首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The ability of a cell to polarize and move is governed by remodeling of the cellular adhesion/cytoskeletal network that is in turn controlled by the Rho family of small GTPases. However, it is not known what signals lie downstream of Rac1 and Cdc42 during peripheral actin and adhesion remodeling that is required for directional migration. RESULTS: We show here that individual members of the Rho family, RhoA, Rac1, and Cdc42, direct the specific intracellular targeting of c-Src tyrosine kinase to focal adhesions, lamellipodia, or filopodia, respectively, and that the adaptor function of c-Src (the combined SH3/SH2 domains coupled to green fluorescent protein) is sufficient for targeting. Furthermore, Src's catalytic activity is absolutely required at these peripheral cell-matrix attachment sites for remodeling that converts RhoA-dependent focal adhesions into smaller focal complexes along Rac1-induced lamellipodia (or Cdc42-induced filopodia). Consequently, cells in which kinase-deficient c-Src occupies peripheral adhesion sites exhibit impaired polarization toward migratory stimuli and reduced motility. Furthermore, phosphorylation of FAK, an Src adhesion substrate, is suppressed under these conditions. CONCLUSIONS: Our findings demonstrate that individual Rho GTPases specify Src's exact peripheral localization and that Rac1- and Cdc42-induced adhesion remodeling and directed cell migration require Src activity at peripheral adhesion sites.  相似文献   

2.
Directed cell migration requires cell polarization and adhesion turnover, in which the actin cytoskeleton and microtubules work critically. The Rho GTPases induce specific types of actin cytoskeleton and regulate microtubule dynamics. In migrating cells, Cdc42 regulates cell polarity and Rac works in membrane protrusion. However, the role of Rho in migration is little known. Rho acts on two major effectors, ROCK and mDia1, among which mDia1 produces straight actin filaments and aligns microtubules. Here we depleted mDia1 by RNA interference and found that mDia1 depletion impaired directed migration of rat C6 glioma cells by inhibiting both cell polarization and adhesion turnover. Apc and active Cdc42, which work together for cell polarization, localized in the front of migrating cells, while active c-Src, which regulates adhesion turnover, localized in focal adhesions. mDia1 depletion impaired localization of these molecules at their respective sites. Conversely, expression of active mDia1 facilitated microtubule-dependent accumulation of Apc and active Cdc42 in the polar ends of the cells and actin-dependent recruitment of c-Src in adhesions. Thus, the Rho-mDia1 pathway regulates polarization and adhesion turnover by aligning microtubules and actin filaments and delivering Apc/Cdc42 and c-Src to their respective sites of action.  相似文献   

3.
Cell movement is essential during embryogenesis to establish tissue patterns and to drive morphogenetic pathways and in the adult for tissue repair and to direct cells to sites of infection. Animal cells move by crawling and the driving force is derived primarily from the coordinated assembly and disassembly of actin filaments. The small GTPases, Rho, Rac, and Cdc42, regulate the organization of actin filaments and we have analyzed their contributions to the movement of primary embryo fibroblasts in an in vitro wound healing assay. Rac is essential for the protrusion of lamellipodia and for forward movement. Cdc42 is required to maintain cell polarity, which includes the localization of lamellipodial activity to the leading edge and the reorientation of the Golgi apparatus in the direction of movement. Rho is required to maintain cell adhesion during movement, but stress fibers and focal adhesions are not required. Finally, Ras regulates focal adhesion and stress fiber turnover and this is essential for cell movement. We conclude that the signal transduction pathways controlled by the four small GTPases, Rho, Rac, Cdc42, and Ras, cooperate to promote cell movement.  相似文献   

