首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • 1 Understanding spatio‐temporal processes of bark beetle infestations is crucial for predicting beetle behaviour and aiding management decisions aiming to prevent or mitigate tree mortality. We recorded the spatial and temporal distribution of killed trees during the 5‐year period of an Ips acuminatus outbreak.
  • 2 Killed trees were always grouped in well‐defined patches (infestation spots). In years of high population density, infestation spots were large and aggregated, whereas, in years of low density, infestation spots were small and weakly aggregated or randomly distributed within the study area.
  • 3 Most trees were killed in the spring by beetles that had hibernated but, in some years, trees were also killed in the summer by new‐generation beetles originating from spring attacks. Spring‐killed trees always formed new infestation spots at new locations (i.e. spot proliferation). By contrast, summer‐killed trees always occurred at the edge of active spots established in the spring, thus resulting in spot growth.
  • 4 With regard to management strategies, the results obtained in the present study suggest that areas located in close proximity to infestations of the previous year should be prioritized for risk assessment. Because large spots account for most of the observed tree mortality, the cut‐and‐remove method should be focused on these spots as soon as crown discoloration appears in the summer. If applied timely, this strategy will remove the new‐generation beetles originating from the spring attacks before they emerge and also reduce the risk of spot growth.
  相似文献   

2.
Detailed investigation of the within-tree population system of Dendroctonus frontalisZimmermann has resulted in a large data base consisting of abundance estimates for various life stages. This data base was used to construct histograms for transformed estimates and several life stage indices. Histograms were also constructed for transformed values of adult residence time, brood development time, and several host-tree characteristics. Probability and cumulative density functions of the Weibull distribution were fitted, in tandem, to the scaled frequencies and interval means for each histogram. The inverse cumulative function is known, and with a uniform random number generator, allows the selection of random deviates from each distribution. This technique can be used for generating initial (starting) values in D. frontalis population models.  相似文献   

3.
Phoretic mites of bark beetles are classic examples of commensal ectosymbionts. However, many such mites appear to have mutualisms with fungi that could themselves interact with beetles. We tested for indirect effects of phoretic mites on Dendroctonus frontalis, which attacks and kills pine trees in North America. Tarsonemus mites are known to carry ascospores of Ophiostoma minus, which tends to outcompete the mutualistic fungi carried by D. frontalis. Experimental additions and removals of mites from beetles demonstrated that Tarsonemus propagate O. minus in beetle oviposition galleries. Furthermore, the abundance of Tarsonemus and O. minus tended to covary in nature. These results verified a strong mutualism between Tarsonemus and O. minus. Results also indicated that O. minus is an antagonist of D. frontalis: beetle larvae seldom survived in the presence of O. minus (compared to 83% survival elsewhere). Apparently, this is an indirect result of O. minus outcompeting the two species of mycangial fungi that are critical to beetle nutrition. Thus, Tarsonemus mites close a loop of species interactions that includes a commensalism (mites and beetles), a mutualism (mites and O. minus), asymmetric competition (O. minus and mycangial fungi), and another mutualism (mycangial fungi and beetles). This interaction system produces negative feedback that could contribute to the endogenous population dynamics of D. frontalis. Reproductive rate of Tarsonemus was more temperature‐sensitive than beetle generation time (which constrains the time for mite reproduction within a tree). This differential temperature sensitivity produces a narrow range of temperatures (centred at 27°C) in which mite reproduction per D. frontalis generation can attain its maximum of 100 mites/beetle. Consequently, seasonal oscillations in temperature are predicted to produce oscillations in the D. frontalis community, and climatic differences between regions could influence the community to dampen or exacerbate the cyclical outbreak dynamics of D. frontalis.  相似文献   

4.
The incidence of homopteran honeydew was measured under pines and hardwoods located within 10 Dendroctonus frontalis Zimmermann infestations on the Talladega National Forest (Alabama) during summer, 2000. There were more honeydew droplets beneath hardwood trees compared to pines, but no difference beween D. frontalis infested and uninfested pines. The number of honeydew droplets per tree differed between sampling dates, likely due to the effect of mean weekly temperature and rainfall on homopteran populations. The presence of honeydew on hardwoods may explain why D. frontalis parasitoids forage in areas that lack hosts and suggests that the fecundity of D. frontalis parasitoids may not be limited by adult nutrition.  相似文献   

