首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New quantitative insights on the native high order chromatin-DNA structure existing within interphase nuclei are obtained by monitoring the effects of two common well-characterized fixatives, glutaraldehyde and ethanol/acetic acid mixture, at the level of the intranuclear DNA distribution and structures. Reproducible distinct levels of DNA fluorescence intensity and their intranuclear distribution are apparent in unfixed and fixed thymocytes by using DAPI and quantitative optical microscopy based on a charge coupled device. The fluorescent histograms correlated with the calorimetric thermograms on the very same thymocytes fixed and unfixed, establish an unequivocal baseline for the different levels of structural organization of the chromatin within the intact nucleus; namely their number, DNA packing ratio and fiber diameter. A systematic comparison among all the numerous models, being so far proposed for the quinternary and quaternary levels of DNA folding, to identifies the rope or ribbon-like and the chromonema as the ones that best fit with the in situ distribution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Chinese hamster fibroblasts were investigated for the existence of correlations between proliferative activity and nuclear morphology. As a proliferative parameter, the rate of DNA synthesis of individual cells was determined by quantitative 14C-autoradiography. In a second step the images of the Feulgen-stained nuclei were digitized for extraction of features of morphology and texture. These features were correlated with the corresponding DNA synthesis rate values. The following relationships were found: Round nuclei have higher rates of DNA synthesis than flat ones. The more chromatin is packed at the nuclear rim, possibly representing heterochromatin, the lower the rate of DNA synthesis. The DNA synthesis rate also correlates with the graininess of chromatin. Larger areas of condensed chromatin are associated with lower rate values. A fine and irregular network of chromatin, as is typical of immature cell types, is associated with a high rate of DNA synthesis. Although these results are presently confined to the cell line investigated, parallels seem to exist to other cell types, such as erythropoietic cells, which await further investigation.  相似文献   

3.
Fixed tissue from the base of the fourth internode above the cotyledons of Pisum sativum plants were Feulgen-stained for DNA. In squash preparations three cell types: xylem vessel elements, phloem fibres and phloem sieve tube elements were identified. Measurement of Feulgen absorbance values in 0.5 X 0.5 microns measuring points across each nucleus were obtained with a scanning cytophotometer. Condensed chromatin was defined as any measuring point having an absorbance value greater than 0.32. Calculating 'percent condensed chromatin' as the percentage of the total nuclear DNA contained in those densely stained points, the pattern of change in this parameter during interphase in each cell type was observed. A generally similar pattern occurs in all three cell types. Percent condensed chromatin decreased from about 45% to 12% during G1, increased rapidly to the end of S, decreased during G2 and the following G1 to increase again during the subsequent S phase.  相似文献   

4.
Summary The species-specific proportion of chromatin in the condensed state was estimated by quantitative electron microscopic morphometry of nuclear sections in 9 diploid and 5 allopolyploid species of Microseris (Asteraceae). A positive correlation between the genome size (haploid DNA content, or C value) and the percentage of chromatin in the condensed state (as visible in ultrathin sections) was found in diploids (r=0.89). Nuclei of allopolyploid (tetraploid) species exhibit condensed chromatin in a percentage which corresponds to the average of the values found in the parents. This suggests that each parental genome controls chromatin condensation at interphase independently within the nucleus, and that the degree of condensation is not directly determined by the nuclear DNA content per se. Genome size differences among Microseris species may depend preferentially, but not entirely, on DNA fractions located in, and perhaps being the cause of, condensed chromatin.Dedicated to Professor F. Mechelke in honour of his 60th birthday.  相似文献   

5.
6.
Frequency distributions of integrated optical density, perimeter, projection, area, form factor, average optical density, and mean dispersion path of nuclear images of Feulgen-stained HeLa S3 cells were obtained by automated image analysis at the base threshold of 0.04 OD. The mean values and standard deviations of these geometric parameters were then computed versus increasing values of threshold (0.08--0.32 OD). There is clear evidence of differential chromatin dispersion and convolution during the cycle of synchronized HeLa S3 cells at different times after selective mitotic detachment. The combination of average OD, form factor, and mean dispersion path at base threshold with the threshold dependence of nuclear morphometric parameters permits objective identification of cell cycle phases and their subphases, by characterizing variations in chromatin geometry within and between phases, regardless of whether DNA content remains constant (early G1, middle G1, late G1), varies only slightly (late G1-early S or late S-G2 transitions), or varies significantly (early S-middle S).  相似文献   