4.
Over the past several years, it has become clear that the Rho family of GTPases plays an important role in various aspects of neuronal development including cytoskeleton dynamics and cell adhesion processes. We have analysed the role of MEGAP, a GTPase-activating protein that acts towards Rac1 and Cdc42 in vitro and in vivo, with respect to its putative regulation of cytoskeleton dynamics and cell migration. To investigate the effects of MEGAP on these cellular processes, we have established an inducible cell culture model consisting of a stably transfected neuroblastoma SHSY-5Y cell line that endogenously expresses MEGAP albeit at low levels. We can show that the induced expression of MEGAP leads to the loss of filopodia and lamellipodia protrusions, whereas constitutively activated Rac1 and Cdc42 can rescue the formation of these structures. We have also established quantitative assays for evaluating actin dynamics and cellular migration. By time-lapse microscopy, we show that induced MEGAP expression reduces cell migration by 3.8-fold and protrusion formation by 9-fold. MEGAP expressing cells also showed impeded microtubule dynamics as demonstrated in the TC-7 3x-GFP epithelial kidney cells. In contrast to the wild type, overexpression of MEGAP harbouring an artificially introduced missense mutation R542I within the functionally important GAP domain did not exert a visible effect on actin and microtubule cytoskeleton remodelling. These data suggest that MEGAP negatively regulates cell migration by perturbing the actin and microtubule cytoskeleton and by hindering the formation of focal complexes.  相似文献   

5.
Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism   总被引:21,自引:0,他引:21  
The Rho family GTPases Cdc42, Rac1 and RhoA control many of the changes in the actin cytoskeleton that are triggered when growth factor receptors and integrins bind their ligands [1] [2]. Rac1 and Cdc42 stimulate the formation of protrusive structures such as membrane ruffles, lamellipodia and filopodia. RhoA regulates contractility and assembly of actin stress fibers and focal adhesions. Although prolonged integrin engagement can stimulate RhoA [3] [4] [5], regulation of this GTPase by early integrin-mediated signals is poorly understood. Here we show that integrin engagement initially inactivates RhoA, in a c-Src-dependent manner, but has no effect on Cdc42 or Rac1 activity. Additionally, early integrin signaling induces activation and tyrosine phosphorylation of p190RhoGAP via a mechanism that requires c-Src. Dynamic modulation of RhoA activity appears to have a role in motility, as both inhibition and activation of RhoA hinder migration [6] [7] [8]. Transient suppression of RhoA by integrins may alleviate contractile forces that would otherwise impede protrusion at the leading edge of migrating cells.  相似文献   

6.
Bidirectional signaling between the cytoskeleton and integrins   总被引:32,自引:0,他引:32  
Clustering of integrins into focal adhesions and focal complexes is regulated by the actin cytoskeleton. In turn, actin dynamics are governed by Rho family GTPases. Integrin-mediated adhesion activates these GTPases, triggering assembly of filopodia, lamellipodia and stress fibers. In the past few years, signaling pathways have begun to be identified that promote focal adhesion disassembly and integrin dispersal. Many of these pathways result in decreased myosin-mediated cell contractility.  相似文献   

7.
The polarisation and locomotion of fibroblasts requires an intact microtubule cytoskeleton [1]. This has been attributed to an influence of microtubule-mediated signals on actin cytoskeleton dynamics, either through the generation of active Rac to promote protrusion of lamellipodia [2], or through the modulation of substrate adhesion via microtubule targeting events [3] [4]. We show here that the polarizing role of microtubules can be mimicked by externally imposing an asymmetric gradient of contractility by local application of the contractility inhibitor ML-7. Apolar fibroblasts lacking microtubules could be induced to polarize and to move by application of ML-7 by micropipette to one side of the cell and then to the trailing vertices that developed. The release and retraction of trailing adhesions could be correlated with a relaxation of traction on the substrate and a differential shortening of stress-fibre bundles, with their distal tips relaxed. Although retraction and protrusion in these conditions resembled control cell locomotion, the normal turnover of adhesion sites that form behind the protruding cell front was blocked. These findings show that microtubules are dispensable for fibroblast protrusion, but are required for the turnover of substrate adhesions that normally occurs during cell locomotion. We conclude that regional contractility is modulated by the interfacing of microtubule-linked events with focal adhesions and that microtubules determine cell polarity via this route.  相似文献   