5.
Summary Mathematical procedures are given to estimate infestation totals and daily life stage arrivals, departures, and mortality ofDendroctonus frontalis Zimmermann for an infested tree in the field. These estimates are based on minimal sample data and are designed to utilize all available information. Daily arrival estimates for larvae, pupae, and callow adults are obtained by indirect analysis without direct observation of these stages. The procedures are applied to 147 infested trees, and the results are transformed to a common time basis to obtain daily expectations by life stage for an “average” tree. These expectations suggest optimal times for field sampling or relative times of sampling when optimal times are missed. Expected daily arrival distributions by life stage for a single egg and a single attacking adult are given. Procedures are given for utilizing collateral information to obtain an infestation total and daily arrival estimates for a boundary life stage. The results of this study are applicable to anyD. frontalis field study, and the procedures given are applicable to any bark inhabiting insect having similar habits.  相似文献   

6.
1 Dendroctonus frontalis, the southern pine beetle, is associated with a diverse community of fungi and mites that are phoretic on the adult beetles. Tarsonemus ips, T. kranzti and T. fusarii (Acarina: Tarsonemidae) may interact within this community in ways that link the population dynamics of D. frontalis, the mites and three dominant species of fungi. We explored species associations by comparing the dietary suitability of different fungi for Tarsonemus spp. 2 All three mite species fed and reproduced at high rates when feeding on the bluestain fungus, Ophiostoma minus, which is an antagonist of D. frontalis larvae. 3 Mites also had positive population growth rates when feeding upon Ceratocystiopsis ranaculosus, one of the mycangial fungi, but could barely reproduce when feeding upon Entomocorticium sp. A, the mycangial fungus that is most suitable for D. frontalis. 4 During the time from colonization of a tree by D. frontalis adults until departure from the tree of their progeny (≈ 40 d at 30 °C), mite populations feeding upon O. minus can increase by factors of up to 209 (T. fusarii), 173 (T. ips) or 384 (T. krantzi). These high growth rates are allowed by rapid development (age of first reproduction = 8–9 d), high fecundity (≈ 1 egg/d) and high longevity (> 28 d). 5 Precocious mating increases the chance that females are mated prior to colonizing a new tree and arrhenotokous parthenogenesis permits reproduction by unmated females. 6 Tarsonemus mites may introduce negative feedback into D. frontalis population dynamics by generating indirect interactions between D. frontalis and O. minus.  相似文献   

7.
Summary The seasonal occurrence ofMonochamus alternatus and newly weakened trees were investigated in aPinus thunbergii stand for 4 years. Adult beetles were present between June and September with a peak in their population occurring in early July followed by a decline then a period of about one month being in a steady number. The average number ofBursaphelenchus xylophilus (Nematoda), which is the causal agent of pine wilt disease, within beetles decreased as the season advanced. Pine trees newly weakened byB. xylophilus appeared between June and October, especially from August to October. The proportion of weakened or killed trees was directly proportional to the average beetle density per tree from June to August.  相似文献   

8.
1 Various kinds of traps have been employed to monitor and forecast population trends of the southern pine beetle (Dendroctonus frontalis Zimmermann; Coleoptera: Scolytidae), but their accuracy in assessing pine‐beetle abundance and sex ratio in the field has not been evaluated directly. 2 In this study, we used fluorescent powder to mark pine beetles emerging from six isolated infestations. We then compared estimates of total abundances and proportions of males emerging from within each infestation to the estimates from three types of traps: passive sticky traps (2, 5, 10 and 20 m away from the source of beetles), multi‐funnel traps baited with pine beetle attractants (100 m away) and pine trees baited with attractants (also 100 m away). 3 We found that the proportion of males captured in traps was significantly affected by the type of trap used. 4 Within an infestation, equal proportions of males and females were marked (0.53 ± 0.02 males; mean ± SE), but the proportions captured in trap trees and passive traps were more female biased (0.42 ± 0.03 and 0.46 ± 0.01 males, respectively). On the other hand, funnel traps provided an estimate of the proportion of males that was nearly identical to the proportion from within infestations (0.51 ± 0.03). 5 Numbers of marked beetles captured in traps were uncorrelated with the numbers of marked beetles emerging from the focal infestations. This suggests that traps positioned around an infestation may not be effective at estimating relative abundances of beetles within the infestation.  相似文献   