7.
8.
Increased amounts of chromatin condensation (i.e., localized areas of high DNA density, or chromatin higher order packing state) have been described in NIH 3T3 cells transformed with the Ha-ras oncogene. The structural basis for this oncogene-mediated alteration in nuclear organization is unknown. Since DNA methylation is likely to be involved in regulating the nucleosomal level of DNA packaging, we studied the role of DNA methylation in higher-order chromatin organization induced by Ha-ras. CpG-methylated DNA content was estimated in "condensed" chromatin of Ha-ras-transformed NIH 3T3 cell lines which differ in ras expression and ras-induced metastatic ability but present approximately the same values of "condensed" chromatin areas. The question posed was that if DNA methylation were involved with the chromatin higher-order organization induced by Ha-ras in these cell lines, the methylated DNA density in the "condensed" chromatin would also be the same. The DNA evaluation was performed by video image analysis in Feulgen-stained cells previously subjected to treatment with Msp I and Hpa II restriction enzymes, which distinguish between methylated and non-methylated DNA. The amount of methylated CpG sequences not digested by Hpa II in "condensed" chromatin regions was found to vary in the studied ras-transformed cell lines. DNA CpG methylation status is thus suggested not to be involved with the higher order chromatin condensation induced by ras transformation in the mentioned NIH 3T3 cell lines.  相似文献   

9.
Changes in the morphology of the sperm nucleus in the egg cytoplasm are mong the immediate events in nucleocytoplasmic interactions during early embryogenesis. Soon after its entrance into the egg cytoplasm, the sperm nucleus of various organisms increases in size with the transformation of condensed chromatin to a diffuse state, resembling the chromatin of an interphase nucleus (2, 13, 15, 16). This is followed by a close association or fusion of male and female pronuclei (2, 13, 15, 16). Cytoplasmic influences on nuclear morphology have also been demonstrated clearly in nuclear transplantation and cell fusion studies (10, 11). Reactivation of the nucleus, such as the transplanted brain nucleus in Xenopus egg cytoplasm or the hen erythrocyte nucleus in interphase cytoplasm of HeLa cells, is accompanied by nuclear enlargement and chromatin dispersion (10, 11). However, premature mitotic-like chromosome condensation takes place in the nuclei of sperm or interphase cells fused with mitotic cells (9, 12). Thus, chromosome dispersion and condensation seem to depend on the state of the cytoplasm in which the nucleus is present. These observations imply that the initial morphological changes in the sperm nucleus after fertilization may very well be dependent on the state of maturation of eggs at the time of sperm entry. Unfertilized eggs of Urechis caupo, a marine echiuroid worm, are stored at the diakinesis stage. These eggs complete maturation division after insemination and this is followed by fusion of male and female pronuclei (5, 8). Therefore, Urechis caupo is a suitable organism in which to study the response of the sperm nucleus to the changing state of the egg cytoplasm during and after postfertilization maturation division.  相似文献   

10.
11.
Micronuclear elongation is the first major event in a series of nuclear changes occurring during the sexual stage of the life cycle of Tetrahymena. Beginning at about one hour after cells of complementary mating types have conjugated, the micronucleus leaves its recess in the macronucleus and swells slightly. This is accompanied by a reorganization of its chromatin from a reticular to a solid body. In the next stage the micronucleus assumes an egg shape, a development concomitant with the appearance of microtubules. While the chromatin spins out from the dense body, and microtubules increase in number, the nucleus assumes a spindle shape. During the elongation, which increases the length of the nucleus some fifty fold, microtubules are prominent in clusters just internal to the nuclear membrane, and parallel to the longitudinal axis of the nucleus. When elongation is completed the nucleus is curved around the macronucleus. Internally, partially condensed strands of chromatin are located off-center, towards the macronuclear side, and the density of the microtubules is diminished. At all the stages, DNA is located throughout the nucleus; neither discrete chromosomes nor synaptonemal complexes are seen. Occasionally cytoplasmic membrane systems are seen fused to the nuclear envelope which retains the typical appearance of a double membrane with pores.  相似文献   