8.
Ellis S  Mellor H 《Current biology : CB》2000,10(21):1387-1390
Small GTPases of the Rho family have a critical role in controlling cell morphology, motility and adhesion through dynamic regulation of the actin cytoskeleton [1,2]. Individual Rho GTPases have been shown to regulate distinct components of the cytoskeletal architecture; RhoA stimulates the bundling of actin filaments into stress fibres [3], Rac reorganises actin to produce membrane sheets or lamellipodia [4] and Cdc42 causes the formation of thin, actin-rich surface projections called filopodia [5]. We have isolated a new Rho-family GTPase, Rif (Rho in filopodia), and shown that it represents an alternative signalling route to the generation of filopodial structures. Coordinated regulation of Rho-family GTPases can be used to generate more complicated actin rearrangements, such as those underlying cell migration [6]. In addition to inducing filopodia, Rif functions cooperatively with Cdc42 and Rac to generate additional structures, increasing the diversity of actin-based morphology.  相似文献   

9.
Rho GTPases are versatile regulators of cell shape that act on the actin cytoskeleton. Studies using Rho GTPase mutants have shown that, in some cells, Rac1 and Cdc42 regulate the formation of lamellipodia and filopodia, respectively at the leading edge, whereas RhoA mediates contraction at the rear of moving cells. However, recent reports have described a zone of RhoA/ROCK activation at the front of cells undergoing motility. In this study, we use a FRET-based RhoA biosensor to show that RhoA activation localizes to the leading edge of EGF-stimulated cells. Inhibition of Rho or ROCK enhanced protrusion, yet markedly inhibited cell motility; these changes correlated with a marked activation of Rac-1 at the cell edge. Surprisingly, whereas EGF-stimulated protrusion in control MTLn3 cells is Rac-independent and Cdc42-dependent, the opposite pattern is observed in MTLn3 cells after inhibition of ROCK. Thus, Rho and ROCK suppress Rac-1 activation at the leading edge, and inhibition of ROCK causes a switch between Cdc42 and Rac-1 as the dominant Rho GTPase driving protrusion in carcinoma cells. These data describe a novel role for Rho in coordinating signaling by Rac and Cdc42.  相似文献   

10.
The GTP-binding proteins, Rho, Rac and Cdc42 are known to regulate actin organisation. Rho induces the assembly of contractile actin-based microfilaments such as stress fibres, Rac regulates the formation of membrane ruffles and lamellipodia, and Cdc42 activation is necessary for the formation of filopodia. In addition, all three proteins can also regulate the assembly of integrin-containing focal adhesion complexes. The orchestration of these distinct cytoskeletal changes is thought to form the basis of the co-ordination of cell motility and we have investigated the roles of Rho family proteins in migration using a model system. We have found that in the macrophage cell line Bacl, the cytokine CSF-1 rapidly induces actin reorganisation: it stimulates the formation of filopodia, lamellipodia and membrane ruffles, as well as the appearance of fine actin cables within the cell. We have shown that Cdc42, Rac and Rho regulate the CSF-1 induced formation of these distinct actin filament-based structures. Using a cell tracking procedure we found that both Rho and Rac were required for CSF-1 stimulated cell translocation. In contrast, inhibition of Cdc42 does not prevent macrophages migrating in response to CSF-1, but does prevent recognition of a CSF-1 concentration gradient, so that cells now migrate randomly rather than up the gradient of this chemotactic cytokine. This implies that Cdc42, and thus probably filopodia, are required for gradient sensing and cell polarisation in macrophages.  相似文献   

