首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previous work from our laboratory has suggested that topoisomerase II is required for replication of human cytomegalovirus (HCMV). In assays of confluent human embryonic lung cells infected with HCMV, topoisomerase II inhibitors exhibited an irreversible inhibition of viral DNA replication. However, Northern (RNA blot) and Western (immunoblot) analyses of confluent uninfected human embryonic lung cells detected very low levels of cellular topoisomerase II RNA and protein. Quantitation of human topoisomerase II RNA and protein levels at various times after HCMV infection revealed that HCMV induces increased intracellular levels of both topoisomerase II RNA and protein. Such accumulation began at early times of infection, continued through late in infection, and was not reduced by inhibition of viral DNA synthesis. This is the first report of such induction by a viral infection. Topoisomerase II was also detected in isolated HCMV virions.  相似文献   

2.
The phosphorylation of DNA topoisomerase II in Drosophila Kc tissue culture cells was characterized by in vivo labeling studies and in vitro studies that examined the modification of exogenous enzyme in total homogenates of these embryonic cells. Several lines of evidence identified casein kinase II as the kinase primarily responsible for phosphorylating DNA topoisomerase II. First, the only amino acyl residue modified in the enzyme was serine. Second, partial proteolytic maps of topoisomerase II which had been labeled with [32P]phosphate by Drosophila cells in vivo, by cell homogenates in vitro, or by purified casein kinase II were indistinguishable from one another. Third, phosphorylation in cell homogenates was inhibited by micrograms/ml concentrations of heparin, micromolar concentrations of nonradioactive GTP, or anti-Drosophila casein kinase II antiserum. Fourth, cell homogenates were able to employ [gamma-32P]GTP as a phosphate donor nearly as well as [gamma-32P]ATP. Although topoisomerase II was phosphorylated in homogenates under conditions that specifically stimulate protein kinase C, calcium/calmodulin-dependent protein kinase, or cAMP-dependent protein kinase, modification was always sensitive to anti-casein kinase II antiserum or heparin. Thus, under a variety of conditions, topoisomerase II appears to be phosphorylated primarily by casein kinase II in the Drosophila embryonic Kc cell system.  相似文献   

3.
4.
5.
We developed monoclonal antibodies against Drosophila topoisomerase II and studied the intracellular forms and the in vivo and in vitro proteolytic degradation of the enzyme. In purified enzyme preparations polyclonal sera and monoclonal antibodies recognized several polypeptides in the 170-132 kD molecular weight range. In vivo, however, the pattern was much simpler. In Drosophila embryos, pupae, fly heads and Schneider S3 tissue culture cells topoisomerase II appeared as a single 166 kD polypeptide. In Drosophila embryos, with two monoclonal antibodies topoisomerase II appeared as a doublet composed of the 166 kD canonical form and a slightly higher molecular weight polypeptide. Topoisomerase II was shown to be present also in fly heads which are composed entirely of nonproliferative tissues.  相似文献   

6.
Wang Z  Englund PT 《The EMBO journal》2001,20(17):4674-4683
We studied the function of a Trypanosoma brucei topoisomerase II using RNA interference (RNAi). Expression of a topoisomerase II double-stranded RNA as a stem-loop caused specific degradation of mRNA followed by loss of protein. After 6 days of RNAi, the parasites' growth rate declined and the cells subsequently died. The most striking phenotype upon induction of RNAi was the loss of kinetoplast DNA (kDNA), the cell's catenated mitochondrial DNA network. The loss of kDNA was preceded by gradual shrinkage of the network and accumulation of gapped free minicircle replication intermediates. These facts, together with the localization of the enzyme in two antipodal sites flanking the kDNA, show that a function of this topoisomerase II is to attach free minicircles to the network periphery following their replication.  相似文献   