12.
ELECTRON MICROSCOPIC STUDIES OF MITOSIS IN AMEBAE : I. Amoeba proteus   总被引:17,自引:17,他引:0       下载免费PDF全文
Individual organisms of Amoeba proteus have been fixed in buffered osmium tetroxide in either 0.9 per cent NaCl or 0.01 per cent CaCl2, sectioned, and studied in the electron microscope in interphase and in several stages of mitosis. The helices typical of interphase nuclei do not coexist with condensed chromatin and thus either represent a DNA configuration unique to interphase or are not DNA at all. The membranes of the complex nuclear envelope are present in all stages observed but are discontinuous in metaphase. The inner, thick, honeycomb layer of the nuclear envelope disappears during prophase, reappearing after telophase when nuclear reconstruction is in progress. Nucleoli decrease in size and number during prophase and re-form during telophase in association with the chromatin network. In the early reconstruction nucleus, the nucleolar material forms into thin, sheet-like configurations which are closely associated with small amounts of chromatin and are closely applied to the inner, partially formed layer of the nuclear envelope. It is proposed that nucleolar material is implicated in the formation of the inner layer of the envelope and that there is a configuration of nucleolar material peculiar to this time. The plasmalemma is partially denuded of its fringe-like material during division.  相似文献   

13.
An optical tomography investigation of the nuclear cycle in large freshwater amoebae Amoeba proteus has been performed for the first time. Nuclei of cells from a synchronized culture were stained with DAPI and examined using a confocal laser scanning microscope. Detailed analysis of three-dimensional images of the intranuclear chromatin at different stages of the nuclear cycle has been performed. The materials obtained, in combination with the published data, allow for a completely new representation of the dynamics of the structural organization of the A. proteus nucleus during the cell cycle. Two-stage interphase and mitosis of a special type not matching any of the known types in the existing systems of classification of mitosis were found to occur in amoebae. Amplification of chromosomes and/or fragments thereof supposedly occurs during the cell cycle, which is consistent with the available data on nuclear DNA hyperreplication during the cell cycle of A. proteus. The number of chromosomes can vary at different stages of the cycle because of amplification, this being a putative reason for the discordant reports on the number of chromosomes in this species. The elimination of “excess” DNA mainly occurs during the transition from prophase to prometaphase. Finally, specific features of chromosome behavior during mitosis allow conclusion to be drawn that many, if not all, chromosomes are of a holocentric type.  相似文献   

14.
Mutant lines of mouse L cells, TS A1S9, and TS C1, show temperature- sensitive (TS) DNA synthesis and cell division when shifted from 34 degrees to 38.5 degrees C. With TS A1S9 the decline in DNA synthesis begins after 6-8 h at 38.5 degrees C and is most marked at about 24 h. Most cells in S, G2, or M at temperature upshift complete one mitosis and accumulate in the subsequent interphase at G1 or early S as a result of expression of a primary defect, failure of elongation of newly made small DNA fragments. Heat inactivation of TS C1 cells is more rapid; they fail to complete the interphase in progress at temperature upshift and accumulate at late S or G2. Inhibition of both cell types is reversible on return to 34 degrees C. Cell and nuclear growth continues during inhibition of replication. Expression of both TS mutations leads to a marked change in gross organization of chromatin as revealed by electron microscopy. Nuclei of wild-type cells at 34 degrees and 38.5 degrees C and mutant cells at 34 degrees C show a range of aggregation of condensed chromatin from small dispersed bodies to large discrete clumps, with the majority in an intermediate state. In TS cells at 38.5 degrees C, condensed chromatin bodies in the central nuclear region become disaggregated into small clumps dispersed through the nucleus. Morphometric estimation of volume of condensed chromatin indicates that this process is not due to complete decondensation of chromatin fibrils, but rather involves dispersal of large condensed chromatin bodies into finer aggregates and loosening of fibrils within the aggregates. The dispersed condition is reversed in nuclei which resume DNA synthesis when TS cells are downshifted from 38.5 degrees to 34 degrees C. The morphological observations are consistent with the hypothesis that condensed chromatin normally undergoes an ordered cycle of transient, localized disaggregation and reaggregation associated with replication. In temperature-inactivated mutants, normal progressive disaggregation presumably occurs, but subsequent lack of chromatin replication prevents reaggregation.  相似文献   