9.
Partial age-specific life tables were constructed for Monochamus titillator(Fabricius) (Coleoptera: Cerambycidae) in Dendroctonus frontalisZimmermann (Coleoptera: Scolytidae) infested loblolly pine (Pinus taedaL.) trees. Successive life stages including egg, early larvae, mid-stage larvae, late larvae, and adult emergence were sampled within six sample trees. Generation mortality ranged from 60.94% to 98.61% in sample trees. Highest mortality typically occurred to eggs and mid-stage larvae. Possible mortality factors included resinosis, predaceous beetles, parasitoids, and woodpeckers. Dendroctonus frontalisbrood stages were determined for consecutive M. titillatorsampling. Monochamus titillatorand D. frontaliscoexisted and likely interacted in the phloem of host trees for at least 20 days.  相似文献   

10.
Feedback from community interactions involving mutualisms are a rarely explored mechanism for generating complex population dynamics. We examined the effects of two linked mutualisms on the population dynamics of a beetle that exhibits outbreak dynamics. One mutualism involves an obligate association between the bark beetle, Dendroctonus frontalis and two mycangial fungi. The second mutualism involves Tarsonemus mites that are phoretic on D. frontalis (“commensal”), and a blue-staining fungus, Ophiostoma minus. The presence of O. minus reduces beetle larval survival (“antagonistic”) by outcompeting beetle-mutualistic fungi within trees yet supports mite populations by acting as a nutritional mutualist. These linked interactions potentially create an interaction system with the form of an endogenous negative feedback loop. We address four hypotheses: (1) Direct negative feedback: Beetles directly increase the abundance of O. minus, which reduces per capita reproduction of beetles. (2) Indirect negative feedback: Beetles indirectly increase mite abundance, which increases O. minus, which decreases beetle reproduction. (3) The effect of O. minus on beetles depends on mites, but mite abundance is independent of beetle abundance. (4) The effect of O. minus on beetles is independent of beetle and mite abundance. High Tarsonemus and O. minus abundances were strongly correlated with the decline and eventual local extinction of beetle populations. Manipulation experiments revealed strong negative effects of O. minus on beetles, but falsified the hypothesis that horizontal transmission of O. minus generates negative feedback. Surveys of beetle populations revealed that reproductive rates of Tarsonemus, O. minus, and beetles covaried in a manner consistent with strong indirect interactions between organisms. Co-occurrence of mutualisms embedded within a community may have stabilizing effects if both mutualisms limit each other. However, delays and/or non-linearities in the interaction systems may result in large population fluctuations. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
  1. Adult populations of two carabid species, a spring breeder, Carabus yaconinus, and an autumn breeder, Leptocarabus kumagaii, were studied in a lowland habitat (area: 16,500 m2) by pitfall sampling and mark-recapture method. The seasonal change in population number, age structure and mortality pattern were clarified and related to their seasonal life cycles.
  2. The survival rate of new adults from emergence to the first reproductive season was on the average 48% in C. yaconinus and 55% in L. kumagaii. In C. yaconinus, beetles which emerged later in the season survived more to the first reproductive season than those emerged earlier. C. yaconinus which had survived the pre-reproductive period mostly died out during the first reproductive season of 5 months, and about 8% survived until the second season. In L. kumagaii which had a short reproductive period in autumn, about 20% survived to the second reproductive season, and a small proportion even to the third reproductive season. Accordingly, the proportion of old beetles in the reproductive population was higher in L. kumagaii than in C. yaconinus.
  3. The reproductive population of C. yaconinus contained on the average 1600 beetles and produced 3300 new adults. the L. kumagaii population contained on the average about 530 reproductives in autumn, and about 820 beetles emerged in the following year. The recruitment rate of new adults of C. yaconinus was higher than that of L. kumagaii, and this resulted in its higher population density. In L. kumagaii, however, the high adult survivorship and iteroparous reproduction were important for its population growth.
  4. Relationship between seasonal adaptation and demographic strategies in the carabid populations were discussed.
  相似文献   