7.
Human topoisomerase II plays a crucial role in DNA replication and repair. It exists in two isoforms: topoisomerase II alpha (alpha) and topoisomerase II beta (beta). The alpha isoform is localized predominantly in the nucleus, while the beta isoform exhibits a reticular pattern of distribution both in the cytosol and in the nucleus. We show that both isoforms of topoisomerase II are phosphorylated in HIV infected cells and also by purified viral lysate. An analysis of the phosphorylation of topoisomerase II isoforms showed that extracts of HIV infected cells at 8 and 32 h. post-infection (p.i.) contain maximal phosphorylated topoisomerase II alpha, whereas infected cell extracts at 4 and 64 h p.i. contain maximum levels of phosphorylated topoisomerase II beta. In concurrent to phosphorylated topoisomerase II isoforms, we have also observed increased topoisomerase II alpha kinase activity after 8h p.i and topoisomerase beta kinase activity at 4 and 64 h p.i. These findings suggest that both topoisomerase II alpha and beta kinase activities play an important role in early as well as late stages of HIV-1 replication. Further analysis of purified virus showed that HIV-1 virion contained topoisomerase II isoform-specific kinase activities, which were partially isolated. One of the kinase activities of higher hydrophobicity can phosphorylate both topoisomerase II alpha and beta, while lower hydrophobic kinase could predominantly phosphorylate topoisomerase II alpha. The phosphorylation status was correlated with catalytic activity of the enzyme. Western blot analysis using phosphoamino-specific antibodies shows that both the kinase activities catalyze the phosphorylation at serine residues of topoisomerase II alpha and beta. The catalytic inhibitions by serine kinase inhibitors further suggest that the alpha and beta kinase activities associated with virus are distinctly different.  相似文献   

8.
《The Journal of cell biology》1994,126(6):1331-1340
Most DNA topoisomerase II (topo II) in cell-free extracts of 0-2-h old Drosophila embryos appears to be nonnuclear and remains in the supernatant after low-speed centrifugation (10,000 g). Virtually all of this apparently soluble topo II is particulate with a sedimentation coefficient of 67 S. Similar topo II-containing particles were detected in Drosophila Kc tissue culture cells, 16-19-h old embryos and extracts of progesterone-matured oocytes from Xenopus. Drosophila topo II- containing particles were insensitive to EDTA, Triton X-100 and DNase I, but could be disrupted by incubation with 0.3 M NaCl or RNase A. After either disruptive treatment, topo II sedimented at 9 S. topo II- containing particles were also sensitive to micrococcal nuclease. Results of chemical cross-linking corroborated those obtained by centrifugation. Immunoblot analyses demonstrated that topo II- containing particles lacked significant amounts of lamin, nuclear pore complex protein gp210, proliferating cell nuclear antigen, RNA polymerase II subunits, histones, coilin, and nucleolin. Northern blot analyses demonstrated that topo II-containing particles lacked U RNA. Thus, current data support the notion that nonnuclear Drosophila topo II-containing particles are composed largely of topo II and an unknown RNA molecule(s).  相似文献   

9.
Topoisomerase II: A specific marker for cell proliferation   总被引:18,自引:8,他引:10       下载免费PDF全文
《The Journal of cell biology》1986,103(6):2569-2581
  相似文献   

10.
The native form of Drosophila melanogaster DNA topoisomerase II was purified from Schneider's S3 tissue culture cells and studied with two supercoiled minicircle preparations, mini and mini-CG, 354 bp and 370 bp in length, respectively. Mini-CG contains a d(CG)7 insert which assumes a left-handed Z-DNA conformation in negative supercoiled topoisomers with a negative linking number difference - delta Lk greater than or equal to 2. The interactions of topoisomerase II with topoisomer families of mini and mini-CG were studied by band-shift gel electrophoresis in which the individual topoisomers and their discrete or aggregated protein complexes were resolved. A monoclonal anti-Z-DNA IgG antibody (23B6) bound and aggregated only mini-CG, thereby confirming the presence of Z-DNA. Topoisomerase II bound and relaxed mini-CG more readily than mini. In both cases, there was a preference for more highly negatively supercoiled topoisomers. The topoisomerase II inhibitor VM-26 induced the formation of stable covalent DNA-protein intermediates. In addition, the non-hydrolyzable GTP analogue GTP gamma S inhibited the binding and relaxation activities. Experiments to detect topoisomerase cleavage sites failed to elicit specific loci on either minicircle preparation. We conclude that Drosophila topoisomerase II is able to bind and process small minicircles with lengths as short as 360 bp and negative superhelix densities, - sigma, which can exceed 0.1. Furthermore, the enzyme has a preferential affinity for topoisomers containing Z-DNA segments and relaxes these molecules, presumably by cleavage external to the inserts. Thus, a potentially functional relationship between topoisomerase II, an enzyme regulating the topological state of DNA-chromatin in vivo, and left-handed Z-DNA, a conformation stabilized by negative supercoiling, has been established.  相似文献   