11.
Desmoglein 3 (Dsg3), a member of the desmoglein sub-family, serves as an adhesion molecule in desmosomes. Our previous study showed that overexpression of human Dsg3 in several epithelial lines induces formation of membrane protrusions, a phenotype suggestive of Rho GTPase activation. Here we examined the interaction between Dsg3 and actin in detail and showed that endogenous Dsg3 colocalises and interacts with actin, particularly the junctional actin in a Rac1-dependent manner. Ablation of Rac1 activity by dominant negative Rac1 mutant (N17Rac1) or the Rac1 specific inhibitor (NSC23766) directly disrupts the interaction between Dsg3 and actin. Assembly of the junctional actin at the cell borders is accompanied with enhanced levels of Dsg3, while inhibition of Dsg3 by RNAi results in profound changes in the organisation of actin cytoskeleton. In accordance, overexpression of Dsg3 results in a remarkable increase of Rac1 and Cdc42 activities and to a lesser extent, RhoA. The enhancements in Rho GTPases are accompanied by the pronounced actin-based membrane structures such as lamellipodia and filopodia, enhanced rate of actin turnover and cell polarisation. Together, our results reveal an important novel function for Dsg3 in promoting actin dynamics through regulating Rac1 and Cdc42 activation in epithelial cells.  相似文献   

12.
Interactions of cell adhesions, Rho GTPases and actin in the endothelial cells' response to external forces are complex and not fully understood, but a qualitative understanding of the mechanosensory response begins to emerge. Here, we formulate a mathematical model of the coupled dynamics of cell adhesions, small GTPases Rac and Rho and actin stress fibers guiding a directional reorganization of the actin cytoskeleton. The model is based on the assumptions that the interconnected cytoskeleton transfers the shear force to the adhesion sites, which in turn transduce the force into a chemical signal that activates integrins at the basal surface of the cell. Subsequently, activated and ligated integrins signal and transiently de-activate Rho, causing the disassembly of actin stress fibers and inhibiting the maturation of focal complexes into focal contacts. Focal complexes and ligated integrins activate Rac, which in turn enhances focal complex assembly. When Rho activity recovers, stress fibers re-assemble and promote the maturation of focal complexes into focal contacts. Merging stress fibers self-align, while the elevated level of Rac activity at the downstream edge of the cell is translated into an alignment of the cells and the newly forming stress fibers in the flow direction. Numerical solutions of the model equations predict transient changes in Rac and Rho that compare well with published experimental results. We report quantitative data on early alignment of the stress fibers and its dependence on cell shape that agrees with the model.  相似文献   

13.
Arrestins recruit a variety of signaling proteins to active phosphorylated G protein-coupled receptors in the plasma membrane and to the cytoskeleton. Loss of arrestins leads to decreased cell migration, altered cell shape, and an increase in focal adhesions. Small GTPases of the Rho family are molecular switches that regulate actin cytoskeleton and affect a variety of dynamic cellular functions including cell migration and cell morphology. Here we show that non-visual arrestins differentially regulate RhoA and Rac1 activity to promote cell spreading via actin reorganization, and focal adhesion formation via two distinct mechanisms. Arrestins regulate these small GTPases independently of G-protein-coupled receptor activation.  相似文献   

14.
Summary. Small GTP-binding proteins of the Rho family (RhoA, Cdc42, Rac1) regulate the organisation and the turnover of the cell’s cytoskeleton and adhesion structures. A significant function of these cellular structures is to translate and counterbalance forces applied to, or generated by, cells in order to maintain homeostasis and control cell movement. We therefore hypothesised that Rho-GTPases are directly involved in cellular gravity perception and may participate in the alterations induced in microgravity. To define an adequate cellular model allowing to investigate this issue, we have established stable cell lines constitutively expressing active forms of either RhoA, Cdc42, or Rac1. The three cell lines differ by morphology and by their ability to form filopodia, lamellipodia, and bundles of actin stress fibers. Overexpression of the active form of either RhoA, Cdc42, or Rac1 is compatible with cell viability and does not affect cell population doubling time. Thus, our series of mutant cells appear well suited to gain further knowledge on the molecular mechanisms of cellular gravity perception. Correspondence and reprints: Institute for Biochemistry II, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Federal Republic of Germany.  相似文献   