12.
Timing of arrival at a resource often determines an individual’s reproductive success. Tree-killing bark beetles can reproduce in healthy trees by attacking in adequate numbers to overcome host defences that could otherwise be lethal. This process is mediated by aggregation and antiaggregation pheromones. Beetles that arrive early in such a “mass attack” must contend with undiminished tree defences, and produce enough pheromones to attract more beetles, but have a head start on gallery construction and egg-laying. Beetles that arrive late may be impeded by competition and diminishing availability of phloem, but should experience fewer costs associated with pheromone production and battling tree defences. We investigated relationships between timing of arrival, body size, pheromone production and fitness in the southern pine beetle, Dendroctonus frontalis. In field experiments, we captured beetles that arrived early (pioneers) and late on slash pine trees, Pinus elliottii, and measured pheromone amounts in their hindguts. We marked gallery entrances of beetles as they landed on a tree and measured their reproductive success after the attack terminated. We found no difference in body size or pheromone amounts between early and late arrivers. Most beetles arrived at the middle of the attack sequence, and excavated longer galleries per day than early arrivers. The number of offspring produced per day by beetles that established galleries midway through mass attack was higher than those that arrived early or very late in the sequence. Our results suggest that beetles do not exhibit adaptive phenotypic plasticity in pre-landing pheromone production, depending on the extent of previous colonisation of a host. Rather, it appears that stabilising selection favours beetles that attack in the middle of the sequence, and contributes to attack synchrony. Synchronous attack on trees is essential before population booms characteristic of tree-killing bark beetles can occur in nature.  相似文献   

13.
The southern pine beetle, Dendroctonus frontalis, is among the most important agents of ecological disturbance and economic loss in forests of the south-eastern United States. We combined physiological measurements of insect temperature responses with climatic analyses to test the role of temperature in determining the northern distribution limits of D. frontalis. Laboratory measurements of lower lethal temperatures and published records of mortality in wild populations indicated that air temperatures of ?16° should result in almost 100% mortality of D. frontalis. The distribution limits for D. frontalis approximate the isoline corresponding to an annual probability of 0.90 of reaching ≤?16 °C. Thus, D. frontalis have been found about as far north as they could possibly occur given winter temperature regimes. At latitudes from 39° N (southern Ohio) to 33° N (central Alabama), winter temperatures must exert high mortality on D. frontalis populations in at least one year out of ten. In contrast, we reject the hypotheses that summer temperatures or the distribution of host trees constrain the northern distribution of D. frontalis. Because of the short generation time of D. frontalis, its high dispersal abilities, and the cosmopolitan distribution of suitable host trees, changes in either the mean or variance of minimum annual temperatures could have almost immediate effects on regional patterns of beetle infestations. We estimate that an increase of 3 °C in minimum annual temperature could extend the northern distribution limits by 170 km. Increases or decreases in the variance of minimum annual temperatures would further relax climatic constraints on the northern distribution limits of D. frontalis. Results emphasize the ecological importance of spatial and temporal variability in minimum annual temperatures. The physiologically based models provide a tool for guiding land management decisions in forests and illustrate a general approach for predicting the regional effects of climatic patterns on the distribution of organisms.  相似文献   

14.
The effects of Beauveria bassiana strains on coffee berry borers (CBB), which emerge from infested berries left on soil, and its impact on the infestation of coffee berries on tree branches were evaluated at two Experimental Stations (Naranjal-Caldas and Paraguaicito-Quindio) in the Colombian coffee zone. Using a completely randomized design with 10 repetitions, 50 coffee berries artificially infested with CBB were placed on the base of a coffee tree. Four treatments including B. bassiana strain Bb9205, a mixture of Cenicafé strains (Bb9001, Bb9024 and Bb9119), a commercial formulation of B. bassiana and a control (water) were sprayed with 1×109 conidia per tree. After 30 days, all fungal strains lowered the infestation levels of the coffee berries on the trees at both locations. The mixture of Cenicafé strains decreased the tree infestation between 50 and 30% at both locations. In the berries dissected from each treated tree, insect mortality was about 40% at both locations compared to 15% in the control. B. bassiana strains also decreased the insect population inside the newly infested berries on the trees by 55–75%. The mixture of Cenicafé strains was the most effective for decreasing insect populations. B. bassiana significantly decreased CBB populations that emerged from fallen, infested, coffee berries and reduced future insect generations.  相似文献   