15.
16.
17.
NuMA is an abundant long coiled-coil protein that plays a prominent role in spindle organization during mitosis. In interphase, NuMA is localized to the nucleus and hypothesized to control gene expression and chromatin organization. However, because of the prominent mitotic phenotype upon NuMA loss, its precise function in the interphase nucleus remains elusive. Here, we report that NuMA is associated with chromatin in interphase and prophase but released upon nuclear envelope breakdown (NEBD) by the action of Cdk1. We uncover that NuMA directly interacts with DNA via evolutionarily conserved sequences in its C-terminus. Notably, the expression of the DNA-binding–deficient mutant of NuMA affects chromatin decondensation at the mitotic exit, and nuclear shape in interphase. We show that the nuclear shape defects observed upon mutant NuMA expression are due to its potential to polymerize into higher-order fibrillar structures. Overall, this work establishes the spindle-independent function of NuMA in choreographing proper chromatin decompaction and nuclear shape by directly associating with the DNA.  相似文献   

18.
The cultivars or experimental lines ofPisum sativum were analyzed cytophotometrically for nuclear DNA content of early prophases after ethanol-acetic acid fixation. Wide variability was found (from 3.93 to 5.07pg per haploid nucleus). This result was confirmed by the cytophotometric analysis of interphase nuclei isolated from leaf tissues fixed in formalin. Analysis of interphase nuclei at different thresholds of optical density showed that certain chromatin fractions are involved in the variations.  相似文献   

19.
Abstract

One of the primary characteristics distinguishing prokaryotic from eukaryotic cells is the absence of a nucleus with a clearly defined nuclear membrane. In prokaryotic cells the DNA is condensed into a structure called the nucleoid. This structure has also been referred to attimes as the nuclear body, prokaryotic nucleus, bacterial chromosome, folded genome, or folded bacterial chromosome. The nomenclature sometimes becomes confusing because unfolded bacterial DNA free of other components of the nucleoid has also been referred to as the bacterial chromosome. To avoid such confusion, it would be preferable to reserve the terms nucleoid or bacterial chromosome to describe the condensed prokaryotic DNA structures which have some features analogous to the eukaryotic metaphase chromosome and condensed interphase chromatin. If this convention is followed, the terms “folded chromosome” or “folded genome” become ambiguous because they could equally mean “folded nucleoid.” These latter terms will, therefore, be avoided throughout this article.  相似文献   

20.
SYNOPSIS. The ultrastructure of interphase and mitotic nuclei of the epimastigote form of Trypanosoma cyclops Weinman is described. In the interphase nucleus the nucleolus is located centrally while at the periphery of the nucleus condensed chromatin is in contact with the nuclear envelope. The nucleolus fragments at the onset of mitosis, but granular material of presumptive nucleolar origin is often recognizable in the mitotic nucleus. Peripheral chromatin is in contact with the nuclear envelope throughout mitosis, and it seems reasonable to assume that the nuclear envelope is involved in its segregation to the daughter nuclei. Spindle microtubules extend between the poles of the dividing nucleus and terminate close to the nuclear envelope. The basal body and kinetoplast divide before the onset of mitosis and do not appear to have any morphologic involvement in that process. Spindle pole bodies, kinetochores, and chromosomal microtubules have not been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号