15.
Cell adhesion is an essential prerequisite for cell function and movement. It depends strongly on focal adhesion complexes connecting the extracellular matrix to the actin cytoskeleton. Especially in moving cells focal adhesions are highly dynamic and believed to be formed closely behind the leading edge. Filopodia were thought to act mainly as guiding cues using their tip complexes for elongation. Here we show for keratinocytes a strong dependence of lamellipodial adhesion sites on filopodia. Upon stable contact of the VASP-containing tip spot to the substrate, a filopodial focal complex (filopodial FX) is formed right behind along the filopodia axis. These filopodial FXs are fully assembled, yet small adhesions containing all adhesion markers tested. Filopodial FXs when reached by the lamellipodium are just increased in size resulting in classical focal adhesions. At the same time most filopodia regain their elongation ability. Blocking filopodia inhibits development of new focal adhesions in the lamellipodium, while focal adhesion maturation in terms of vinculin exchange dynamics remains active. Our data therefore argue for a strong spatial and temporal dependence of focal adhesions on filopodial focal complexes in keratinocytes with filopodia not permanently initiated via new clustering of actin filaments to induce elongation.  相似文献   

16.
Integrin-induced adhesion leads to cytoskeletal reorganizations, cell migration, spreading, proliferation, and differentiation. The details of the signaling events that induce these changes in cell behavior are not well understood but they appear to involve activation of Rho family members which activate signaling molecules such as tyrosine kinases, serine/threonine kinases, and lipid kinases. The result is the formation of focal complexes, focal adhesions, and bundles and networks of actin filaments that allow the cell to spread. The present study shows that mu-calpain is active in adherent cells, that it cleaves proteins known to be present in focal complexes and focal adhesions, and that overexpression of mu-calpain increased the cleavage of these proteins, induced an overspread morphology and induced an increased number of stress fibers and focal adhesions. Inhibition of calpain with membrane permeable inhibitors or by expression of a dominant negative form of mu-calpain resulted in an inability of cells to spread or to form focal adhesions, actin filament networks, or stress fibers. Cells expressing constitutively active Rac1 could still form focal complexes and actin filament networks (but not focal adhesions or stress fibers) in the presence of calpain inhibitors; cells expressing constitutively active RhoA could form focal adhesions and stress fibers. Taken together, these data indicate that calpain plays an important role in regulating the formation of focal adhesions and Rac- and Rho-induced cytoskeletal reorganizations and that it does so by acting at sites upstream of both Rac1 and RhoA.  相似文献   

17.
The small GTPases Rho, Rac, and Cdc42 regulate the actin cytoskeleton in all eukaryotic cells. In this study we have evaluated the effect of cholesterol oxides (7-ketocholesterol and 25-hydroxycholesterol) on cell migration, cell adhesion, and cytoskeletal organisation of lens epithelial cells (LEC). Effects of cholesterol oxides on cytoskeleton were evaluated by immunofluorescence confocal microscopy. The 7-ketocholesterol induced cell arborisation, with bundling of vimentin and tubulin in the cell processes and formation of filopodia and stress fibres. Cells treated with 25-hydroxycholesterol showed a collapse of vimentin filaments towards the nucleus and formation of lamellipodia. In addition, cells treated with 7-ketocholesterol or 25-hydroxycholesterol showed decreased migration. The effects of cholesterol oxides on cytoskeletal proteins involve the activation of the small GTPases Rho, Rac, and Cdc42. Indeed, formation of both filopodia and stress fibres induced by 7-ketocholesterol is inhibited by overexpressing dominant negatives forms of Cdc42 and RhoA, respectively. Similarly, the collapse of vimentin intermediate filament network and the formation of lamellipodia, induced by 25-hydroxycholesterol, is inhibited by overexpressing dominant negatives forms of Rac1. The effects of cholesterol oxides described in this study for LEC are also observed for at least two other cell lines (H36CE and U373), suggesting that this may represent a general mechanism whereby cholesterol oxides induces cytoskeletal disorganisation.  相似文献   