15.
The impact of foraging byMonochamus titillator (Fab.) on within-tree populations ofDendroctonus frontalis Zimm. was described. Total population estimates forD. frontalis and inner bark area foraged byM. titillator were computed for 89 loblolly pine,Pinus taeda L., sampled over a 3 year period. Frequency histograms were prepared for the surface area of habitat infested, area foraged byM. titillator, and within-tree populations ofD. frontalis. These data were used to calculate the proportion of area foraged byM. titillator, the proportionalD. frontalis mortality for the entire tree, and the proportional mortality occurring in the foraged area. Histograms showing the variation of these components were prepared and described using nonlinear mathematical models. Ca. 20% of the infested surface area was foraged byM. titillator. Mortality toD. frontalis on a per tree basis was ca. 14%. Mortality in the area foraged byM. titillator was ca. 70%. These estimates were highly variable between individual trees and a procedure for predicting the probability of a given level of foraging and mortality was described. Sources of variation influencing foraging byM. titillator and mortality toD. frontalis were investigated. Variation between years and season followed similar trends with both foraging and mortality increasing from the base to the top of the infested bole. Variation between tree size-class was highly significant. Larger size-class trees had substantially greater foraging and mortality than did the smaller size-classes. Mortality within the foraged area was also found to be greater at the extremes of the infested bole.
Résumé L’impact de l’activité deMonochamus titillator (Fab.) sur les populations à l’intérieur de l’arbre deDendroctonus frontalis Zimm. est décrit. Le total des évaluations de population deD. frontalis dans des zones à l’intérieur du tronc attaquées parM. titillator a été soumis à l’ordinateur pour 89 pins,Pinus taeda L., échantillonnés pendant 3 ans. Les histogrammes de fréquence ont été établis pour la surface de l’habitat infesté, la surface explorée parM. titillator et pour les populations deD. frontalis présentes dans l’arbre. A partir de ces données on a calculé la part de surface utilisée parM. titillator, la mortalité deD. frontalis extrapolée pour l’arbre entier et la mortalité se produisant dans la surface exploitée. Les histogrammes traduisant les variations de ces composantes ont été dressés en ayant recours à des modèles mathématiques non linéaires. Environ 20% de la surface infestée a été exploitée parM. titillator; la mortalité du scolyte fut d’environ 14% dans l’arbre et de 70% dans la zone attaquée parM. titillator. Ces évaluations sont très variables d’un arbre à l’autre et on a mis au point un procédé pour prévoir la probabilité d’un taux donné d’activité alimentaire du cerambycide et de mortalité du scolyte. Les causes de cette variabilité ont été étudiées. La variation suivant les années et les saisons suit les mêmes tendances à savoir l’augmentation à la fois de l’activité alimentaire et de la mortalité de la base au sommet du pin attaqué. La variation selon les classes de taille des arbres est hautement significative: les arbres les plus gros présentent une exploitation et une mortalité beaucoup plus importantes que les arbres plus petits. La mortalité du scolyte dans la zone attaquée par le cerambycide est également plus élevée aux extrémités du pin infesté.


Texas Agricultural Experiment Station No.TA15244.  相似文献   

16.
The southern pine beetle (Dendroctonus frontalis) and western pine beetle (Dendroctonus brevicomis) cause significant mortality to pines in the southern and western United States. The effectiveness of commercial lures at capturing these bark beetles in Arizona has not been tested and may vary from other regions of their distribution. We conducted experiments using baited Lindgren funnel traps to investigate (i) if D. frontalis is more attracted to the standard commercial lure for D. brevicomis (frontalin + exo‐brevicomin + myrcene) than the D. frontalis lure (frontalin + terpene blend), (ii) whether replacement of myrcene with α‐pinene changes trap catches of Dendroctonus and associated insects, and (iii) whether the attraction to these lures varies across the geographical range of ponderosa pine forests throughout Arizona. In 2005, we tested various combinations of frontalin, exo‐brevicomin, myrcene and α‐pinene to D. frontalis, D. brevicomis and associated species. Dendroctonus frontalis, D. brevicomis and the predator Temnochila chlorodia were most attracted to lures with exo‐brevicomin. The replacement of the myrcene component with α‐pinene in the D. brevicomis lure resulted in the capture of twice as many bark beetles and Elacatis beetles. However, T. chlorodia did not differentiate between monoterpenes. In 2006, traps were set up in 11 locations around Arizona to test the relative attraction of lure combinations. In 9 out 11 locations, the D. brevicomis lure with α‐pinene was more attractive than the lure with myrcene or a terpene blend. These results suggest that the D. brevicomis lure with α‐pinene rather than myrcene is more effective lure to capture D. brevicomis and D. frontalis in Arizona. However, geographical variation in attractiveness to lures is evident even within this region of the beetles’ distributions. Differential attraction of Dendroctonus and their predators to these lures suggests potential use in field trapping and control programmes.  相似文献   