11.
The expression of DNA topoisomerase II alpha and beta genes was studied in murine normal tissues. Northern blot analysis using probes specific for the two genes showed that the patterns of expression were different among 22 tissues of adult mice. Expression levels of topoisomerase II alpha gene were high in proliferating tissues, such as bone marrow and spleen, and undetectable or low in 17 other tissues. In contrast, high or intermediate expression of topoisomerase II beta gene was found in a variety of tissues (15) of adult mice, including those with no proliferating cells. Topoisomerase II gene expression was also studied during murine development. In whole embryos both genes were expressed at higher levels in early than late stages of embryogenesis. Heart, brain and liver of embryos two days before delivery, and these same tissues plus lung and thymus of newborn (1-day-old) mice expressed appreciable levels of the two genes. Interestingly, a post-natal induction of the beta gene expression was observed in the brain but not in the liver; conversely, the expression of the alpha gene was increased 1 day after birth in the liver but not in the brain. However, gene expression of a proliferation-associated enzyme, thymidylate synthase, was similar in these tissues between embryos and newborns. Thus, the two genes were differentially regulated in the post-natal period, and a tissue-specific role may be suggested for the two isoenzymes in the development of differentiated tissues such as the brain and liver. Based on the differential patterns of expression of the two isoforms, this analysis indicates that topoisomerase II alpha may be a specific marker of cell proliferation, whereas topoisomerase II beta may be implicated in functions of DNA metabolism other than replication.  相似文献   

12.
C G Shin  R M Snapka 《Biochemistry》1990,29(49):10934-10939
Exposure of infected CV-1 cells to specific type I and type II topoisomerase poisons caused strong protein association with distinct subsets of simian virus 40 (SV40) DNA replication intermediates. On the basis of the known specificity and mechanisms of action of these drugs, the proteins involved are assumed to be the respective topoisomerases. Camptothecin, a topoisomerase I poison, caused strong protein association with form II (relaxed circular) and form III (linear) viral genomes and replication intermediates having broken DNA replication forks but not with form I (superhelical) viral DNA or normal late replication intermediates which were present. In contrast, type II topoisomerase poisons caused completely replicated forms and late viral replication forms to be tightly bound to protein--some to a greater extent than others. Different type II topoisomerase inhibitors caused distinctive patterns of protein association with the replication intermediates present. Both intercalating and nonintercalating type II topoisomerase poisons caused a small amount of form I (superhelical) SV40 DNA to be protein-associated in vivo. The protein complex with form I viral DNA was entirely drug-dependent and strong, but apparently noncovalent. The protein associated with form I DNA may represent a drug-stabilized "topological complex" between type II topoisomerase and SV40 DNA.  相似文献   

13.
14.
A ParE-ParC fusion protein is a functional topoisomerase.   总被引:4,自引:0,他引:4  
L S Lavasani  H Hiasa 《Biochemistry》2001,40(29):8438-8443
Type II topoisomerases are responsible for DNA unlinking during DNA replication and chromosome segregation. Although eukaryotic enzymes are homodimers and prokaryotic enzymes are heterotetramers, both prokaryotic and eukaryotic type II topoisomerases belong to a single protein family. The amino- and carboxyl-terminal domains of eukaryotic enzymes are homologous to the ATP-binding and catalytic subunits of prokaryotic enzymes, respectively. Topoisomerase IV, a prokaryotic type II topoisomerase, consists of the ATP-binding subunit, ParE, and the catalytic subunit, ParC. We have joined the coding regions of parE and parC in frame and constructed a fusion protein of the two subunits of topoisomerase IV. This fusion protein, ParEC, can catalyze both decatenation and relaxation reactions. The ParEC protein is also capable of decatenating replicating daughter DNA molecules during oriC DNA replication in vitro. Furthermore, the fusion gene, parEC, complements the temperature-sensitive growth of both parC and parE strains, indicating that the ParEC protein can substitute for topoisomerase IV in vivo. These results demonstrate that a fusion protein of the two subunits of topoisomerase IV is a functional topoisomerase. Thus, a heterotetrameric type II topoisomerase can be converted into a homodimeric type II topoisomerase by gene fusion.  相似文献   

