was at least 120 days. Offprint requests to: T. Sumino  相似文献   

18.
The effect of an enhanced nutrient supply to coastal waters of a landlocked bay, Hopavågen in Central Norway, on the phytoplankton production and biomass, and on growth of scallops (Pecten maximus) was studied in 1997–1999. Nitrogen, silicon and phosphorous (N:Si:P = 16:8:1, atomic) were added daily between May and October in 1998 at a level of 0.4 mg P m–3 day–1. The concentration of nutrient addition was doubled in 1999 during the same period. High addition of nutrients (1999) resulted in a significantly higher phytoplankton biomass in the summer period, expressed as chlorophyll a content, than without nutrient (1997) and low nutrient (1998). The respective mean chlorophyll a levels were 2.4 in 1999, 1.6 in 1998 and 1.2 g l–1 in 1997. The mean primary production during the summers generally increased with the addition of nutrients from an average level of 320 mg carbon m–2 day–1 in 1997 to 1200 mg carbon m–2 day–1 in 1999. Scallops placed at 10 m depth in Hopavågen showed an increase in growth rate of the outer scallop shell in the period July–September from 0.16% day–1 in 1997 to 0.53% day–1 in 1998. Scallops grown in an unfertilised control station in the fjord outside Hopavågen had a significantly lower growth rate than those grown in the fertilised water of Hopavågen. The results showed decreased growth rate with increasing shell sizes. However, for all size groups studied a higher growth rate of the scallops was observed when nutrients were added to the bay. The tissue dry weight content of scallops grown in Hopavågen was 2–4 times higher than in the control scallops.  相似文献   

19.
Removal of gaseous chlorobenzene (CB) by a biotrickling filter (BTF) filled with modified ceramics and multi-surface hollow balls during gas–liquid mass transfer at the steady state was by microbial degradation rather than dissolution in the spray liquid or emission into the atmosphere. The BTF was flexible and resistant to the acid environment of the spray liquid, with the caveat that the spray liquid should be replaced once every 6–7 days. The BTF, loaded with Lysinibacillus fusiformis, performed well for purification of high-loading CB gas. The maximum CB gas inlet loading rate, 103 g m?3 h?1, CB elimination capacity, 97 g m?3 h?1, and CB removal efficiency, 97.7 %, were reached at a spray liquid flow rate of 27.6 ml min?1, an initial CB concentration of up to 1,300 mg m?3, and an empty bed retention time of more than 45 s.  相似文献   

20.
An upflow anaerobic sludge blanket reactor was operated under thermophilic conditions (55° C) for 160 days by feeding a wastewater containing sucrose as the major carbon source. The reactor exhibited a satisfactory performance due to the formation of well-settling granulated sludge, achieving a total organic carbon (TOC) removal of above 80% at an organic loading rate of 30 kg total organic C m–3 day–1. Structural and microbial properties of the methanogenic granular sludge were examined using scanning electron microscope X-ray analyses and serum vial activity tests. All the thermophilic granules developed showed a double-layered structure, comprised of a black core portion and a yellowish exterior portion. The interior cope portion contained abundant crystalline precipitates of calcium carbonate. Calcium-bound phosphorus was also present more prominently in the core portion than in the exterior portion. Methanogenic activities of the thermophilic granules both from acetate and from H2 increased with increasing vial-test temperature in the range of 55–65° C [from 1.43 to 2.36 kg CH4 chemical oxygen demand (COD) kg volatile suspended solids (VSS)–1 day–1 for acetate and from 0.85 to 1.11 kg CH4 COD kg VSS–1 day–1 for H2]. On the other hand, propionate-utilizing methanogenic activity was independent of vial-test temperature, and was much lower (0.1–0.12 kg CH4 COD kg VSS–1 day–1) than that from either acetate or H2. Acetate consumption during vial tests was considerably inhibited by the presence of H2 in the headspace, indicating that a syntrophic association between acetate oxidizers and H2-utilizing methane-producing bacteria was responsible for some portion of the overall acetate elimination by the theromophilically grown sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号