17.
Predation and bark beetle dynamics   总被引:4,自引:0,他引:4  
John D. Reeve 《Oecologia》1997,112(1):48-54
Bark beetle populations may undergo dramatic fluctuations and are often important pests in coniferous forests. Their dynamics are thought to be primarily driven by factors affecting the resistance of the host tree to attack, i.e., bottom-up forces, while natural enemies are usually assigned a minor role in these systems. I present behavioral experiments that suggest that the clerid beetle Thanasimus dubius may be an important source of mortality for the bark beetle Dendroctonus frontalis during attack of the host tree, and determine the nature of the functional response of T. dubius under conditions close to natural. I also examine the numerical response of T. dubius to large-scale fluctuations in D. frontalis density, and the relationship between bark beetle population trends and predator density, and find that beetle populations tend to decline when predator densities are high. Combined with the effects of clerid larvae on bark beetle broods, these results suggest that top-down forces generated by natural enemies could also be an important component of bark beetle dynamics. The implications of these results for bark beetle dynamics are discussed in relation to the prolonged life-cycle of clerid beetles. Received: 23 January 1997 / Accepted: 5 April 1997  相似文献   

18.
Red scale, Aonidiella aurantii Maskell (Hemiptera: Diaspididae), has a contagious distribution among fruit and among trees largely due to the fact that most young settle on the same fruit as their mothers. The pattern of distribution and degree of dispersion of red scale within various sets of contiguous citrus trees in several orchards were recorded each autumn for 4 years. Changes in density and site occupancy within trees and within contiguous groups of trees were made to assess the strength of any link between populations and their dynamics on different trees. Aonidiella aurantii was found to have a very clumped distribution whereby trees with a level of scale infestation well above average for their block could be adjacent to trees with few or no detectable scale. However, patches of high density on a given tree usually did not recur for more than 2 years but were replaced with above average infestations on other trees. The stability of the red scale populations varied from block to block. Some blocks had few or no infested trees over the study period whereas others had widely fluctuating levels of infestation. Dispersion coefficients at ‘within tree’ and ‘within block’ levels were similar. Theoretical and statistical models of the relation of average scale levels to the percentage of fruit or trees infested were less precise than they are for other pests because of high variation of clumping intensity of scale within any block.  相似文献   

19.
Bark beetle epidemics result in tree mortality across millions of hectares in North America. However, few studies have quantified impacts on carbon (C) cycling. In this study, we quantified the immediate response and subsequent trajectories of stand‐level aboveground tree C stocks and fluxes using field measurements and modeling for a location in central Idaho, USA that experienced an outbreak of mountain pine beetle (Dendroctonus ponderosae Hopkins). We measured tree characteristics in lodgepole pine (Pinus contorta) plots spanning a range of structure and mortality conditions. We then initialized the forest vegetation simulator, an individual tree‐based model, with these measurements and simulated the response of aboveground production of C fluxes as well as trajectories of C stocks and fluxes in the coming decades. Mountain pine beetles killed up to 52% of the trees within plots, with more larger trees killed. C stocks in lodgepole pine were reduced by 31–83% following the outbreak, and plot‐level C fluxes decreased 28–73%. Modeled C stocks increased nearly continuously following the infestation, recovering to preoutbreak levels in 25 years or less. Simulated aboveground tree C fluxes increased following the immediate postoutbreak decrease, then subsequently declined. Substantial variability of C stocks and fluxes among plots resulted from the number and size of killed and surviving trees. Our study illustrates that bark beetle epidemics alter forest C cycling unlike stand‐replacement wildfires or clear‐cut harvests, due in part to incomplete mortality coupled with the preference by beetles for larger trees. The dependency of postoutbreak C stocks and fluxes on stand structure suggests that C budget models and studies in areas experiencing mountain pine beetle disturbances need to include size distribution of trees for the most accurate results.  相似文献   

20.
The process of an outbreak of the citrus flat-headed borer, Agrilus auriventris in Nagasaki Prefecture was described with some ecological considerations on causative factors. This outbreak which showed a typical “Gradation”, initiated around 1958, and terminated in 1963. The peak year was seen in 1961. At first attack by the borer was restricted to old and weak trees, but it was also found in young and healthy trees in the peak year. Some environmental conditions in orchards were examined in relation to the intensity of infestation by the borer. Soil management and drought seemed to have remarkable correlations with the borer's infestations. Probably, this outbreak was caused by the weakening of citrus tree by gummosis and abnormal defoliation, aging of orchard trees, and drought in the summer of 1959∼1960. Interrelation between these causes and processes are shown schematically in Fig. 12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号