15.
We synthesized a DNA probe specific for the gene encoding eucaryotic DNA topoisomerase I by the polymerase chain reaction. The sequences of the primers for this reaction were deduced from the regions with extensive homology among the enzymes from the fission and budding yeasts, and the human. From the clones isolated by screening a Drosophila cDNA library with this DNA probe, two cDNA clones of 3.8 and 5.2 kb were characterized and completely sequenced. Both cDNA sequences contain an identical open reading frame for 972 amino acid residues. The 3.8 kb messenger RNA is likely generated by using a polyadenylation site 5' upstream to that used in generating the 5.2 kb mRNA. The predicted amino acid sequence shows that a segment of 420 amino acid residues at the amino terminus is hydrophilic, similar to the amino terminal 200 residues in the yeast and human enzymes. Furthermore, the Drosophila enzyme is unique in that the amino terminal 200 residues are enriched in serine and histidine residues; most of them are present in clusters. The rest of the Drosophila sequence is highly homologous to those from yeast and human enzymes. The evolutionarily conserved residues are identified and are likely the critical elements for the structure and function of this enzyme. A plasmid vector containing the cloned cDNA was constructed for the expression of Drosophila protein in Escherichia coli. The enzymatic and immunochemical analysis of the polypeptide produced in this heterologous expression system demonstrated that the expressed protein shares similar enzymatic properties and antigenic epitopes with DNA topoisomerase I purified from Drosophila embryos or tissue culture cells, thus establishing the bacterial expression system being useful for the future structure/function analysis of the Drosophila enzyme.  相似文献   

16.
The human DNA replication origin, located in the lamin B2 gene, interacts with the DNA topoisomerases I and II in a cell cycle-modulated manner. The topoisomerases interact in vivo and in vitro with precise bonds ahead of the start sites of bidirectional replication, within the pre-replicative complex region; topoisomerase I is bound in M, early G1 and G1/S border and topoisomerase II in M and the middle of G1. The Orc2 protein competes for the same sites of the origin bound by either topoisomerase in different moments of the cell cycle; furthermore, it interacts on the DNA with topoisomerase II during the assembly of the pre-replicative complex and with DNA-bound topoisomerase I at the G1/S border. Inhibition of topoisomerase I activity abolishes origin firing. Thus, the two topoisomerases are closely associated with the replicative complexes, and DNA topology plays an essential functional role in origin activation.  相似文献   

17.
M Saijo  T Enomoto  F Hanaoka  M Ui 《Biochemistry》1990,29(2):583-590
Type II topoisomerase has been purified from mouse FM3A cells by using P4 phage knotted DNA as a substrate. Analysis of the purified enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two bands of apparent molecular masses of 167 and 151 kDa. Partial digestion of the two bands with Staphylococcus aureus V8 protease indicated that the two polypeptides were structurally related. The enzyme required ATP and Mg2+ for activity. dATP could substitute for ATP, and ITP was slightly effective at 5-10 mM. The activity was sensitive to 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA), coumermycin, and ethidium bromide. A protein kinase activity was detected in the partially purified topoisomerase II fraction, and this protein kinase was further purified. The protein kinase phosphorylated the purified topoisomerase II, and the phosphorylation of topoisomerase II by the kinase increased the activity by 8.6-fold over that of the unmodified enzyme. The treatment of the purified topoisomerase II with alkaline phosphatase abolished the enzyme activity almost completely, and the treatment of the dephosphorylated topoisomerase II with the protein kinase restored the enzyme activity. The protein kinase activity was not stimulated by Ca2+ or cyclic nucleotides, and the aminoacyl residue phosphorylated by the kinase was serine. Enzymatic properties of the kinase were very similar to those of the kinase reported to be tightly associated with the Drosophila topoisomerase II [Sander, M., Nolan, J. M., & Hsieh, T.-S. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 6938-6942]. The immunoprecipitation of nuclear extracts prepared from 32P-labeled cells with anti-mouse topoisomerase II antiserum indicated that DNA topoisomerase II existed in mouse cells as a phosphoprotein.  相似文献   