18.
Interplay between Rac and Rho in the control of substrate contact dynamics.   总被引:33,自引:0,他引:33  
BACKGROUND: Substrate anchorage and cell locomotion entail the initiation and development of different classes of contact sites, which are associated with the different compartments of the actin cytoskeleton. The Rho-family GTPases are implicated in the signalling pathways that dictate contact initiation, maturation and turnover, but their individual roles in these processes remain to be defined. RESULTS: We monitored the dynamics of peripheral, Rac-induced focal complexes in living cells in response to perturbations of Rac and Rho activity and myosin contractility. We show that focal complexes formed in response to Rac differentiated into focal contacts upon upregulation of Rho. Focal complexes were dissociated by inhibitors of myosin-II-dependent contractility but not by an inhibitor of Rho-kinase. The downregulation of Rac promoted the enlargement of focal contacts, whereas a block in the Rho pathway not only caused a dissolution of focal contacts but also stimulated membrane ruffling and formation of new focal complexes, which were associated with the advance of the cell front. CONCLUSIONS: Rac functions to signal the creation of new substrate contacts at the cell front, which are associated with the induction of ruffling lamellipodia, whereas Rho serves in the maturation of existing contacts, with both contact types requiring contractility for their formation. The transition from a focal complex to a focal contact is associated with a switch to Rho-kinase dependence. Rac and Rho also influence the development of focal contacts and focal complexes, respectively, through mutually antagonistic pathways.  相似文献   

19.
The Rho family of small GTPases (RhoA, Rac1 and Cdc42) controls signal-transduction pathways that influence many aspects of cell behaviour, including cytoskeletal dynamics. At the leading edge, Rac1 and Cdc42 promote cell motility through the formation of lamellipodia and filopodia, respectively. On the contrary, RhoA promotes the formation of contractile actin-myosin-containing stress fibres in the cell body and at the rear. Here, we identify synaptopodin, an actin-associated protein, as a novel regulator of RhoA signalling and cell migration in kidney podocytes. We show that synaptopodin induces stress fibres by competitive blocking of Smurf1-mediated ubiquitination of RhoA, thereby preventing the targeting of RhoA for proteasomal degradation. Gene silencing of synaptopodin in kidney podocytes causes the loss of stress fibres and the formation of aberrant non-polarized filopodia and impairment of cell migration. Together, these data show that synaptopodin is essential for the integrity of the podocyte actin cytoskeleton and for the regulation of podocyte cell migration.  相似文献   

20.

Background

ROCK1 and ROCK2 are serine/threonine kinases that function downstream of the small GTP-binding protein RhoA. Rho signalling via ROCK regulates a number of cellular functions including organisation of the actin cytoskeleton, cell adhesion and cell migration.

Methodology/Principal Findings

In this study we use RNAi to specifically knockdown ROCK1 and ROCK2 and analyse their role in assembly of adhesion complexes in human epidermal keratinocytes. We observe that loss of ROCK1 inhibits signalling via focal adhesion kinase resulting in a failure of immature adhesion complexes to form mature stable focal adhesions. In contrast, loss of ROCK2 expression results in a significant reduction in adhesion complex turnover leading to formation of large, stable focal adhesions. Interestingly, loss of either ROCK1 or ROCK2 expression significantly impairs cell migration indicating both ROCK isoforms are required for normal keratinocyte migration.

Conclusions

ROCK1 and ROCK2 have distinct and separate roles in adhesion complex assembly and turnover in human epidermal keratinocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号