18.
The nuclear enzyme DNA topoisomerase II catalyzes the breakage and resealing of duplex DNA and plays an important role in several genetic processes. It also mediates the DNA cleavage activity and cytotoxicity of clinically important anticancer agents such as etoposide. We have examined the activity of topoisomerase II during the first cell cycle of quiescent BALB/c 3T3 cells following serum stimulation. Etoposide-mediated DNA break frequency in vivo was used as a parameter of topoisomerase II activity, and enzyme content was assayed by immunoblotting. Density-arrested A31 cells exhibited a much lower sensitivity to the effects of etoposide than did actively proliferating cells. Upon serum stimulation of the quiescent cells, however, there was a marked increase in drug sensitivity which began during S phase and reached its peak just before mitosis. Maximal drug sensitivity during this period was 2.5 times greater than that of log-phase cells. This increase in drug sensitivity was associated with an increase in intracellular topoisomerase II content as determined by immunoblotting. The induction of topoisomerase II-mediated drug sensitivity was aborted within 1 h of exposure of cells to the protein synthesis inhibitor cycloheximide, but the DNA synthesis inhibitor aphidicolin had no effect. In contrast to the sensitivity of cells to drug-induced DNA cleavage, maximal cytotoxicity occurred during S phase. A 3-h exposure to cycloheximide before etoposide treatment resulted in nearly complete loss of cytotoxicity. Our findings indicate that topoisomerase II activity fluctuates with cell cycle progression, with peak activity occurring during the G2 phase. This increase in topoisomerase II is protein synthesis dependent and may reflect a high rate of enzyme turnover. The dissociation between maximal drug-induced DNA cleavage and cytotoxicity indicates that the topoisomerase-mediated DNA breaks may be necessary but are not sufficient for cytotoxicity and that the other factors which are particularly expressed during S phase may be important as well.  相似文献   

19.
Drosophila topoisomerase II-DNA interactions are affected by DNA structure.   总被引:6,自引:0,他引:6  
The binding of purified Drosophila topoisomerase II to the highly bent DNA segments from the SV40 terminus of replication and C. fasciculata kinetoplast minicircle DNA (kDNA) was examined using electron microscopy (EM). The probability of finding topoisomerase II positioned at or near the bent SV40 terminus and Crithidia fasciculata kDNA was two- and threefold higher, respectively, than along the unbent pBR325 DNA into which the elements had been cloned. Closer examination demonstrated that the enzyme bound preferentially to the junction between the bent and non-bent sequences. Using gel electrophoresis, a cluster of strong sodium dodecyl sulfate-induced topoisomerase II cleavage sites was mapped to the SV40 terminus DNA, and two weak cleavage sites to the C. fasciculata kDNA. As determined by EM, Drosophila topoisomerase II foreshortened the apparent length of DNA by only 15 base-pairs when bound, arguing that it does not wrap DNA around itself. When bound to pBR325 containing the C. fasciculata kDNA and the SV40 terminus, topoisomerase II often produced DNA loops. The size distribution was that predicted from the known probability of any two points along linear DNA colliding. In vitro mapping of topoisomerase II on DNA whose ends were blocked by avidin protein revealed that binding is enhanced at sites located near a blocked end as compared to a free end. These observations may contribute towards establishing a framework for understanding topoisomerase II-DNA interactions.  相似文献   

20.
In the studies reported here we have used topoisomerase II as a model system for analyzing the factors that determine the sites of action for DNA-binding proteins in vivo. To localize topoisomerase II sites in vivo we used an inhibitor of the purified enzyme, the antitumor drug VM-26. This drug stabilizes an intermediate in the catalytic cycle, the cleavable complex, and substantially stimulates DNA cleavage by topoisomerase II. We show that lysis of VM-26 treated tissue culture cells with sodium dodecyl sulfate induces highly specific double-strand breaks in genomic DNA, and we present evidence indicating that these double-strand breaks are generated by topoisomerase II. Using indirect end labeling to map the cleavage products, we have examined the in vivo sites of action of topoisomerase II in the 87A7 heat shock locus, the histone repeat, and a tRNA gene cluster at 90BC. Our analysis reveals that chromatin structure, not sequence specificity, is the primary determinant in topoisomerase II site selection in vivo. We suggest that chromatin organization may provide a general mechanism for generating specificity in a wide range of DNA-protein interactions in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号